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INTERPRETATION OF ATOM IC STRUCTURE FACTOR CURVES
IN CRYSTAL REFLECTION OF X-RAYS

BY G. E. M. JAUNcHY AND W. D. CLAUs

ABSTRACT

In a previous paper (Phys. Rev. , May, 1928) the authors showed that, for certain
values of D the grating space of a crystal of rocksalt, the area under a radial electron
distribution (or U) curve for chlorine rose above 19 electrons. This result was obtained
both from Havighurst's experimental F curve and from Fvalues calculated for a model
chlorine ion, these calculated values being modified to take into account the Compton
effect. This result seemed perplexing, inasmuch as both the real ion and the model
ion have but 18 electrons. The present paper is a further discussion of this point.
It is proved that for any symmetrical atom F values, calculated according to the
classical theory and unmodified for the Compton effect but multiplied by the Debye
temperature factor, give U curves the areas under which never exceed the number of
electrons assumed in the model. It is also shown that an unsymmetrical atom gives
F values which behave in the same way, But, since both experimental and modified
theoretical F values (that is, modified to take account of the Compton effect) give
U curves the areas under which do exceed the true number of electrons for certain
values of D, there is an indication that the Compton effect is involved in the experi-
mental values. The truth of this indication would invalidate the use of the Fourier
analysis method as now applied. The present paper also develops the Fourier integral
as a quick method of calculating a U curve from a model atom on the classical theory.
It is shown that a U curve calculated from Compton's formula

(/=(8rrr/D)g(nF„/D) sin(2 r rr/ n)D
1

for a Fourier series is a very close approximation to the true U curve given by
the Fourier integral

U(r) =8v r xFPx//2) sin2mrx dx
0

where F is the same function of ('Ax/2) as F in the series formula is a function of
sin 0. An analysis by the Fourier integral of a model supposed to have all the
electrons concentrated at the center together with the Debye temperature factor
shows that U(r) represents the distribution of electrons about a lattice point and not
about the center of the atom.

I. INTRQDUcTIQN

''N A recent issue of the Physical Review, ' the authors have discussed the'. criticisms of Havighurst' on the method of Williams' and Jauncey' for
correcting for the Compton effect in calculations of the theoretical atomic
structure factor (or F) values to be expected for a given atom mod'el. In our
previous paper, we have raised objection to the practice by some authors of
using values of the grating space of a crystal which were inordinately large

' Jauncey and Claus, Phys. Rev. 31, 717 (1928).
~ R. J. Havighurst, Phys. Rev. 31, 16 (1928).
' E.J.Williams, Phil. Mag. 2, 657 (1926).
4 G. E. M. Jauncey, Phys. Rev. 29, 757 (1927).
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and entirely fictitiouls as there is no possibility of obtaining an experimental
F value for the first order with one of these large grating spaces. However,
assuming that the use of these large values of the grating space is allowable,
we were led to construct Table IV of our previous paper. In this table are
shown values of the area under a radial electron distribution (or U) curve
for chlorine from r = 0 to r = D/2, for various values of D, where D is the grat-
ing space. Table IV shows for both the experimental F curves (reasonable
extrapolations being used for the F values at both the small and large angles)
and the theoretical F values calculated for our model and modified for the
Compton effect that the number of electrons under a U curve is over 19 even
though there are only 18 electrons in our theoretical model and though we also
extrapolated to F=18 at sin 8=0.00 in the experimental F curve. Referring
to Table IV, we see that there are more electrons und. er the experimental
curve for D =4.44A than for D = 7.10A. It is difficult to conceive how there
could be less electrons between r =0 and r =D/2 for D=7.10A than for
D =4.44A. Since writing our previous paper, it has occurred to us that this
peculiar variation of the area under a U curve may give some insight into
the need for a Compton effect correction. Before examining into whether
this peculiar variation of the area proves the need for a Compton effect
correction, we shall consider the case for the variation of the area with D
for classical scattering of x-rays from a model atom possessing spherical sym-
metry. We shall show that F values calculated classically and without a
Compton effect correction for a model atom give areas under U curves which

approach the number of electrons assumed in the mod&el as D approaches
infinity but that for other values of D the area is always less (although it
may only be slightly less) than the number of electrons assumed in the atom.
Further, we shall examine the effect of different extrapolations for the
chlorine experimental F values, all extrapolations, however, end ing at
F=18 for sin 9=0.00, and we shall show that it is impossible to choose a
reasonable extrapolation for which U curves for various values of D always
have an area equ'al to or less than 18 electrons. At present we believe that
the experimental F values for chlorine, for instance, are not sufficiently
accurate to prove definitely that a value of D can always be found to give
more than 18 electrons, but the F values found by Havighurst certainly do
show this effect.

