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ON THE QUANTUM MECHANICS OF THE ROTATIONAL
DISTORTION OF MULTIPLETS IN MOLECULAR SPECTRA

By E. Hirr anp J. H. Van VLECK

ABSTRACT

Most of the paper is on the effect of molecular rotation on spin multiplets, but
the last section 5 considers the rather different subject of “o-type doubling.”

1. Hund’s limiting cases (a) and (b), those commonly considered, are realized
when the coupling between the electronic spin and the molecular axis of figure is very
strong or very weak. Preparatory to the new analysis for the intermediate case,
amplitude matrices are given both for cases (a) and (b), including phase factors in (b).

2. The general intermediate case can be handled (except for purely algebraic
difficulties) both for frequencies and intensities by our mathematical method. The
procedure is to start with case (b) and to introduce a coupling energy which is propor-
tional to the cosine of the angle between the axis of electronic spin s and the molecular
axis of figure, and which when increased adaibatically converts the system over into
case (a). The formula for the energy W is the solution of an algebraic equation of order
2s+1. Approximate solutions are given for nearly case (b) with any s and for nearly
case (a) in triplet spectra (s=1).

3. The doublet case (s =1%) is particularly satisfactory as (unlike the old quantum
theory) the analysis yields a simple closed formula for the energy, viz.,

W=[(i+3)? =02 £} {4G4+32 NN~ 4) 022} 2] (h2/8°1)
which holds throughout the interval from (a) to (b) both for regular and inverted
multiplets. Here \ is an abbreviation for 8724 I/h?, where 4 is the proportionality factor
in the magnetic coupling energy 4s-o;. This formula vields an adiabatic correlation of
energy levels in case (a) with those in case (b) which is precisely that predicted by
Hund and Kemble including the anomalous behavior of the component j=o;—1/2 in
“regular” multiplets (4 >0). The agreement with the experimental doublet widths
in the OH band 2811 is slightly better than in the old quantum theory. Intensity
formulas are given which apply throughout the range from (a) to (b). Here account
is taken of the fact that the moment of inertia I and coupling constant A are different
in the initial and final states if there are changes in “electronic” quantum numbers.

4. Simple special cases of the doublet intensity formulas arise when there is (a)
type coupling in the initial states and (b) in the final or vice versa. The 2P—2S
bands usually meet this condition and formulas for them are developed; the main
new result is that for a given initial state the transitions ending on jr=j—1/2 and
Jx=j+1/2 are of equal intensity. As another illustration intensity formulas are
given for 2D,~2P,. ’

5. An elementary theory of s-type doubling is developed by using mathematics
very similar to that in the preceding but introducing adiabatically a coupling propor-
tional to the square rather than first power of the cosine of the angle between an angular
momentum vector £ and a “core” consisting of the non-gyroscopic “dumb-bell” mole-
cular model. In a stationary molecule the sign of ¢ is arbitrary and if ¢ 0 there are
two states of identical energies. It is shown that actually the rotation removes this
degeneracy and creates a small splitting into two levels for a given value of ¢2 which
Mulliken calls “o-type doubling.” Kronig's result is obtained that the doubling is
smaller for large ¢2. The combination relations predicted by Hulthén and treated
mathematically by Kronig are shown to apply exactly even when the perturbing effect
of the angular momentum perpendicular to the figure axis in case (a) is considered,
and the coupling is no longer rigorously of type (a). Interaction of o-type degeneracy
with the spin is reserved for a later paper, so section 5 applies primarily to singlets.
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MULTIPLETS IN MOLECULAR SPECTRA 251

N HIS important recent work, Hund! has introduced the concept of the

spin electron into the theory of the spectra of diatomic molecules, and
has concluded that the spectral terms of a given molecule can be classed in
one or another of a number of groups which he calls case (a), case (b), etc.
These cases correspond, to special limiting molecular configurations occurring
for particular asymptotic values of the molecular rotational energy relative
to the energy of interaction between the spin axis and the rest of the molecule;
e.g., for very tight coupling of the spin axis the motion is that of case (a),
while for very weak coupling it may be that of case (b).

The purpose of the present paper is to give frequency and intensity
formulae, for diatomic molecules, applicable to the transition stage inter-
mediate between these limiting cases, which are the only ones ordinarily
considered. The initial step in this direction has been taken by Kemble.?
Using the methods of the old quantum theory, he derived energy formulas
which are applicable over certain portions of the transition range from case
(a) to case (b), and which give good agreement with the experimental data
in the case of the OH band A2811. The treatment of the problem by the
new quantum mechanics, which we give in the present paper, has the ad-
vantage of yielding a simple frequency formula for the doublet case, as well
as exact expressions for the intensities.

1. Tue LiMmiTiNG CAsEs (a) AND (b)

The present section will summarize information about the limiting cases
(a) and (b) which is to a considerable extent not entirely new, but which
is prerequisite to the mathematical treatment of the intermediate case.

Common features of (a) and (b). In either case the effective component
of electronic angular momentum is a vector é; directed along the axis of
symmetry of the molecule. Here and throughout the article, expressions
printed in boldface type are vector matrices. Angular momentum is through-
out measured in multiples of the quantum unit %/2m, so that by an angular
momentum ¢ =1 for instance, we mean really an amount %/2w, etc. The
resultant spin angular momentum of all the electrons in the molecule is given
by the vector s, the elements of s? being s(s+1). In case there is more than
one valence electron we assume the behavior characteristic of “normal
multiplets,” viz., that the spins s, =12 of the individual electrons are coupled
together to form a quantized resultant s. This assumption seems to be
justified by the empirical facts of molecular spectra, as well as by the dy-

1 F. Hund, Zeits. f. Physik 36, 657 (1926). Cf. also the two later papers: Zeits. f. Physik
40, 742 (1927), and Zeits. f. Physik 42, 93 (1927).

For a very good qualitative discussion of Hund’s theory, cf. E. C. Kemble, “Molecular
Spectra in Gases,” Chap. VII, sec. 5, Bull. Natl. Research Council, 57, (1926). For extensive
discussions of cases (a) and (b) particularly with reference to the experimental data on band
spectra, cf. R. S. Mulliken, Phys. Rev. 29, 637 (1927); Phys. Rev. 30, 138 (1927); Phys. Rev.
30, 785 (1927). The notation used in this paper is the same as that of Mulliken.

2 E. C. Kemble, Phys. Rev. 30, 387 (1927).
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namics of the situation.® Spectroscopists classify terms as .S, P, D, F states
according as o,=0, 1, 2, 3, and further, the spectra are singlets, doublets,
triplets, according as s=0, %, 1, - - - . The total angular momentum of the
molecule is always given by the vector j, and its projection in the direction
of spacial quantization yields the magnetic quantum number m, which has
the range of values m=—j, —(j—1), - - -, j.

As customary, we have neglected the component of electronic orbital
angular momentum perpendicular to the axis of symmetry of the molecule.
The justification for doing this is that due to the rapid precession of the
orbital angular momentum k about the axis of figure, the elements of the
perpendicular component are of the “high frequency type” which disappear
on averaging over the “electronic frequencies” and need not be considered
in calculating the important perturbative terms. Also we neglect what
Mulliken calls “o-type doubling”; i.e., a hyper-doubling of the multiplet
components when ¢30, although at the end of the article there is a rather
detached section on o¢-type doubling in the absence of internal spins (i.e
singlet spectra). Such doubling arises from the Heisenberg resonance effect
associated with the fact that the states —o and ¢ have the same energy if
one neglects the interaction between the rotation and the component of
electronic angular momentum perpendicular to the axis of figure. This effect,
however, has only a subordinate influence on the energy, as the width of
o-type doublets is small compared to the spin multiplet structures, and so
we are justified in relegating it to a neglected higher order approximation .

Distinction between cases (a) and (b). In case (a) there is a strong inter-
action, essentially of a magnetic nature,” between s and d;, and the former
precesses rapidly about the latter; i.e., about the axis of symmetry of the
molecule, to which the spin is thus tightly coupled. This involves a quantiza-
tion of the projection é; of s in the direction of the axis of figure, and thus
introduces the quantum number o, which takes on the values —s,
—(s—1), - - -, s. The total electronic angular momentum about the axis
of symmetry consequently has the value ¢ =0 +0,.

