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THEORY OF THE DOUBLE X-RAY SPECTROMETER
BY M. M. ScHwARzscHILD

ABSTRACT

The geometric factors in the construction and use of the double x-ray spectrometer
are examined in detail. It is found that the resolution of the instrument is not affected
by the width of the slits but that, on the other hand, the height of the slits must be
limited to preserve resolution. A formula is given for the limiting value of the ratio—
average height of effective slits: distance between effective slits—for any particular
width of observed line, in order that the width observed be the result principally of the
physical factors. The physical factors, namely, crystal imperfection, line width,
diffuseness of absorption limits, are also discussed and formulas are derived by means
of which the experimental curves found with the instrument may be interpreted
physically.

'N RECENT work of Bergen Davis, Slack and Purks on various problems.- involving a high resolution in the x-ray region they have made use of the
double x-ray spectrometer. The instrument is essentially an ordinary spec-
trometer with the addition of a second crystal which may be turned through
accurately measured small angular intervals. It is described in sufhcient
detail in the papers of Davis and Slack' and Davis and Purks. ' ' The arrange-
ment had been used by Davis and Stempe14 in their classic measurement of
the efficiency of reHection of crystals. Ehrenberg and Mark' have also used
this arrangement for work similar to that of Davis and Purks.

The present paper is the result of an attempt to determine theoretically
the various factors which should be taken into account in the use of the
instrument, and to deduce the relations which exist between the character-
istics of the radiation entering the instrument, the perfection of the crystals,
and the curves found experimentally by means of the instrument. It may
be considered as an extension of the work of Richtmyer, ' since it attempts
to develop for the double spectrometer relations similar to those he de-
veloped (graphicalIy) for the sing1e crystal instrument.

This discussion is divided into three parts. Part I deals with the effect
of poor adjustment of the crystals as to verticality and with the effect of
finite slit dimensions. The argument in this part is based upon the assump-
tion of geometrically ideal Bragg reHectors. The results of Part I are there-
fore not directly applicable to the real situation. Part II is a discussion of
the effects of real crystals and real radiation. Relations are found for various
types of entering radiation connecting the form of the observed curves with
the actual wave-length distribution. In Part III the condition which the
slit heights must fulfill in order that the results of Part II may be applied
is given. The application of those results to the work of Davis and Purks
is then discussed.

I. GEOMETRICAL

We set ourselves the problem of finding the relations which must be
satisfied by the directional coordinates of an incoming ray of wave-
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length X in order that it may be reflected from both crystals. The geometric
situation is rather complicated and it seems simpler to derive a vector
equation first, and then to translate it into angular notation.

In Fig. 1 AB and CD are the traces on the xy or horizontal plane of two
idealized Bragg reflectors mounted so that by rotating the supports of either
or both, the angle P between these traces may be varied. The vector r is a
unit vector in the direction of the incoming ray,
the vector R is a unit vector in the direction of this
ray after the first reHection. The vectors nl and n2
are the unit normals drawn out from the two re-
flecting surfaces. In the figure only the projections
of these vectors on the xy plane are shown. The A e,

angles indicated in the figure are angles between
horizontal traces and projections only. The x axis
makes the angle 0l with AB and the line BI"makes
the angle 02 with CD. These angles are the Bragg Fig. 1.

angles for the reflection under consideration. The
angle co is the angle between the horizontal projection of r and the x axis. The
angle e is the angle between the horizontal projection of R and EI'. Angles
not shown in the figure but readily visualized are: the angle P between z
and its horizontal projection, the angle bl between nl and its horizontal
projection, and the angle 82 between n2 and its horizontal projection. The
s axis is to be considered as coming out of the plane of the figure.

The conditions for reflection of the incoming ray from the first crystal
may be written

r n~= —sin 8q ———pqX/2d; r n, —R =nq, rXn& RXn& ——(I)(2)(.3)

where pl is the order of the first reflection and d the crystal lattice constant.
In order that the ray reflected from the first crystal be again reflected from
the second, at order p2, we must have

R n2 = —'sin 82 —— p2X/2d =p—2r 'n&/pq

By operating upon both members of Eq. (3) with n&X, expanding the triple
product and substituting from Eq. (2), we obtain

R=1"—21' 'ZliIll (5)

By operating upon both members of Eq. (5) with n, , and using Eq. (4)
we derive

Pl~ ~2 2P 1~ ~1~1 ~2 P2~ ~1 (6)

an equation which with Eq. (I) expresses the condition for the double re-
Hection of the incoming ray.

