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THE PROPAGATION OF SCHROEDINGER WAVES IN
A UNIFORM FIELD OF FORCE

BV G. BREIT

ABSTRACT

The phase-difference between a Schroedinger wave refracted by a uniform field
of force and the primary wave is calculated. The results are shown in a table and
graphically. As the wave-length increases, the phase-difference decreases, reaches a
minimum, and then increases again. It is suggested that the intensity of some crystal
reflections should vary anomalously as a result.

'he motion of an electron in a uniform field of force has been treated
by Kennard' from the point of view of the transformation theory and by

Darwin' from the point of view of Schroedinger waves with particluar
attention to Heisenberg's uncertainty principle. In these treatments, how-
ever, the simple problem of writing down a solution of Schroedinger's
differential equation corresponding to a constant energy value has not been
answered. This is done in the present note. Numerical values for the phase
of the emerging wave are given. Relativity is neglected.

The electron having a charge e, mass m is moving in a uniform electric
field of force directed along OY and having the absolute value F. The
potential energy is I'y and the Schroedinger equation is
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h' = 8''nzE/h' a = Fe/E (2)

No generality is lost by confining our attention to waves having normals
in the yx plane. Write

4 =e*'*f(y)

Then

d'f/dy'+ (A By)f=0—
where

8= k'u

' Kennard, Zeits. f. Physik 44, 326 (1927).
' Darwin, Proc. Roy. Soc. A11'7, 258 (1927).
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«=f1 '"(~ f—iy)

d'f/d«'+ «f 0= (7)

The general solution of this equation (7) is known to be

f=«'"C»3(2«'"/3) (8)

where C»& is the general cylindrical fuction of order 1/3.
Suppose the field of force I' exists only for values of y& 0 and suppose

it is required to find the phase of the reflected Schroedinger waves if they
are incident from the side of y(0. We must then satisfy the boundary
conditions at the surface y=0. For y&0 we have a solution of the form
(8). For y(0 the solution consists of the sum of two waves, one being a
plane incident and the other a plane reflected wave. We also must satisfy
the condition that for y=+~ the expression (8) should give vanishing
values of f.

Let the incident wave be represented by &/ =u,e'&&'+»' and the reflected
by a„e*&&* »&. Then t2+rP =O'. The refracted wave is of the form (8), i.e.

If the standard definitions of the J„are used, namely, if the J„are defined

by their power series and continuations of these, it becomes clear on investi-
gating the asymptotic expansions of the J„ that n= —P. Thus we have
the boundary conditions

a;+ a, = cxF(«0) and fp(a; a„) =—n(dF/d«)r, (d«/dy) „o (10)

Remembering (6) (d«/dy) „0= —8»'. Using (5) (d«/dy) „0———ri/«o»' so
that the second equation in (10) is

s* s= («/«o'")(dF/d«) r, —

Combining this with the first equation in (10)

(10')

Hence

u; —u„s d log F =iE
a;+a„gO'/2 dg

1+iX
O'= ——8„

1—iE
(12)

Since X is real, the amplitude of the reflected wave is therefore equal to
that of the incident. Its phase, however, is different.

Using recurrence relations for Bessel fuctions, we find from (11) and (9)

J2/3+ J—2/3E=— —= tan eJ1/3 J—1/3
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Here I'o =AB "' and so 2fg"/3 =2(k'm')+'/3k'a =2km'/3a =4~m'/3Xa where
X represents the wave-length for y(0. In the table below the values of X
and e are given as functions of the parameter

K = 2I 0"'/3 = 4mm'/3ka

Making use of Dinnik's tables' for Jg/3 J $/3 JQ/3 J g/3

TABLE I. Values of K and c for diger~nt values of a.

(14)

tan 'X tan 'X 2t

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

-1.91—2.50—4.20—21.8
6.34
2.56
1.49
.939
.589

—62.3'
—68.1—76.4—87.3

81
68.7
56. 1
43.1
30.5

—124.6—136.2—152.8—174.6—198—223. 6—247. 8—273.8—299.0

2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2

.337

.082

.496—1.13—2.84
18.1
2.04
.820
.288

18.7'
—4.7—26.3—48.5—70.5

86.9
63.9
39.3
16.1

—322.6—369.4—412.6—457.0—501.0—546. 2—592.2—641.4—687.8

By (12) we have a; = e'*'a„, the values of 2e belonging to different ~ being
tabulated above. The phase of the reflected wave at y=0 is therefore re-
tarded behind the phase of the incident wave by the amount

~

2e ~. If ~ =0,
i.e. , if the wave-length is large or if the incidence is glancing, the phase
difference is 180, as it should be because for long wave-lengths we deal

Fig. 1.

with pure reHection. If a)2 we have approximately a linear dependence
of 2e on a. This is the region where phase relations can be accurately. de-
scribed by refraction and using geometrical optics. It must be noted, how-
ever, that even for I(, +2 an effect of the reflection is still felt in the form of

' Dinnik, Archiv d. Math. u. Phys. 18, 33/ (1911).
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an additive constant of about 90' in the phase. This is particularly clearly
seen on the attached graph, the asymptote to the phase curve cutting the
axis of K=O at about 90', while simple ray tracing leads to the expression

( —2e) =2~ (&5)

so that a change of 2' in 2e should give a change of x in ~ as is seen to be
the case on the figure.

It seems possible that in the case of reflections of electrons by crystals
the peculiar shape of the curve for a(2 may be of importance. It is con-
ceivable that a varies periodically over the surface of the crystal. The
result of this would be a change in z and therefore in 2e. Hence the phase
difference between the surface reflections from portions of the crystal having
different values of a would be expected to vary with the wave-length and
the angle of incidence. It is therefore to be expected that for electron
reflections of the plane grating type a crystal cannot be described by a
fixed distribution of reflecting matter as has been usually done in the
case for x-rays.
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