3 The orbital angular momentum precesses too rapidly about the axis of figure for the spins
to be quantized relative to an individual &, or even k. For explanation as to why the s, form a
resultant s even though the interaction between o and s, be comparable with that among the
s, see Heisenberg, Zeits. f. Physik, 41, 252 (1927).

¢ Due to the resonance involved in o-type doubling, the component of angular momentum
parallel to the axis of figure is continually changing sign, so that we can no longer suppose
ox=0,1, 2,3, ..., but we have ¢,2=0, 1,222 3%--- for S, P, D, F, - - -, terms. For the
present purposes no harm is done in supposing o always preserves the same sign, because the
high-order resonance effects cannot appreciably influence lower order effects such as spin
multiplets.

5 According to the important recent work of Dirac, Proc. Roy. Soc., 117A, 610 (1928);
118A, 351 (1928) the physical concept of a “spinning” electron must not be taken too literally,
for it seems to be replaceable mathematically by the condition that the Schridinger wave
equations be consistent with the restricted theory of relativity and still be linear. Curiously
enough, however, for most problems it seems that the older notion of an actual spin electron
will give correct results, and so the term “spin” is a convenient label for certain terms in the
energy which will result even with the purely relativistic treatment.
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In case (b) the forces exerted on s due to the molecular rotation are large
compared to the interaction between s and éx. Consequently the spin axis
is loosely coupled to the rest of the molecule, and makes a constant angle
only with the total angular momentum j, whereas in case (a) it did with the
axis of figure of the molecule. Before introducing the spin one must first
quantize the total angular momentum j; exclusive of the spin but inclusive
of both the orbital angular momentum and the angular momentum developed
by rotation of the nuclei about the center of gravity. The total angular
momentum j is then the resultant of j, and s. On the other hand in case (a)
we quantize the spin relative to a fixed molecule before introducing the
rotation about the center of gravity. The types of coupling characteristic
of the two cases are shown in the following figure:

&

=8

Casze (a) Case (b)

The range of values for the quantum number j in case (a) isj=lo|, - - -,
o, whereas in (b) we have instead jr=|os|, - - -, ®;i=|jx—s|, - - -, ju+s.
In either case there are the selection principles Ao;=0, +1;Aj=0, *+1;
Am =0, 41 and in case (a) Ao, =0, while in (b) Ajy=0, £1. The quantum
number j; in case (b) is seen to replace the number o, used in (a), and the
adiabatic correlation of the values of j, and o, is one of the problems to be
considered in the present paper.

Amplitude matrices for case (a). These elements have been given by a
number of investigators,® 789 and are essentially equivalent to the London-
Honl intensity formulas. They can be extended to include transitions in
the vibrational and electronic quantum numbers by noting that the effect
of these transitions is to multiply the “symmetrical top” amplitudes by a
set of complex factors, D(n, n’),1? where the single letter » denotes the totality
of these quantum numbers. This is not to be confused with the same letter
n which other writers use to denote the vibrational quantum number alone.
As the experimental data on intensities in the Zeeman effect for band lines
are very meager, we shall not give the complete amplitude formulas, but shall

6 H. Honl and F. London, Zeits. f. Physik, 33, 803 (1925).

7 D. M. Dennison, Phys. Rev. 28, 318 (1926). Eq. (2) of the present paper is essentially
Dennison’s Eq. (25).

8 H, Rademacher and F. Reiche, Zeits. f. Physik, 39, 444 (1926); 41, 453 (1927).

9 R, de L. Kronig and 1. I. Rabi, Nature, 118, 805 (1926); Phys. Rev. 29, 262 (1927).
Cf. also Kronig, Zeits. f. Physik 45, 458 (1927).

10 This occurs due to the fact that the Schrédinger “Eigenfunktion” can be split into two
parts, one involving only the internal coordinates of the molecule, and one involving the pre-
cession coordinates. Cf. Born and Oppenheimer, Ann. der Physik 84, 457 (1927). Cf. also
Kronig, Zeits. f. Physik 46, 814 (1927).
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give a set of quantities which are derived from them, and which are pro-
portional to the total intensities. These quantities, which are Hermitian,!
are defined by:

| ga(m,0%,0,7; n',04,0",5) | 2= me‘ ¥(n,o5,0,7,m; n', 0,0 ,5 ,m) \ 2
+ | y(n,08,0,5,m ; 1'5’,<7k’,<r’,]",m’)12 1)
+ | 2(n,00,0,7,m ;0,04 0", 5" ,m') \ 2
from which their explicit values are found to be:
|ga(n 00,0, 50/ ok 1, ok 1, j+1) [ 2=D2[0(+1, £o+1)/4(G+1)]
| ga(n,00,0,5 50,00t 1, 0£1, ) | 2=D2[P(f, £0)(2j+1)/4j(G+1)]

| gu(n,0%,0,5 51 ,01,0,5+1) | 2=D*[Q(+1,0)/(i+1)] @
|qa(n,00,0,5 57 00,0,5) | 2=D[0(e,0)(2/+1)/iG+ 1],
where:
O(a,b) =(a+b)(a+b—1), P(a,b)=(a+b+1)(a—D),
Q(a,b) =a?—b2, ) D=|D(n;n")|. )

In the usual treatment of the “symmetrical top,” o =0}%; but it is to be

noted again that here o =04-+0,, where d,=—s, —(s—1), - - -, (s—1), s.
As Ao =Acy, we have Ao, =0—a selection principle which we have already
quoted.

Amplitude matrices for case (b). These may be obtained by superposition
of the London-Hénl® and Kronig-Russell-Sommerfeld-Honl?# intensity
formulas. This procedure has, in fact, already been used by Mulliken,“ who
has given most of the intensity relations appropriate to case (b). The pre-
cession of ¢ around j; in case (b) is analogous to that of ¢ around j in case
(a), as 6x, ¢ are both directed parallel to the axis of figure, and therefore
perpendicular to the angular momentum due to rotation of the nuclei about
the center of gravity, with which ¢, and ¢ are compounded to form vectorially
respectively in cases (b) and (a) the resultants j;, and j. Therefore if in
case (b) we average over the various j values consistent with given j;, and
thereby expurgate the fine-structure caused by different orientations of the
loosely-coupled vector s, we must then have the same dependence on the
quantum numbers o, jr as that on o, j in case (a). This dependence is, of
course, that furnished by the Honl-London amplitudes already given. On
the other hand the precession of j; and s about their resultant j in case (b)
is entirely analogous to that of k and s about j in the ordinary atomic
“normal multiplets,” for which the intensity formulas were proposed in-

1 A quantity is said to be “Hermitian” if interchanging the first and second sets of indices
changes the quantity into its conjugate; i.e., if f(a; a’) =f*(a’; a).

12 A. Sommerfeld and H. Hénl, Sitzungsberichte der Preuss. Akad. der Wissenschaften
IX, 141 (1925). R.de L. Kronig, Zeits. f. Physik 31, 885 (1925).

B H. N. Russell, Nature 115, 835 (1925).

1 R. S. Mulliken, Phys. Rev. 30, 138 (1927); 30, 785 (1927).
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dependently by Kronig,!* Sommerfeld and Hénl,? and Russell,’® and justified
in quantum mechanics by Dirac.’® Thus proper relative intensities for given
jr but variable j can be obtained simply by substituting j, for k2 in the
ordinary atomic formulas (or ji, 7, s, m for K —%, J—%, R—%, M in terms of
the Landé notation employed by Kronig). The absolute values of the in-
tensities are obtained by proper normalization of Kronig’s constant factors
of proportionality B which are independent of j, i.e., of the relative orienta-
tion of k and s. This normalization is effected by securing agreement with
the Honl-London formulas in the manner described at the beginning of the
paragraph. This can be done by making the B-factors such functions of
j» and o that Kronig’s intensity formulas become identical with those of
Hénl and London provided in the former we set j =7, s =0 and in the latter
o=0;. This assumes that B is independent of s, a supposition which is
legitimate since the precessions arising from the spin surely cannot appre-
ciably affect the total intensity of radiation.