In order that these equations may be of further use it is necessary that
they be rewritten in terms of the direction coordinates of the vectors in-
volved. The following equations are easily seen to be a consequence of our
definitions of the angles involved, with the added consideration that all
powers of Bl and 62 above the first are neglected.
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r „=—cos P cos cv

r„=—cos P sin co

r, = —sin P

Ell = Sin Oy

xlyy= cos 0]

n1, =61

rl s, Sin (——8~+P)

rlsy= cos (Og+P)

n2, =8g

(7)

With the help of Eqs. (7), we may write Eq. (6) in trigonometric form.
Noting Eq. (1) we get

pl cos p sin (&o+Ol+ p)+ plhs sin lf —2pl sin Ol cos p = ps sin Ol

Eq. (1) may be written in angular notation as

cos |8 sin (&u+Og) = sin 8l —Ol sin f
01

cos f cos ((v+8&) = (cos' P+25l sin Ol sin rP
—sin' Og)

'" (10)

Noting the identity

Sill ((a)+8g+p) = Sill p Cos (CO+Ol) +COS p Sill ((d+Ol)

we may substitute from Eqs. (9) and (10) in Eq. (8) and get

sin P(cos'rP+ 28l sinOl sing —sin'8l) 'l' —cosP(sinO~+Ol sin&/) = sin Os —5, sing (11)

Introduce the angles y and' g such that

sin P cos y —cos P sin y = sin g (12)

Comparing Eqs. (11) and (12) and neglecting terms in lt of degree above
the second, as well as those in 5 higher than the 6.rst, we have

y=sin —' (sin Ol+Ogg —2 sin'Ol5lip+s sin Olf )
ll = sin '(sin Os —Os/ —2 sin 8l sin 8,5lg+ s sin 8~$')

(13)

(14)

Expanding arcsin by Taylor's theorem about sin 0& and sin 02 respectively,
we obtain

O+lel/c osOl —2 sin Ol tan OlOlf+2 tan8~$'

l1 =Os —Olp/cos Os —2 sin Ol tan Os5~$+, tan Os/' '

Evidently, from Eq. (12) sin(p —y) =sin ll, which yields the two solutions

(17)(18)

These solutions may be written, using Eqs. (15) and (16),

(19)

where 6 =p —[8,+lr/2+ (Os —lr/2) ] representing the angular deviation of the
position of the second crystal from the position for reHection of a horizontal
ray of wave-length X entering along the g axis, R=O~/cos Ol+Ol/cos 8, —

1 These series will not be convergent even for small values of P if the orders of reAection
are so great that the functions of the 8's entering in the P and 8 terms are very large. For
orders used in practice this restriction is unimportant.
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As@ lJ.

2 sin 8&(tan 8&+tan 8,)5~ or, by an obvious approximation 8 =3&+5/ repre-
senting the sum or diRerence of the angles of inclination of the crystals to the
vertical, and M= —', (tan 8&+tan 8&), the upper signs being taken when the
crystals are in the position of Case I, Fig. 2, in which the ray incident on the
first crystal and the ray reflected from the second
crystal lie on the same side of the ray reflected from
the first crystal; the lower signs being taken when
the crystals are in the position of Case I I, Fig. 2,
in which the first incident and the last reflected rays
are on opposite sides of the first reflected ray.