A second point which we wish to discuss is the closeness of the agreement
between a curve as found for a model atom, assuming the classical theory,
when a series of discrete F values are inserted in Compton's' formula

U= (Rxr/D) Qn, (F„/D) sin (27tmr/D)
1

and a U curve found by means of a Fourier integral when D in Eq. (1) is
made to approach infinity. The U curve found by means of the Fourier
integral is the correct U curve while that obtained from the Fourier series
in Eq. (1) is an approximation.

~ A, H. Compton, X-Rays and Electrons, D. 164.
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A third point to which we wish to call attention is that Paragraph 43 of
Compton's "X-Rays and Electrons" is headed "Radial Distribution in
Atoms. " The subject matter of this paragraph leads one to infer that a U

curve obtained from Eq. (1) gives the radial distribution of the electrons
relative to the center of an atom in the crystal. However, we believe that
the radial distribution is relative to a lattice point of the crystal and not to
the center of an atom of the crystal.

II. CLASSICAL SCATTERING FROM A MODEL ATOM

Case I. As the simplest kind of atom, let us take a model consisting of
Z electrons concentrated at the center. The f values (Havighurst's notation)
for such a model are constant and equal to Z, while the F values are given by
Zexp( —b sin'0). In our previous paper, as in Havighurst's paper, b=2.39
for )) =0.71A reflected from rocksalt. Now sin e=nX/2D so that F„=
Zexp( n'bV/4—D'). For brevity we shall represent the Debye factor by
exp( —n'a') where a'=bV/4D'. The area under a If curve from r=0 to
r =D/2 according to Compton' is

A = —2 Q( —1)"F„
1

Putting the values of F„for our model in Eq. (2), we have

(2)

A = —2 Z Q( —1)"exp ( —n a')
n=1

Ke shall now determine how A varies with a and, therefore, with D. The
series

5) ——exp ( —a') —exp (—2'a') +exp (—3'a') —~ ~ ~

may be written

n=oo

5)——+[exp {—a~(2n —1)2}—exp {—a2(2n)z} ]
n 1

By Cauchy'p theorem 51(I1 for a&0 where

I&= [exp {—a'(2z —1)'}—exp {—a'(2z')}]dn
0

By putting y = (2x —1) in the first term of the integrand and z = 2@ in the
second term, we have

I)= (1/2) exp( —a'y')dy —(1/2) I exp (—azz')dz
—1 Jp

and since we are dealing with definite integrals
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By the mean value theorem

I,=(1/2) exp ( —a'P)

where 0&/&1. For a)0, exp( —a'P) &1 and Ii&xm and hence also S~&-', .*
From this it follows that A in Eq. (3) can never be greater than Z no matter
what value of D is taken.

Case II. We shall now consider a model made up of Z electrons all on a
sphere of radius s, the temperature factor. being supposed to be constant
and equal to unity. Compton' gives the atomic structure factor in this case
as F= Z sin(4~s sin 8/X)/(4xs sin 0/) ), or since sin 0 =nX/2D, F„=Z(sin nP)
/nP where $=2xs/D. The area A then becomes

A = (2Z/P) {sin P —(1/2) sin 2&+(1/3) sin 3P —(1/4) sin 4P+ I (9)

The series

Sg=(1/@) {sin P —(1/2) sin 2g+(1/3) sin 3P—(1/4) sin 4P+ .
I (10)

has the property that S2=1/2 for —s &P&x. This can be seen at once
by expressing the function y=P/2 as a Fourier series in sines of multiples
of Q between P = —z and Q =z. For all reasonable values of s in our model
s&D/2 and hence P &sr, so that A =Z in Eq. (9) for all values of D. In an
actual numerical calculation the series S2 converges slowly and so a large
number of terms has to be taken, and to permit this, the wave-length of
the x-rays has to be small so that the limiting value of n as given by the
Bragg equation may be large. Hence, we again find that A. can never be
greater than Z no matter what value of D is taken so long as ) is small.