The above procedure for superposing the Kronig and Hénl-London formulas is reminiscen,
of what Kemble called the “hypothesis of continuity of intensities” in the old quantum theory
and may be given a more rigorous proof by meansof the principleof spectroscopic stability which
is one of the important consequences of the new quantum mechanics. Consider an external
field strong enough to overpower the internal coupling between ji and S, so that the projection
of each along the field is quantized separately, and let 7, and m, be the corresponding magnetic
quantum numbers. As the spin is then completely split off from the rest of the molecule, the
coordinate matrices will be identical with those for case (a) except that ji and o will replace
jand . The principle of spectroscopic stability shows that an expression such as

ka’ms’mkl’mls' | q(nyo'k’jk:mk:mh H nlyak’:jk’:mk’7m31) l 2 (4)
1's invariant of the mode of quantization and hence must be equal to the expression
Zi’7n’f/y1n' I q(”,tfk,jk,j,m; n,y“k,’jk’xj’)m,) | 2 (5)

which represents the quantization for case (b) in the absence of strong external fields. Here
t may be taken to be any function of the coordinate matrices, and in particular may be con-
sidered to represent the sum of the squares of the x, ¥, z coordinate elements in a fashion
analogous to Eq. (1). Now in the case of the strong field Am,=0, and further the coordinate
matrices are independent of 7, since the spin is not coupled to the rest of the molecule. Hence
(4) becomes

(23+1)(2jk+1) ka, l g(n:akyjk’mk; n,)o'kl’jk”mkl) | 2 (6)

inasmuch as the Burgers-Dorgelo sum rule shows that the sum over m;’ is independent of
mr, and for a given j; there are (2j,+1) values of my and (2s+1) of m,. The sum-rule also
shows that the sum over j' and ' in (5) has a value independent of both j and m, and hence
(5) becomes

(25+1)(2]k+1) Zi'!m' I q(”,o’k:]'k:j,m; n:a'k;jk’jl)m’) | 2 (7)

as for given j; there are Z,»,,ik_,[,,.,,jki_, (2j41) or (2jx+1) (2s+1) pairs of values of j and m.

On equating (6) and (7) we obtain precisely the scheme for normalizing the Kronig B-factor
described above. '

On performing this superposition of the Kronig and the London-Hénl
formulas, the following values have been found for the coefficients:

15 P, A. M. Dirac, Proc. Roy. Soc. 1114, 281 (1926).
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B(n,oi,j, ;0 ot 1.ji+1)=iD(n ; n') [0(x+2, +01)/16U(Gr+1) 112
B(n,ou,ji ;0 ,oxt1,5) = FiD(n ; #') [P(j, £ ox)/16V (jx) |1/
B(n,ou,ji ;7 0x,ji+1)=D(n ; 0') [Q(r+1,01)/4U (Gr+1) |12

B(n,oi,jc ;7 yor, jio) =D(n 5 0') [Q(ow, 0) /4V () |2,

It should be noted that these B's given above are proportional to the square
roots of the Kronig factors, i.e., are BY? in his notation.

The elements of the coordinate matrices (which are Hermitian'') may then
be written as:

2(j,d,m; jr1,j+1,m +1) =iB(jr; jr+1) [EGH1, 50 E(i42,i00G +2, £m) /4U (G+1) ]2
2k, 4, m; fot1,+1,m) =BGk jr+ 1 [EG+H1,70) EG+2,j0) QG +1,m) /U (§) |12
xGrydym; fut1,5,m+1) =F iB(i; fe+ 1) [EGH1, 7 FG—1,j1) P(j, £m) /4 V() |12

3G, j,m; jot1,7,m) =B(; jo+1) [EGH1,50) FG—1,5)Q(m,0)/ V() /2 (9)
xGe,jym; fot1,i—1,m+1) =iB(ji; jo+1) [FG —1,j0) F(G—2,j0) 0, F m) /AU (j) ]1/2
2(jr,,m; ju+1,5—1,m) = —B(ji; juet+ D[ FG—1,5) FG—2,50)Q( ,m) /U () |/
2(jrrj,mije,j+1,m+1) = —iB(ij) [EGH1,5) FG 41,7042, £m) /4U (G+1) |12
2(jk,G,m; jr,j+1,m) = —BGix; j0) [EG+1,8) FG+1,50QG+1,m) /U (+1) |12
2(jk, 7, m; ju,j,m 1) = F iB(jr; j1) [G2G, i) P(j, £m) /4 V() |12
2(jr,jym; ji,d,m) =Bk x) (G2, 7 Q0m,0)/V (5) 112,

(8)

where:
E(G; i) =0+in(G+ivt1) =s(s+1), FG ;0 =s+1D—G—inG—7t+1),
GG 5 =G+ +ikGet+1) —s(s+1), U(a) =a*(2a—1)(2a+1), (10)

V(a) =a2(a+1)2.

The definitions of the functions O, P, and Q are given in Egs. (3).

In (9) we have omitted writing in explicitly the indices #, oy; %/, o’ in
the elements, but to get the complete formulas one has only to use the proper
B-factors from (8). The elements of the y matrix can be obtained from those
for x by noting that x(m; m+1)= +4y(m; m+1). The phases given above
were determined by comparison with the classical Fourier expansions of
the coordinates just as Kronig found a set of phases for case (a).!

2. ENERGY LEVELS AND INTENSITIES IN THE GENERAL
INTERMEDIATE CASE

The feature which characterizes the present calculation is that we start
with case (b) and work back to case (a); i.e., we at first neglect the inter-
action between the spin and electronic orbital angular momenta, then set
up the Hamiltonian function representing this interaction and use the tech-
nique of the new quantum mechanics to determine the “Eigenwerte” and
amplitudes in the general case. An alternative method would be to start with
case (a); i.e., at first neglect the interaction between the rotation and the
non-secular part of the spin precessions, and then calculate the effect of the

16 R. de L. Kronig, Zeits. f. Physik 45, 458 (1927).
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centrifugal torques on these precessions. This method will be considered in
a later paper by one of us.

Hamiltonian function. The particular form of the perturbing Hamiltonian
function which we take is the ordinary “cosine” expression; i.e.,

H,,=A(dk 'S)=A(ka31+gkySy+aszz). (11)

It has been shown!” that this is the form of perturbing function to be ex-
pected for the spin electron moving in a Coulomb field, and is the form which
is ordinarily used for this type of calculation.!$:!®

For the determination of the matrix elements of H, we shall employ a
calculation borrowed from the classical mechanics, but which is legitimate
also in the quantum mechanics as only quantities which commute with each
other are involved. The calculation given here is similar to the one used
by Heisenberg and Jordan!® in their work on the Zeeman effect in atomic
spectra. A more rigorous treatment can be obtained by adapting some of
the formulas of Dirac.2°

We first note that I, can have elements concerned only with transitions
for which Aj, =0, +1, as the relative orientations of s and 8, are not affected
by the precessions about j and about the axis of the external field. Let g
be any vector fixed in the molecule, denote by ¢, its z-component, and by
d. the time average of g,. The matrix §, is then formed by keeping only the
diagonal elements of ¢,. In order to find ¢, we first project g along and at
right angles to j, and then project these components on the direction of the
external field. The components of g perpendicular to j have projections
on the axis of the field which vary with the time, due to the precession about
J, and hence do not contribute to ¢,. The motion of j about the axis of the
field is one of pure precession without nutation, so that the component of
q along j has a projection on the field which is independent of the time.

17, H. Thomas, Nature 117, 514 (1926); Phil. Mag. 3, 1 (1927). J. Frenkel, Zeits. f.
Physik 37, 243 (1926). _

18 Cf. for example, W. Heisenberg and P. Jordan, Zeits. f. Physik 37, 263 (1926). E. C.
Kemble, ref.? :

19 In order to take account of the interaction between s and the field developed by the
rotation of the nuclei about the molecular center of gravity, we should have H,=A4(6;'S)
+K(e-s) where € is the nuclear angular momentum, but as & =j;— 6;, we have H,=K(j;-S)
+(4 —K) (8;-s). The first term contributes only to the diagonal elements of (20), while the
second term changes slightly the proportionality constant between (6;-S) and H,. Due to the
large masses of the nuclei, however, K is very much smaller than 4, so that we neglect these
terms. This effect should lead to a very small separation of (b) terms which would be of im-
portance only for .S states; this has been discussed by Kemble, and by Mulliken who refers to
it as “p-type doubling.”