The angled which determines the position of the
C

second crystal is thus seen to be independent of ~,'
the angle whose limits are fixed by the horizontal Fig. 2.
width of the slits, but does depend upon P, the angle
whose limits are fixed by s, the average vertical height of the eRective slits and
L, the d&stance between the effective slits. Evidently

r/L &f &s—/L (20)

We now proceed to find the relation between the angle 6 and the energy
reflected by the second crystal. We may suppose that the energy coming
through the slits at the angle 11 is a function of that angle. If we denote by
I(p) a quantity proportional to the energy of the beam making the angle lf

with the horizontal plane, then, whatever the form of this function,

Ig) =0 for
~ Pj &s/L. (21)

Eq. (19) has two solutions for every value of A. We denote these values
of P by P, and tP, . If Iq is proportional to the energy coming through after
the second reHection, we may write

I~ =IQ,)+I/, ), (22)

In Fig. 3a the parabolas are the graphs of Eq. (19) for various values of
R. Fig. 3b gives the corresponding curves relating Iq and 6 if I(P) =s/L
—

~P~ for ~P~ &s/L, physically realized if the effective slits are equal in height
and the source uniform. If the eRective slits diRer very much in height, then

for ~f~ &s/L, I(P) =constant. The relations between I~ and 6 are obvious

from Eq. (22). The curves of Fig. 3a are drawn on the assumption that
both R and M are positive. If R were negative the effect would be merely

to invert the scale of P, i.e., make it positive downward. Since in ordinary
cases I($) depends only on the absolute value of P, the distribution would

be unchanged. If M were negative the eRect would be an inversion of the

' There is no pretense at accuracy in this equation. It merely serves to give a rough

interpretation of R. For the further argument all we need say is that R is not a function of

P or or and may be made as small as we please by proper choice of bi and 8&.

' Except that ~ must be so lim1ted that co+ 01(~/2. Practically, for orders of reflection

used in practice, this condition is automatically fulfilled because of limitation of crystal size.

The reason for this condition lies in the selection of signs in Eqs. (9) and (10).
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scale of 6, i.e. , positive to the left. The distributions would thus simply be
reversed in D.

p w

I

V = s/L-

&C

—V=-s/L

A: I R I ) I 2 & s/L I

8: IR Ms/L I ) IRI) IM s/LI
C: IMs/LI)IRI) 0
D:R =0

Fig. 3, (a) Graph of Eq. (19) for various values of R. P is the ordinate, 6 the abscissa. (b)
Corresponding curves relating Ig and b,.

A consideration of the geometry of the curves of Fig. 3a shows that the
maximum width of the curves for I& may be expressed by the relations

W=2Rs/L for R&2Ms/L (23)
and

W = Ms'/L'+Rs/L+R'/4M for R (2Ms/L

where R and M are always to be taken positively. These equations may be
transformed into more practical units. If R' denotes the value of R expressed
in minutes of arc, and W' denotes the value of 8 expressed in seconds of
arc, we have, approximately

W" =120R's/L for R'& 7 10'Ms/L

W"=2 10'Ms'/L'+60R's/L+4 10'R"/M for R'&7. 103Ms/L

R' and 3II again being taken positively.
Fig. 4 shows the graph of W" and R' for various values of s/I. and M.

It is obvious from the figure that the most accurate adjustment of R', which

W"

gD~

IOO"
A: M.O.B
B: M=O. I;
C:M' 0:
D: M=O.c;
E.: M*O. I'
P':M' 0'

50"

i
lA B

gw-c
IO' ZO' 30'

Fig. 4. The geometric width as a function of R, the deviations from true verticality.

determines the verticality of the crystals, may be made by adjusting R' for
the narrowest curves, when s/I. is large. Furthermore, for MAO, the value
of W'remains greater than zero for all values of R. The quantity 8"' repre-
sents only the width due to "geometric" causes. We have assumed that our
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crystals are ideal Bragg reHectors and, at least in the non-parallel case, that
the radiation is ideally monochromatic. Actually, of course, this is not the
case. In fact, the minimum observed widths are all considerably larger than
the value of W" for R =0, and reasonable values of M and s/L. The widths
of the observed curves, when adjusted, is therefore principally due to the
"physical" causes enumerated above. We may, for this reason, in our dis-
cussion of physical causes neglect the geometric width, as soon as R' and s/L
are properly adjusted. This may be done readily. . For a given value of 3EI

it is only necessary to make s/L large and adjust R' for minimum width of
observed line. The observed width will then be largely "geometrical. " If,
now, s/L is decreased so that the value of W" from Eq. (24) for R'=0 is
small compared to the observed width at that setting, our instrument is in
such adjustment that the line width observed is principally due to "physical"
causes.