Case III. As a third model, we shall consider the case of Z electrons on
a sphere of radius s, the center of the sphere thermally vibrating so that there
is a Debye temperature factor exp( csin'8). —We now have F„=Zexp
( n'a') —(sin ng)/nP and hence

n=oo

A = —(2Z/p) P(—1)"(1/e) sin ep exp ( I'a')—

and we are led to the consideration of the series

exp {—a'(2e —1)'I sin (2N —1)y exp {—a'(2e)'I sin 2ey

e~l (2N —1)y 2ng

Again by Cauchy's theorem Ss & I3 for a )0 w here

Ig
exp {—u'(2x —1)'I sin (2x —1)P exp {—a'(2x)'I sin 2xg

dx]
0 (2x —1)y 2xp

exp( —a'x') sin xPdx
=(1/2) J

(11a)

(12)

~ We are indebted to Professor W. H. Roever of the Mathematics Department of Wash-
ington University for this proof.

e A. H. Compton, Phys. Rev. 9, 29 (1917).
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By the mean value theorem

I,= (1/2) exp (—a'P) (sin g)/$p (12a)

where 0(f(1. Hence as in Case I, Iq(1/2 and also S, (1/2. Again A

cannot be greater than Z no matter what value of D is taken.
Case IU. In the ion of chlorine we have K, I., and 3II electrons. If each

of these groups is moving in circular orbits which are oriented at random,
the Ii values for each group when inserted in Eq. (2) will give values of A

which are not greater than the number of electrons assumed in each respective
group. If the F values for all the groups are added together, then A will

not be greater than the total number of electrons in all the groups assumed
in the model. Further, even if some of the electrons are revolving in ellipses
or in more complicated orbits, then so long as the axes of these orbits are
oriented in random directions, such orbits can be considered as supplying
dN electrons between the spheres of radii r and r+dr and the F values for
these dP electrons when inserted in Eq. (2) will not give more than dX
electrons. Hence, we see that any atom model which on the average possesses
spherical symmetry must give values of A which can never be greater than
the number of electrons assumed in the model, whatever value of D we may
choose.

Referring again to Table IV of our previous paper, we see that the experi-
mental F curve for chlorine leads to an area of 19.74 electrons at D =4.44A,
while at D=35.5A, the area is 18.08 electrons. The question arises as to
whether this difference of 1.66 electrons is due to errors in reading the F
values off the experimental F curve. We drew our experimental F curve on
graph paper in such a way that 20 millimeter divisions along the ordinates
measured an F value of unity, while 20 millimeter divisions along the ab-
scissae measured sin 0=0.1. We could thus read our F values to 0.05 and
we estimated to one-fifth of a millmeter so that we estimated our F values
to 0.01. To test our accuracy we calculated the theoretical F values for the
model of our previous paper, these F values, however, being uncorrected
for the Compton effect. These F values were calculated for the same angles
as the angles for the experimental F values shown in Table I of the previous
paper and were calculated to the second decimal place. The curve was then
drawn so as to pass through an F value of 18 at sin 0=0. Such an F curve
from sin 0 =0.617 where F=0.52 was then extrapolated to zero at sin 0 =1.00.
The largest value of A in Eq. (2) was found to be 18.20 for D =3.94A. The
correct value of A is slightly less than 18 so our error of reading from the F
curve is such as to produce an error of 0.20 electrons in the area under a
U curve. But the greatest value of A in Table IV of the previous paper is
19.74 for the experimental F curv and this is too great to be explained as
due to errors in reading F values from the curve. We next tried different
extrapolations both at small angles and at large angles for the experimental
F curve. The F value for first order reHection for D =4.44A, or sin 0& =0.08,
is an extrapolated value on the experimental F curve. A reasonable extra-
polation, such as is shown by the dashed line in Fig. 1, gives an area greater
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than 19 electrons for this value of D. To make A = 18 electrons for
D=4.44A, it is necessary to make F&=14.70. As the F value for sin
0=0.109 is 13.40, this makes an awkard kink in the F curve at sin 0=0.109
as shown by the broken and full curves in Fig. 1. Nor does this improve mat-
ters at other values of D. Also, for the extrapolation at the large angles, an F
value which will bring A nearer 18 for one value of D will make 2 still greater
than 18 for another value of D. Qle have thus been unable to find an extra-
polation either at the small or the large angles which will give values of A

never greater than 18, the F value assumed at sin 8 =0.00. If the F value at
sin 8=0.00 is assumed to be 17, which is the value for a neutral chlorine
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Fig. 1. Experimental F curve for chlorine, showing extrapolations. Broken and dashed
curves, extrapolations; black circles, experimental P values; white circle, extrapolated point
to give 18 electrons for a=4.44A.

atom, the situation is still worse; but, if F is assumed to be 20 at sin 0 = 0.00,
then it might be possible to find an extrapolation which would give F values
such that A was always less than 20 electrons. This is an unreasonable
number of electrons according to our present ideas. Ke are convinced that
Havighurst's experimental F curve shows the peculiarity that a value of D
can be found such that the area under the U curve is greater than the number
of electrons assumed or believed to be present in the ion or atom.

III. MQDIFIcATIoN oF CLAssIcAL ScATTERING BY THE

COMP TON EFFECT

Since in Section II of this paper we have shown that classical scattering
from a model assumed to possess spherical symmetry on the average requires
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that the area under a U curve be always less than the number of electrons
assumed in the model, and since on the other hand the experimental I' values
do not show this result, we believe that this proves that either the atoms do
not on the average possess spherical symmetry or that the Compton effect
has to be taken into account.