2 P, A. M. Dirac, Proc. Roy. Soc. 1114, 281 (1926). Our Egs. (17) and (16) correspond re-
spectively to Dirac’s Egs. (48) and (60), while our Eq. (12) is analogous to his Eq. (61) consider-
ing only the first term of the right-hand side. However, his quantity 7 is our 6:**'P, and as the
latter has elements which are functions of j;, we would not have, in Dirac’s language, the
commutative property of » with ¢ and ¢, a condition used in the derivation of his Eq. (60).
This discrepancy can be easily remedied, using his Egs. (39) and (50), and the final results
are in complete agreement with our calculations.
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The elements of . are made up entirely of contributions from this source.
Now the component of g along j is (g-5)/|j|, where j/|j] is the unit vector
in the direction of j; and similarly the projection of this component on the
external field is [(g-7)/|j|]1(m/|j]), where m =3j,. Consequently
.= (q-jym/ || *. (12)
We now identify g with the vector matrix é;. The procedure for obtaining
the elements of o4s, 0%y, and o4,, is very similar to that used in obtaining
the amplitudes for case (b). We need concern ourselves only with elements
for which Ag, =0, as ¢; has no components at right angles to itself, and then
normalize these elements so that the component along the axis of symmetry
of the molecule has the value |8:| =0y, for this component is nothing but 8
itself.?* The elements of 644, 01y, 012, then resemble, in a very striking manner,
those elements of «x, ¥, and z respectively for which the transitions are of the
type Agr=0; the only difference being (apart from the difference in the
normalizing factors just mentioned) that owing to the constancy of o) the
elements of ¢, o1y, and o4, are diagonal with respect to transitions in the
quantum numbers represented by the letter . Mathematically stated,

O—kz(jk)jym 5 jk, ’jl’m) = (o'k/D(" > n))z(n,ok,jk,j,m 3 nao'k’jkl)j,}m) .
Consider a resolution of ¢; into two components, parallel and perpendicu-
lar to jx, respectively. Let us designate them as 617 and 8,7, This
resolution amounts to considering separately the elements of o, for which
Ajr=0, and for which Aj,= +1.
Applying Eq. (12) to é,*, we have
(01®2).(Gr,7 ,m 5 Jiyj,m)= H G (par) ‘ |fk| 2/|J'k-} + (81 @) - 5) | (m/ l J“ 5, (13)

where we have introduced the relation j=j,+s.
From the matrix expressions for 85 and j;, it can be shown that®

(| ss9e0 | /] ji| ) =0?/ja(r+1). ‘ (14)

Hence, using Egs. (9) and (14), Eq. (13) can be written:
Hp(n,06,fk; #,0%,51) (15)

=A(or/D(n ; n)(GG+1)/m)z(n,01,jk,j,m 5 n,04,jk,5,m) — Aok’
=Aai(j(j+1)/m) [B(n,01,5x in,0k,40)/D(n ; 0) ][G*(F,j)Q(m,0)/V (§) |~ Aos?.
Applying Eq. (12) to 8,*® we have from Eq. (9), as (6;"""). j,) =0,
Hy(n,05,71 ; n,0k,j5+1)=A(or/D(n ) GG +1)/m)z(n,05,55,5,m in,08,jx+1,7 ,m)

=A(o/D(n ;1) B(n,01,5i sn,00,56+ 1) [EGH1,70F (G —1,5:) ]2

= Ao/ [{ Grt+ 1) =02}/ Gt 1220+ 1) (2764 3) |12

X [ G+iet DG+t =st+D} {s(s+1) —G—inG—dr—D} ]2 (16)

21 As ¢; represents only the projection of the total electronic orbital angular momentum
vector %on the axis of symmetry, its absolute value is given by o1 and not by [ox(cs+1)].12

22 This formula can be obtained by combining the relations |dkp’“{ /| 8e| = [oa2/iu(r+1) 12
and Idk, /17%| = [e:2/x(jx+1) ]2 the second of which follows from the expressions for |dx]
and |ji|, while the first is obtained by use of the elements of 6.
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Similarly, by substituting from Egs. (3), (8), and. (10), Eq. (15) becomes,
Hy(n,01,5k 5 n,08,50) =402 [ {FG+1D) —jx(et+ 1) —s(s+1) }/27:Ge+1D]. - A7)

Energy determinant. According to the perturbation theory of the new
quantum mechanics, the solution of our problem in the general case is
essentially equivalent to the solution of the set of linear equations®:

Wr ;7S ;r)— ZZH(Z ;7)S(r ;D) =0, (18)
subject to the auxiliary conditions:
0 if '#r
208 DS* 5D ={ . (19)
1ifr=r.

Here 7, 7/, and [ assume all values of jj consistent with a given set of values
for o, j, and s;ie., 7, 7', I=|j—s|, - - -, G+s—1), (j+s).

The condition for the existence of solutions, other than zero, of Eqs. (18)
is that W satisfy the determinantal equation:

H(Gi 5 jo) =W H(je; ju—1)
H(jm-l ;jkl) H(jkl—l ;jk1—1)"W‘
(20)

© H(jra 5 ja2) =W

The symbols ji and ji» designate respectively the largest and smallest
values of j; compatible with a given set of values for j and s; i.e., ju =j+s,
Jre=|j—s|.

The Hamiltonian function (which is Hermitian!!) appearing in the above
determinantis that part of the complete Hamiltonian function which involves
J&, and thus includes, besides H,, diagonal terms concerned with the nuclear
rotational energy. Thus H=H,+H,, where H, is the diagonal matrix,

H,(n,00,jk ; 7,05, 5i) = [jx(r+1) —ou2 ] (4282 . (21)

The elements of H, are those given by Eqs. (16) and (17).

The values of W which satisfy the above determinant give the energy
levels for the complete transition stage from case (b) where 74 =0, to case
(a) where 1/I4 =0. The asymptotic energy formula valid for large values
of A must, of course, be that for the symmetrical top, and is hence

W= Ao+ [§(G+1) — o2+ 5%ern | (h/8x2) + - - -, (22)

although, because of algebraic difficulties, we have not succeeded in showing
that Eq. (22) follows from Eq. (20) except in special cases; e.g., doublets,
and triplets. The first term arises from the interaction of é; and s, while
the second term represents the energy of molecular rotation. The term
(5% perp #2/8m2I) must be included to take into account the fact that for case

28 Born, Heisenberg, and Jordan, Zeits. f. Physik 35, 557 (1926).
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(a) the component of s perpendicular to the axis of figure makes a con-
tribution to the energy.?® In general s?,,=s(s+1) —0

The energy determinant given above yields an algebraic equation for
W of the same order as the term multiplicity (2s+1), and so is not readily
solvable except for low values of s, notably s=%, and s=1 (doublet and
triplet spectra respectively). The results in these special cases will be given
in later sections of this paper.

Energy formula for nearly case (b) coupling with any multiplicity. Although
the energy determinant may not be solvable for the general case of any
multiplicity, the energy can be obtained as a power series development in
a suitable parameter, by use of the perturbation theory formulas.2? This
expansion will be valid only when the coupling energy H, is small compared
to the rotational energy IH,; in other words, only when Hund’s case (b) is
a closer approximation than his case (a). Taking a=A417 as the parameter
for the expansion, the perturbing Hamiltonian function can be written as:
H=H,+(H,/AI)a, and the perturbation theory formulae?® show that

W=H,(ji ; jx) +A/ADH (i ; jr)e
/AT il HolGe s 560 | Y o 5 i) a2+ - - - . (23)
where
oG ; ) = [nGeb 1) = G+ D ] (/87°1) (24)

and where the elements of H, and H, are given by Eqgs. (16), (17), and (21).