It is important to note that, because of the change of sign in the definition
of 8, between Case I and Case II, an adjustment for verticality in one case
cannot be relied upon for the other, no matter how accurately the crystal
mountings are designed.

/
I

I'I
I
I
I
I
I
I l

I I

I
I

II. PHvsrcxI.
The results of the last sectio'n show that the width of the observed lines

which may be ascribed to the geometric arrangement of the system may,
under reasonable conditions, be made very small. Under the best experi-
mental conditions, however, the actual observed widths are much greater.
Their source lies in the fact that we are dealing with real crystals and with
radiation of finite wave-length range.

Consider the case in which the rays are ideally monochromatic, but the
crystals real. Giving cv the same meaning as in Part I, Fig. 1, we may set
the energy of the beam after reHection from the first crystal as proportional
to Hie ~"', if Hi of Fig. 1 is the Bragg angle corrected for refraction of the
wave-length in question. The justification of this relation rests upon the
following:

1. For a perfect crystal the distribution pre-
dicted by Ewald and Darwin is shown by the solid
line in Fig. 5. The distribution we assume may, by
proper choice of A and k, be made to fit this
reasonably well as shown by the dotted curve in

Fig. 5. I

2. For an imperfect crystal reHection must be
considered as coming from a large number of
microcrystals arranged about a mean position.
The Guassian probability function is the most
likely distribution.

If 02 is the corrected Bragg angle for the second
reHection, and ~ has the meaning for the second Fig. 5.
reHection which or has for the first, we have, from
Eqs. (17) and (18)
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for Case I;
for Case II:

O2-~= p-O&-~

O2 —e P —m —Og —co (26)

co and e here represent the deviations of the actual reflected ray from the
position of the ray reflected by an ideal Bragg reflector.

A2e ~" represents a function of e proportional to the fraction of the
incident energy reflected by the second crystal. The ratio of the total energy
getting through both crystals, to that incident on the first will be the product
of the corresponding ratios for each crystal, i.e.,

J =A,g, t,
—&'i~'+'2e') (27)

If we denote by m the position of the second crystal as measured from its
ideal position, we have

for Case I:
for Case II :

n= p —Og —
O2

0.=p —g —Og+O2

(28)

(29)

Combining the last five equations we obtain

P=AgA e &'~" +' (-") ~ (30)

and, since u has a wide range, the total energy coming through at n will be
proportional to

(31)

Integrals oF this type may be evaluated as follows:

+oo

g
—/uz'+b(y —cz) ]dg —[s/(ftc2+/i) ]i/2g —eby /(bc +a)' (32)

so that

j—g g [&/(P + P ) ]1/2g —kzkaa /(ks+ka)

For parallel crystals gi=/72 and hence by Eq. (29) n is independent of
the wave-length. Under any other conditions n depends on 0~ and 82 and
hence upon the wave-length. Suppose that the radiation entering the spec-
trometer be polychromatic, and that the distribution of energy with the
wave-length be described by a function fP, —Xo) where Xo is a unique wave-
length peculiar to the distribution (center of line, absorption edge, etc.),
The energy coming through at any position of the second crystal is evidently
proportional to

g,g, [ /j~ ~~&] ~ f //~ (34)

By definition, Eqs. (28) and (29), n is the deviation of the position of
the second crystal from the ideal position for the wave-length considered.
If a, represents the same deviation as measured from the ideal position for ) 0
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n=n. —P —) o)d(0)+0)/d&

169

(35)

the upper sign being taken for Case I, and the lower for Case II. Denoting
k&k2/(k)+k2) by X, and d(8)+02)/dX by r the expression (34) becomes

»& "'(() t)i"J -if( .—)i I (36)

For the case of line radiation we may assume

f(l) ) ) —Be—K), (k—xo)'

Substituting in Eq. (36) and using Eq. (32), we obtain

(39)

For the case of an absorption edge we may set

(38)
[(E r'+Kg) (k)+ k2) ]"'

For the case of continuous radiation we have, for the small ranges under
consideration f(X —Xe) = C. For this case Eq. (36) becomes

J, =CA,A2m/r [E,(k)+kg) ]'i'

f)X—),) =3+(1)k.) f )A —8) (40)