Intensity relations. In case the energy determinant (20) can be solved,
the “Eigenwerte” are to be substituted in Egs. (18) and the elements of .S
determined. If ¢, is any one of the coordinate matrices for case (b) and if ¢
is the corresponding matrix in the general case, then®

g=S5q:5*, (25)

where S* is the matrix formed from S by’ taking the conjugate of every

element and then transposing the rows and columns (indicated by ~).
Energy levels in the triplet case for coupling nearly of type (a). Here and

throughout the remainder of this paper we shall use the abbreviation

2 Born and Oppenheimer, Annalen der Physik, 84, 457 (1927), especially p. 479. The
term .;ﬂ—pi is theoretically just as important and inevitable as the other additive term —g¢?
but, unlike the latter, seems usually to be omitted by the band spectroscopists. It is particularly
important to include this term if one is endeavoring to calculate the partof a multiplet which is
due to magnetic coupling independent of a rotation, but fortunately in the particularly common
case of doublets sperp? has the same value 1/2 in both the components ¢s= —1/2 and o;=1/2.
Instead of sperp? we ought really to write (k+s)perp? in order to include the secular effect of
both the orbital and electronic angular momentum. However, the average value of Sperp - Kperp
is zero, as k precesses very much faster than s, and further the mean square of the perpendicular
component of k has the same value for all the components of a multiplet, and so for our pur-
poses it does no harm to consider the secular effect of only the spin angular momentum per-
pendicular to the axis of figure. As the motion of s is very approximately that of pure precession
without appreciable nutation it is not really necessary to affix a mean value sign above the
square of the perpendicular component of s.
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A=8x24I/ k. (26)

The value of N is then a measure of the tightness of the coupling; i.e., it is
very small for coupling nearly of type (b), and is large for nearly type (a).
For triplet terms s =1, 2s+41=3, and the energy equation (20) is a cubic;i.e.,

(W+Aa\1)3 — AN1(3724 3+ 2) (W + A o2 1)?
+ AN [ — 0N 4o N+ 372+ 1) 2| (W + Ao\ 1)
FAN [0\ (2 4] +2) — 4o+ + 1) — G+ DG - DG +2) | =0
It has not been found possible to solve this equation generally, but asymp-
totic solutions can be obtained for the limiting cases (a) and (b). For (a)
we expand W as a power series in A~! and solve for the coefficients by sub-

stitution in the above formula. There are three roots corresponding to the
three values of a;; i.e.,

ogo=+1) W=Aox+[j(G+1)—0i*—20:|(h%/8xI)

+240 N2 [j(G4H1) —or(oxt1) |+ - - - .
0,=0)  W=[jG+1) —o+2](h/8x D) 444N 24 - - -
oo=—1) W=—Adop+ [jG+1) —ox2+20 ] (h2/8x2I)

=240 N2+ D —orlor—1) ]+ - - - .
These expressions agree with the asymptotic formula (22). The expansion
about case (b) can be made by using (23) and (24).

3. DoUBLET CASE

Energy formula. For doublet spectra s=%, and the term multiplicity
2s+1=2. In the limit of case (b) there are two values of j;; namely, j; =7-+%,
and j;=j—1%, so that the energy determinant (20) becomes:

AGHDU+HD —ot] =402+ 1) =W Ao {(+D)?—0x2} 225 +1)7]

Aok[{G+D2—ar2} 22 +1)71 AN(—1) =]+ Ae2(2j+ 1) — W =0
which has the solution
W=[(+3)?—02 £ 340G+ 3)*+NN—4) 02} 2] (h2/872]) (27)

The upper sign corresponds to the state of higher rotational energy;
ie., to ji=j+3%.

This remarkably compact and convenient formula was originally given
in a preliminary report on this work.? It is very gratifying that the new
quantum mechanics yields such a simple expression where the old quantum
theory gave only a series approximation; especially since this formula gives
the energy values both for regular multiplets (4 >0), and for inverted
multiplets (4 <0) throughout the entire range from (a) to (b).

% J, H. Van Vleck and E. L. Hill, Phys. Rev. 31, 714 (1928). Abstract. Our previous defi-
nition of the coupling factor A4 differs from the present one by 4x%/h?, as we now measure
angular momentum in multiples of %/2m.
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Correlation of term values between (a) and (b). One of the most interesting
properties of our doublet formula is that it yields in an unambiguous manner
exactly that correlation of term values between (a) and (b) which has been
predicted by Hund® and by Kemble.? In each of the limiting cases there
are two component levels; i.e.,

case (b) : case (a)
Si=j+3% o1=03+3%
J2=j—% Ty=0r—7%

The assignment of the two levels of case (b) to the two branches of (27)
is known; namely, the level associated with the positive radical is the j;
state. To find the assignment for case (a) consider an adiabatic change
in the parameter A from zero to a numerically large value. Whether A be
positive or negative, the discriminant of (27) never vanishes, except for the
lowest state j=o0;—%. Thus the two branches can be considered separately,
and we have only to determine how each branch behaves during the change
from (b) to (a). The lowest state must be investigated separately.

Regular multiplets (A>0). Expanding (27) as a power series in the
parameter [A\7!|, we have

W=+ out (/8D [iG+1 — (@£ )+ o { G+ ot} + - - |

The upper sign corresponds to the j; state for (b), and a comparison with
the asymptotic formula (22) for (a) shows that it corresponds also to o;.
Hence the correlation of energy levels is

jl“’dl, j2—>02- (28)

For the lowest rotational state j=o0;—%, the j, level does not exist, due
to the restriction j,=oy, so that this state is a singlet. Eq. (27) becomes
W= (h?/87I)[(1 —4m2AI/h%)o;]. On comparison with (22) we see that
g, = —%, so that for this state the behavior is anomalous (the radical changing
sign) and the correlation is ji—as, just as predicted by Hund and Kemble.

Inverted multiplets (A <O). In this case (27) becomes:

W=Fdost (/8D [jG+1D) = (@ F D+ TN 1o {(+HD -0} + - - ]

As for regular multiplets, the upper sign is correlated with the j; level for
(b), but comparison with (22) shows that it is correlated with the o, level
for (a). Thus the term correlation is just the reverse of that for regular
multiplets; i.e.,

jl“—>62, j2—)01- (29)

As the discriminant of (27) never vanishes for negative values of A4, there
is no anomalous behavior for any of the rotational states.

2 F. Hund, Zeits. f. Physik 42, 93 (1927). Cf. especially his Fig. 8.
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Doublet states for OH A2811. This is the band used by Kemble? to test
his formulas, and we shall take the necessary numerical data from his paper.
As (27) gives the combined effects of rotational and spin energy in a given
state, the energy difference between two doublet levels due to spin effects
alone cannot be separated out, but it will be sufficient for our purposes to
-consider only the excess energy of each level over that which it would have
were it a pure case (b) state having rotational energy only. With this
simplification we readily find from (27) that the doublet energy difference
is

A=(h/8x%D) [{4G+12HFAA—D)os2} 12— (27+1)] em~1.

This particular band is due to a 2S—?P transition; i.e., 0, =0—0,=1. For
the %S state, as o, =0, the levels are singlets, while in the 2P state they are
doublets. This state is also inverted, so that 4 <0. According to the data
given by Kemble in his Table II, the asymptotic value of the doublet separa-
tion at the origin is 140.25 cm™!. The value of the constant (k/8w%I) is
obtained as the arithmetic average of B;* and B,*. Putting these numerical
values into the above formula, it becomes,

A=37.16[{(G+3)2+21.79} 12— (+3)] em~1.

Taken as a function of j this formula gives a curve practically coincident
with curve ¢ of Fig. 4 of Kemble’s paper, and hence still leaves a small dis-
crepancy with the experimental data, which may be due to our neglect of
p-type doubling as suggested by Kemble, and may also be partly due to the
somewhat arbitrary meaning which we have assigned to A. On calculating
the values of By* and B,* which are the “apparent” values of the constant
(h/87%I) in the two component levels, they turn out to be 16.697 cm~! and
20.566 cm™! respectively, as compared to the experimental values of 16.60
cm™! and 20.565 cm™!, whereas Kemble's formula gave 16.82 cm™ and
20.86 cm™1.

Intensity formulas. Putting the energy values from (27) into (18), we get
SGr; i) =Ci[H(2 ;5 1], S5 7)) =Ci[W(G)—H(r 5 41) ]
S5 7)) =Ca[H(j2 5 j1)], S 5 j2) =Ce[W (i) —H(j1 ; jv) ]

where the constants C; and Cs are to be determined by use of (19). We have
here introduced specifically the notation j; and j. for the two values of jk.
We shall throughout the rest of the paper write the elements of S in this
condensed notation in which we omit writing all arguments except the ji, as
S is a diagonal with respect to other quantum numbers. The C’s may in
general have arbitrary phase factors but it will be shown below in fine print
that for our purposes they can be disregarded, so that we can take the ele-
ments of S to be real. If then we introduce the abbreviations:

y1= {Ae2(2j+ 1)1} = (G+3) (31)
2ys=[(2+ 1) NN —4)0i?]'12, (32)

(30)
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and utilize the relation v:2—v:?= [0/ (2j+1)2] — (6:2\2/4) we find that
after the normalization (19) becomes

S5 ) =Sz 5 j2) = [(va—71) /27212
S jo)=—S8Ge; j1) = [(vit+72)/2v: ]

The intensity formulas for the general intermediate case can now be
found by Eq. (25) and the expressions for S given in (33) and for ¢ given in
(9). We have verified directly in a large number of instances that in the
limit A= Eq. (25) actually converts the (b)-formulas (9) into the Honl-
London (a)-formulas. It is interesting to note that the selection rule Ao, =0
for case (a) can actually be established in this way, as we find the elements
of the left side of (25) for which Ag,#0 vanish in the limit A=,

As most readers are probably more familiar with the amplitudes for (a)
than for (b) we shall give an alternative method, perhaps simpler than (25)
for finding the general intensities, starting instead with those for case (a).
This method has the further practical advantage that because of the selection
rule Ag, =0 there are never more than two terms in the summations involved
in expanding the matrix products, whereas with (25) there may be three or
more terms in this summation. The idea is to transform from (a) to (b) and
then from (b) to the general case. Thus if ¢,, g, and ¢, represent any given
coordinate matrix for case (a), case (b), and the intermediate caserespectively,
and if S; is the matrix S;=1lim4.,S,2” then ga=51gb5’1, and as also S; =51,
then ¢»=351¢.S;. But as indicated in the preceding paragraph, ¢=SgS,
hence

(33)

=Tq.T, (34)
q

where

T=55, T=SS. (35)

From (33) and (28), letting 4—,
Si(or; o) = Silos; o2)=[{G+}) —ou}/(2j+1)]12
51(61 ; 02)= —51(62 3 61)= [{(]'+%>+17k}/(2]’+1)]1/2

where we use the notation ¢; and o, instead of the double indices (o, 7).
Putting the expressions from (33) and (36) in (35) we get for regular multi-
plets,?”

(36)

T(m;«n) = T(@S”a) = K[(72—71)(j+%—0k)]1’2+1{ [(71+72)(].+%+U'k) ]1/2 (37}
T(Gl;dz) = T(62;0'1) =K [(71+72)(j+%"0k) ]I/Z—K [(72—71) (j‘i‘%‘}-dk) ]1/2 (38)
where K= [27s(2j4+1) |12

27 In the remainder of this section we shall assume that 4 >0; i.e., the formulae are for

regular multiplets, but they can easily be found for 4 <0 by defining S; = limg._,S. The form
of the general equations (34) and (35) is, of course, unchanged.
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These elements, of course, satisfy the conditions that lims.,7'=1 and
limg.oT=S; (e.g., in the limit A=, T(o1;01) =T (0s;002) =1; T(01;02) =
T(o2;01) =0). The explicit expansion for (34) is

. e ! VA Y R AN . . "o
9(",Uk,0y]:m,”70k »0 5] )m)— ZV”,U”'[T(nyak)o—7])m7"’:07070 7])m)
7 vt P ' A T N B Pt
an(n)o'kag yWJom 50,0k ,0 ] am)T<n’Uk7J Jam 3 H 0k ,0 ] 7m)]; (39)

where the ¢.’s can be taken directly from (2), and the 7”s from (37-8).

The summation over ¢’/ embraces only the two values ¢’ =0, —3%, o +13,
and ¢’’’ can only equal ¢’ 4 (¢, — o) since Aoy =0 in case (a). Consequently
(39) never involves a summation over more than two terms, and permits calcula-
tion of the intensity for any coupling intermediate between (a) and (b) in either
the initial or final state or both.

In the application of (39) to the calculation of intensities for particular
transitions for which there are jumps in the electronic quantum numbers,
it must be noted that although T is diagonal with respect to the quantum
numbers represented by 7, the elements of T still are functions of them
through the coupling constant 4 and the moment of inertia I, which may
be different for the upper and lower states. Consequently iz “electronic”
bands the function T in jront of q. in (39) is of a different form (viz. has different
constants I and N) than the T after q,. Examples are given in section 4.

Question of phases. In using Eq. (25) to determine even only the magnitudes of the ele-
ments of g, it is essential that one know the phases as well as absolute values of the amplitudes
gs. For this reason we have in Eq. (9) given the amplitudes in case (b) inclusive of the phases.
The phases of the final amplitudes ¢ depend on how one choose the phases in the normalizing
factors C; and Cyinvolved in S (cf. Eq. 30). However, if, as is usually the case, we are interested
in finding only the magnitudes of the elements of ¢ by means of (25) the arbitrariness of
phase in C;and C,is trivial. This is true because the C’s are connected with only the first index
in S(jk, j&') or the last in the transposed matrix S(jx’, jx) and so the phase element coming from
the C’s is not involved in the variable or inner indices over which one sums in multiplying
together the matrices involved in (25); thus the phase element of C merely introduces a complex
factor of modulus unity into (25).

On the other hand at first sight it looks as though the phase of C might be of importance
in using (34), for the phase of C is connected with the inner as well as outer indicesin (34), as
(35) shows that the construction of T involves transposition of .S. In general one might expect
that to use (34) correctly it is imperative to determine the phasesin the C’s in a way which is
consistent with the phases in g,; or in other words that (34) will work only with proper phases
in the go.. Now very fortunately there is the selection principle Asy=0 in case (a) and conse-
quently the differences between the initial and final quantum numbers in the elements g, will
be the same in both terms of the summation in (39). Further the phase factor depends on the
difference of the quantum numbers; this can, for instance, be seen from the correspondence
principle, as the difference of quantum numbers determines the corresponding classical har-
monic. This means that the phase factor for g, has the same values for both terms of the
summation in (39), and so need not be included if we are interested in knowing the absolute
values of the elements of g. Consequently we may take S to be real and need not consider the
phases in the ¢, (an advantage of 34 over 25). (One might perhaps question whether with the
most general complex solutions of Schroedinger’s equation the phase factors in ga are functions
only of the differences of the quantum numbers, but it is easily seen that if the phases in ga
were chosen in some more complicated way then with any simple choice of the phases in T,
especially real T, that Eq. (34) would in the limit 4 =0 yield expressions for the elements of
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¢ which are complex quantities neither real nor pure imaginaries, contrary to our selection of
phases in the ¢ in Eq. (9). In other words our choice of phases in the original unperturbed
b-type system demands that the phases in g, be functions only of the differences of quantum
numbers).

4. APPLICATION OF DOUBLET INTENSITY FORMULAS TO
PARTICULAR TRANSITIONS

As illustrations of the use of Eq. (39) we shall calculate the intensities
for two transitions: i.e., (1) The important case of 2P—2S in which ordinarily
the 2P state is case (a) and the %S state is case (b), and (2) a particular case
of 2D—?P in which 2D is case (b) and %P is case (a). For both transitions we
shall use unprimed letters for the quantum numbers in the upper state and
primed (') letters for those in the lower state.

2Pp—2S. Eq. (38) shows that for the upper state 7'=1, while for the lower
state 7'=S5,. Hence q¢=1¢.S1, where

S1(Jy 5 ) =517 5 7o) =S4y 5 7)== S:(5 5 4) = (32,
The transitions involved may be conveniently divided, in the usual manner,
into three groups for which Aj=0, +1, corresponding to the Q, P, and R
branches respectively. Putting these values into (39) it is found that in
any given branch the transition probabilities from a given level in the upper
state to each of the levels j,’=j’+% in the lower state are equal. The follow-

ing table gives the intensities for transitions from the two upper levels for
each branch:

P-branch J'=j+1;ji either j/+3% or j/'—3%.

a~D*[(472—1)/32(G+1) ] ; er~D?[(2j4+1)(2j43)/32(j+1) ]
Q-branch =7 Jji=j+%

or~D (42— 1)(274+3)/32i(G+1)] 5 oa~D2[(2j+1)%/32(+1) ]
R-branch J=j—1; ji/'=7+%

or~D?[(2j41)(27+3)/32)] ; oa~D2[(452—1)/32f].