A graph of this equation is shown in Fig. 6. The quantity h has the sig-
nificance shown in the figure, and may be used as a measure of the diffuseness
of the absorption edge. In this case Eq. (36) becomes

1j2 +co 1 +co (chic
—n) I r

Be K dn+ — e " (A B)e *'i' " 'dxdn-
r(k, + ke)'i' „k.

so that

dJ A)A2)r' '(A —B)
e [K '+ ( —''"".&du

dn, r'k, (k)+ ke) "'
and, by Eq. (32)

~+ac A )A 2~ (A —B)
g
—&Kccec /(7r+Kct' Aa ).[(~+a;2k.') (k, +k,) ]))2

giving
B
1

~~

~

dJ A )A2s. (A —B)
dn = r[(s+E r'k ')(k)+ kg) ]"'
From Eq. (39) it is evident that the ordinates of the observed curve far

on either side of the absorption edge will be AA)A2s/r[X. (k)+ks)]'" and
BA&A&7r/r [K.(k)+k2) ]'i', so that the observed angular width will be
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(A —8)s.A gA g dJ.,
r[K,(k,+k,)]'» da, .=.

Using Eq. (41) this becomes

h = (s/K, +r'h. ') '~'

For the probability distributions of Eqs. (30), (33), (37), and (38) we
may use as a measure of the width, that at half-maximum energy, which
may be expressed as 2(log 2)'~'/K"' where K' is the constant of the exponent.
If H& and II2 represent these widths for each of the crystals for ideally
collimated and monochromatic radiation, we have, using appropriate sub-
scripts, from Eq. (33)

or, if the crystals are alike

H ~(HP+H, ')'~'

H. =+2Hg

(43)

(44)

If the crystals are not parallel the observed angular width II„.„.for a line
will be, from Eqs. (37) and (38)

H (H 2+r2H 2)1/2

If the crystals are parallel, the observed angular width II„will be

(45)

II„=H, (46)

evidently independent of the type of radiation. From Eqs. (42), (43), and
(46), the actual width h, of an absorption edge, in wave. length units is
related to the observed angular width h and the resultant width for the two
crystals at the orders used, FI„ in the following manner:

r'h. '= 7I' ~H, '/41og 2= h' —1.13H,'

The quantity r in the above equations may be expressed as

r =d(0&+02)/dX= Pi/2d cos 0&+ P2/2d cos 02

(47)

The results expressed by Eqs. (43) to (46) have already been published by
Ehrenberg and Mark' for the case 0~=02. The results here are more general
and may be applied even to the case of two crystals of different material.

III. APPLICATIQN

The results of Part II may be applied only if the "geometric" width
given by Eq. (23) is small compared to the measured widths, II„,H„„,or h. . .
This limitation may be expressed in the following way:

s angular width measured

—,'(tan 0g+ tan 02)

the upper sign being taken for case I, and the lower for case II. It is, of
course, assumed that the adjustment for verticality has been taken care of.
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In all the work of Davis and Purks' this limitation has been taken into
consideration. These authors have recently shown' that the natural width
of the Ko. line of Mo is of the order of 0.1 X-unit. In that work they made
use of the equation of Ehrenberg and Mark' corresponding to our Eq. (45).

It is of interest to apply Eq. (44) to the data there given. They found
with both crystals parallel and reflection at second order IX~=3.75", which
gives III=2.65". The corresponding quantity at first order would be twice
as great' or 5.4" which is to be compared with the value 5.8" given by
Compton~ for a perfect crystal. The result indicates a high order of per-
fection for the calcite crystals used. If we adopt the value for H& at first
order as 5.4" we can calculate the breadth of an absorption edge from un-
published data of Davis and Purks. They find for the Mo X limit h 32"
=1.6&10 4 radians at first order on both crystals of calcite, reflecting as
in case I. From Eq. (48) r=0.33 (A-units) ', from Eq. (44) H, =7.5"
=3.7 X10 ' radians, and hence, from Eq. (47), h =4.65X10 4 A-units.

This result is to be compared with the upper limit for the width of the
Ag K absorption edge given by Richtmyer' as 0.0002 A-units.
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