An interesting though qualitative correlation of these formulae with the
experimental results can be made for the compounds HgH, ZnH, OH, and
CH.2* For HgH the %P level is, to a good approximation, case (a). There
are twelve strong branches of which those differing only with respect to the
final value of j,’ are of about equal intensities. This agrees very well with
our conclusions concerning the equality in the intensities of transitions from
a given o-level in 2P to either ji-level in 2S. In ZnH the 2P level is not as
near true case (a) as in HgH, and here the branches for which Aj;<Aj
(i.e., Ao, #0) are weaker than those for which Aj,=Aj. In OH the weaker
bands are reduced to satellite series and in CH they are practically absent.
Considering this progression as one in which the 2P state changes from (a)
in HgH to practically (b) in CH, there is a general agreement in the experi-

28 The writers are indebted to Prof. R. S. Mulliken for the experimental material in this
section. Cf. also, R. S. Mulliken, Phys. Rev. 31, 310 (1928) and especially Sept. 1928,
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mental and theoretical intensities, as (9) shows that for transitions between
two case (b) states the branches for which Aj,#Aj should be much weakened
especially for the lines at some distance from the origin.

2D—*P. For the upper state, which is taken as case (b)

T(jv; ) =T 5 7o) =[(G—8)/(2j+1) ]2
T(jr;jo)=—T3s; j0=—[(G+3)/2j+ D],

while for the lower state T=1.

As the total intensities for the transitions from a given ji-level in the upper
state to each of the o-levels in the lower state are here not equal, we give the
expressions for all twelve branches.

Pbranch  § =j+1

Jrrai~D2[(25—1)(2§—3)2/32(+1) (24 1) ] jiooa~D2[(2—1)(25+5)/32(j+1)]
Jroor~D (2 =12 =3)(2+5)/32(+HD@+D]; jro oa~D2[(2j—1)(2—3)/32(+1)]
Q-branch j'=j

Jrrar~D2[(245)(2j —3)2/32i(j+1) ]; Jroa~D2[ (25 —1)(2+3) (27 +5)/32j(j+1) |
Jrrai~D?[(25—3)(2j+5)%/32i(G+1) ]; Ja—roa~D2[(2j —1)(2§ —3) (2 +3)/32i(j+1) ]
R-branch j'=j—1

Jiro1~D2[(25—3)(25+3)(2+5)/32§(2j+1) | jrooa~D2[(2j+3)(2j+5)/324];
Jrra1~D2[(2j+3)(2j+5)%/32j(2j+1) |; Jrrae~D2[(2j—3)(2j+3)/32]]. -

5. ELEMENTARY THEORY OF ¢-TYPE DOUBLING

A mathematical method very similar to that used in the preceding part
of the paper may be used to demonstrate the existence of “o-type doubling.”
Such doubling, as predicted by Hund! and Hulthén,? and as shown much
more fully by Kronig,?® arises because the molecular rotation removes the
degeneracy caused by the identity of the energy for the states —o and +o
in a stationary molecule. This hyper-doubling is not to be confused with
the coarser spin doubling considered in sections 2—4, and the connection of
the present section with the rest of the paper is in the type of mathematics
rather than of doubling. The present treatment is not intended to include
the interaction between spin and the o-type degeneracy, and so applies
primarily to singlet states. This interaction, which actually greatly in-
fluences the o-doubling, will be considered in a later paper which will use
case (a) as the unperturbed system and which will use a more complete
perturbation theory better adapted to represent details of molecular structure
than the simple “anschaulich” model used in this section. The characteristic
feature of the present section is that even though we are calculating o
doubling primarily for case (a) we begin with Hund’s case (d) as the un-
perturbed system. We, however, throughout simplify his case (d) by
assuming no spin. Case (d) means that the electronic orbital angular mo-
mentum is so loosely coupled to the rest of the molecule that we no longer
quantize its component in the direction of the axis of figure, just as in (b)

29 ., Hulthén, Zeits. f. Physik, 46, 349 (1927).
30 R, de L. Kronig, Ibid., 46, 814 (1928).
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the spin s is no longer bound to this axis. We start calculating from (d) for
two reasons: first, it is very easy to do this after the mathematics in the
preceding sections, and second, even though a later paper will start with
case (a) it is illuminating to calculate perturbations from both (a) and (d)
and so pass continuously from one case to the other and vice versa.

The angular momentum vectors are the important factors in rotational
distortions, and to represent their secular effect we may suppose the system
to consist of two parts: (I) a “core” which is essentially the dumb-bell model
of a diatomic molecule without electronic angular momentum and (II) an
angular momentum vector k which represents at least qualitatively the
angular momentum of the valence electrons. Let us suppose initially that the
force field which part I exerts on part II is very nearly central. Then we
have Hund’s coupling (d) and the squares of the angular momenta of parts I
and Il are respectively j.(j.+1) and k(k+1), while the square of their
resultant is j(j-+1). We use the notation j, for the angular momentum of
the core stripped of all electronic angular momentum, whereas the number
jr in case (b) included both nuclear and electronic orbital moments of
momentum. Now introduce a coupling proportional to the square of the
cosine of the angle o between k and the axis of part I. This, of course,
destroys the centralness of the field. When this coupling is very tight, the
square of the component ¢! of k in the direction of this axis will have the
quantized values 0, 1%, 22, 32, - . - . Each of these values correspond to a
pair of states, because of the possibility that ¢ be either positive or negative,
or, more generally that the wave functions be two independent linear com-
binations of those for —o and +¢.22 With a stationary molecule each con-
stituent of a pair has the same energy Ao¢? where 4 is a proportionality factor
determining the strength of the coupling introduced above, and our problem
is to show that the Coriolis and centrifugal forces due to molecular rotation
causes a small splitting of the energies associated with the two members of
a pair. The mathematics for doing this is virtually identical with that used
in section 2, except that now k rather than s is being bound to the axis of
the molecule and that now the coupling energy is taken proportional to
cos’« rather than cos a. The latter modification is, of course, to give equality
of coupling energies between parallel and antiparallel positions and hence
the degeneracy of the character associated with o-type doubling. The
matrix elements of cos @« may be obtained from those of cos(o:,s) given
except for a factor [42%?%s(s+1) |2 in Eqgs. (16-17) by substituting k for s,
j» for ji, and also setting ¢;=0 as the core is without electronic angular
momentum. By the rules for matrix multiplication the elements of the
coupling energy Ak(k+41)cos’« are then

3 As we are not considering the spin, we may use the notation ¢ in place of .

% The values —o and -+ correspond to factors in the wave function of respectively the
form "% and e*°%, where ¢ is an ignorable coordinate associated with rotation of the electrons
about the axis of figure. However, the wave functions which remove properly the degeneracy
in the problem of o-type doubling turn out to have factors of the form cos ¢¢ and sin o¢, or
are thus symmetrical and antisymmetrical combinations of the wave functions for the states
—o and +o. The writers are indebted to Professor Kemble for first calling this to our attention.
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Hp(jmjr,) =0, j1',¢jryjri2 > Hp(jr ;jr) =4 [f(]r)+f(]r_ 1)]
Hy(jr,jr+2) =H (5o 42,5 = A[f(G) (G +1)]V/?
with the abbreviation

G =Gt b+j+2) Gt =i+ 1) (G — b+ +1) (= o+ k+7)/16(5+3) (G +3) .

The expressions H, and f are functions of #, k, j as well as j,, but for brevity
we do not list %, j, k among the arguments as H is diagonal with respect to
these quantum numbers. Precisely the same procedure as was used in deriv-
ing Eq. (20) shows that the energy levels W are the roots of the determinant

| B, j) = W(jr,3.) | =0 (41)
where the off-diagonal elements are identical with the expressions given in
(40), while H(j,,j.) equals H,(j,j.) +Bj(i+1), as we must include the rota-
tional energy of the core as well as the perturbing coupling energy. Here
and elsewhere B is an abbreviation for the expression A?/8w3I (not to be
confused with the factor B used in section 1). The indices j, and j,” in (41)
range from j+4-kdownto j—kif j>kortok—jif j<k. &isthe conventional
symbol for an expression which equals unity when its arguments are equal
and vanishes otherwise.

The determinant (41) yields an algebraic equation for W which can be
solved exactly in the cases k=%, 1, §. This equation is respectively cubic
and biquadratic for k=1 and k=%, but factors at once.?® Half integral values
such as %, § for k are, of course, impossible if & represents real orbital angular
momentum but nevertheless are of interest in showing the contraction of
o-type doubling with increasing ¢. Also k& could be half integral if it denoted
the resultant of the orbital and spin angular momenta, provided they were
so firmly coupled as to always form a quantized resultant (i.e., if Hund’s
interaction 3 is large compared to his 2 and 4; see p. 660 of ref. 1). This
proviso is, however, an idealization seldom if ever met, as ordinarily in
molecules the correction for the non-centralness of the field is much larger
than the width of spin multiplets. The closed solutions for the cases k=%, 1,
2 are as follows:

(40)

1 1 1 1
k=—; W=—A4+4+B| 7+— [ +—+1 42
2 PR <]+2>(]+2‘> 4
W=A+Bj(j+1)
E=1 g 1 1\ e
W=—d +B<j2+j+1>i[ZA2—AB+4(j+—2—> BZ}
5 3
;| W= +B<j2+1> + [424(2j— 3) A B+4j2B2]1 2
h=—
2

S 7 2 1/2
W= A +B<j2+2j+-4—) + [AZ— (2j—|—5)AB+4<j+1> BZ]

3 It is readily seen that for £ =3/2 the first and third columns of the determinant in (41)
must be proportional, also the second and fourth. Eq. (41) factors into two parts for any &,
as by (40) the determinant in (41) involves no transitions between odd and even values of j,.
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For 4 =0 these formulas of course reduce to Bj.(j.+1). Their significance
for large 4 becomes more apparent if we develop the radicals as power series
in the ratio® 1/A=B/A, which we may suppose small when the coupling
is large and hence nearly type (a); and if in addition we group together the
roots which correspond to the same values of 2 and ¢. This is a different
grouping than that on the basis of factorization given above. We then find

e —1> W—1A+B<'+1><'+1+1> (43)
B 4 ITIN T )

k=1, ¢=0)  W=0+B[jG+1)+2]-N"'Bjij+D+ - -
k=1, o=1)  W=A+BjG+1)+N"BQ+£2)jG+1D)+ - - -

3 1 1 o 13 .
E=—, ¢=—> W=ZA+B[](]+1)—|—Zi(2]+1)]+ e

e —3) W—9A+B['('+1) 3]+1>\-13<3'2+3' 9)
T2 7T T I 417 STy

o)) s)

Here and elsewhere we for brevity write ¢ for |d|; it is impossible to specify
the sign of ¢ as the Heisenberg resonance blends the states —¢ and +o
(cf. note 32). The first term in the above formulas is, of course, the coupling
energy Ao? for a stationary molecule, where ¢ is half integral rather than
integral if % is also. The second term which is of the order B is in each case,
except c=%, equal to B[j(j+1)—o2+(k2+k—0?)], the familiar Kratzer-
Kramers-Pauli expression as modified by Born and Oppenheimer? to include
the secular effect of the component of electronic angular momentum which
is perpendicular to the axis of figure in case (a), and whose square has the
value kperp? =k(k+1) —0? (cf. note 24). The remaining, higher order terms
are ordinarily neglected, and are perturbations arising from the periodic part
of this perpendicular component. A “o-type doublet” is formed by energy
levels corresponding to the plus and minus signs in (43) for given % and o.
The doublet width is, of course, proportional to the difference between the
energy expressions evaluated with the plus and minus signs, and in each
case the series development has been carried far enough to bring out this
difference. The rotational distortion thus does indeed cause a splitting of
the general type predicted by Hund. It is to be noted that the doublet width
is in each cause of the order B(1/\)2°~1= A4 (1/\)?°, a result already mentioned
in a footnote of Kronig’s paper.?® The variation of the doublet width with
j is seen to be approximately as j2° for large j; this, however, is without the
spin, which modiftes the situation considerably except in singlets. In the

3 As we now have coupling proportional to the square rather than first power of the
cosine, the constants 4 and X have slightly different meanings than in sections 2—4 but we do
not change the notation because their mathematical roles in series developments, etc.,are
virtually the same as before.
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particular case o =%, the doubling is of the same order B as the ordinary
Kratzer rotational energy intervals, and so here the (a) type coupling always
gives way to (d). In the case o =1, the correction term of order A\—'B, which
gives the doubling, is proportional to j(j+1), and so has the same effect as
altering slightly the moment of inertia.

Correlation of values of j» and o. Although, barring o =%, the levels coin-
cide in pairs in the limit A=, members of such pairs pass adiabatically
as the ratio A=4/B is gradually decreased, over into levels of distinctly
different energy in the limit 4 =0. Using the same procedure as in the cor-
relation given in Eqs. (28, 29) the adiabatic correlation is found by examina-
tion of the roots (41) to depend on the sign of 4 and to be as follows

E=1)  jomj—1o0=0;  ji=j,j+1o0=1
except that when j=0, j,=1—¢=0
4>0 P J J
\ 3) 13 1 b3 3
= — =7 —_———— :—«; = —_— —_—— = —
2) I, I I T,
1 1
except that when]=—2; Je=1, 2——>or=—,2—
{k=1) Jr=j+1—0=0; Jr=J, j—1—>e=1
A<01k 3) . _+1 ,+3 1 .. 1t 3 3
p— = _— ——g=— p=7—— ———— g == —
) I I T, I ITTTE

Combination relations. The correlation relations permit us to use formally
the quantum number j, instead of ¢ even in the limiting case (a). Let us
call an energy level of type x or type y according as j.+k is even or odd.
Then in the limit 4 =0 (case d), the only possible transitions are those
which join an x level and a y level; i.e., two x (or y) levels do not combine.
This follows since in (d) the motion of the “core” (part I) and the motion
of the valence electrons (part II) connected with the vector k are independent
except that together j, and k form the resultant j. Hence in (d) a fixed
electrical moment mounted along the axis of the core will obey the selection
rules Aj,= +1, Ak=0; the transition Aj,=0 being absent since the core is
non-gyroscopic, and jumps in %2 being absent because with no coupling the
core does not experienice any of the frequencies connected with the vector k.
Similarly in (d) an electrical moment associated with the motion of the
valence electron will obey the rules Ak = +1, Aj,=0; the former because the
field which the core exerts on the valence angular momentum is assumed
perfectly central in case (d), and the latter because of the absence of coupling
with the axis of the core. Hence, regardless of whether we ascribe the electri-
cal moment to the core or to the valence electrons, the elements of the
moment ¢; in case (d) are always of the form A(j,+%)= +1, and hence
give only combinations between an x and a y level. Now when coupling is
introduced, the moment in case (a), or in any case intermediate between (a)
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and (d), is the matrix ¢ =.5¢45*%, where S is the transformation matrix whose
elements are obtained by solving the system of linear equations connected
with the determinant (41) (cf. Eq. (18)). Now the elements of .S are all either
of the form x—x or y—y. This follows since the system of linear equations
for determining S is separable into two independent systems involving only
even or only odd values of j,, inasmuch as the elements of the Hamiltonian
function H are by (40) all of the form H(j,j,) and H(j,j-+2). Combining
the information which we have obtained about g4 and about .S, and using the
rules for matrix multiplication, we see that the only elements in ¢ even in
the general case are those which involve a transition from an x to a y level,
or vice versa. Now the two members of a o-type doublet are respectively x
and y states, and further the x state is alternately the upper or lower level
as j is successively increased by unity. This is verified directly up to 2= $
by the correlation given above, and examination of the general behavior of
the roots leaves little doubt but that this holds also for larger % values. We
thus have the combination rules predicted empirically by Mulliken® and
especially Hulthén? and explained by Kronig? from the symmetry properties
of the Schroedinger wave function. We will not attempt to illustrate how
these combination relations apply to transitions between particular types of
spectral terms, as this is nicely covered by the diagrams in Hulthén’s or
Kronig’s paper. Although Kronig neglected the perturbing effect of the
component of electronic angular momentum perpendicular to the axis of
figure in case (a), the present work shows that the combination relations
hold even without this omission, and throughout the range from (a) to (d).
Professor Kramers informs us that a similar result on the generality of the
combination rules has been obtained by a different method in unpublished
work of Wigner. We must emphasize that in deriving these relations we have
made no effort to adequately take account of the spin, which will be con-
sidered in a later paper,’ and conceivably the spin influence explains why
combinations between two x or two y levels are apparently sometimes found
experimentally.
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