We shall erst consider the effect on the area under a U curve when an
unsymmetrical model is taken. As an example of an unsymmetrical atom,
we may take an atom which consists of a nucleus and Z electrons, the nuc-
leus being in a crystal plane and the Z electrons remaining at a certain dis-
tance z from the plane. If one half of the atoms are orientated with their
electrons above the plane and one half below the plane, the atomic structure
factorr is given by Ii„=Z cos(4s.z sin 0/), ) =Z cos n@ where @= 2sz/D.

Eq. (1) is only valid for an atom possessing spherical symmetry but if
the F values given by I"„=Zcos nP are treated as coming from a symmetrical
atom, then the area under the U curve so obtained is given by Eq. (2) and
we are led to the series

S4 = cos P —cos 2/+ cos 3P —cos 4&1 . (13)

This series is obtained by differentiating S2$ and since S2 ——1/2, we have
S4=1/2 for —s &P&s'. When the temperature factor is included, we have
F„=Z exp( —n'a') cos nP and we are led to the series

n=oo

Sq= g [exp f
—s'(2e —1)'I cos (2n —1)P—exp f

—a'( e2)'J cos 20& J (14)
n=l

Proceeding as in Case III we have
55(I5 for a & 0 where

1

Iz ——(1/2) exp (—a'x') cos xp dx
0

By the mean value theorem

I,=(1/2) exp (—u'P) cos g (15a)

where 0()&1. Hence I5(1/2 and also S~(1/2 and APZ. Any unsym- .

metrical atom can be considered as made up of dX electrons at a distance
between z and z+dz from a crystal plane, dN being a function Zp(z)dz.
These dX electrons give values which when substituted in Eq. (2) make
A+dX. Summing for all distances from the crystal plane, we And that even
for an unsymmetrical atom the F values calculated on the basis of the
classical theory possess the property that the right hand side of Eq. (2) is
never greater than the number of electrons assumed in the atom.

We shall now consider the effect of the correction due to the Compton
effect on the value of the right hand side of Eq. (2). It may be a coincidence
but it is nevertheless a fact that when A is calculated by means of Eq. (2)
for different values of D for Havighurst's experimental and the modified

~ A. H. Compton, X-Rays and Electrons, p. 121.
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theoretical (corrected for the Compton effect) F curves, the value of A in
both cases becomes g'reater than Z for certain values of D. To take a partic-
ular case, we shall consider the I. electrons in the model of the chlorine ion
as given in our previous paper. The atomic structure factor for these
electrons is given by F=Z y H' where

y =0.5 —0.635 sin 8+0.0965/sin 8

H' = 1 —y t 1—sin (4s s sin 9/X)/(4ws sin 8/X) t (16)

and where s=0.29A the radius of the L orbit. Replacing sin 8 by eX/2D,
this leads to the series

The value of $7 has been plotted against sin 8» where 0» is the angle at which
first order reRection occurs for a grating space D and the curve is shown in
Fig. 2. Unlike all the previous series, it is seen that 57 may be greater than
1/2 and so the F values for a model atom corrected for the Compton effect

.056 .290

Fig. 2. Curve showing that series S& may exceed 1/2.

lead to values of the right hand side of Eq. (2) which for particular values of
D are greater than Z, the number of electrons assumed in the atom. If it
can be definitely shown that the experimental F values possess the property
that a value of D can be found such that A in Eq. (2) c'an be made greater
than Z the number of electrons which we can reasonably expect to be present
in the atom then it seems to us that something in addition to the classical
theory is required. Since the Compton effect correction to a model gives F
values such that A can be made greater than Z, we believe that this gives
us an excellent method for testing whether the Compton eA'ect does or does
not enter into the regular reAection of x-rays by crystals. Havighurst's F
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values seem to us therefore to show the need for a Compton effect correction.
If the Compton effect has to be taken into acconnt, the present method of
Fourier analysis is invalid as we showed in our previous paper and Eq. (1)
has no particular meaning.

IV. FOURIER INTEGRAL

If D in Eq. (1) approaches in6'nity, the series of Eq. (1) approaches the
Fourier integral

U(r) =87rr xF(lj x/2) sin 27rrx dx
0

(18)

where F in the Fourier integral is the same function of (Xx/2) as F in the
series is a function of sin 0. The Fourier integral form has an advantage over
the series in that when a U curve for a model atom is desired it may happen
that for the model the value of the right side of Eq. (18) expressed as a func-
tion of r can be found by integration and the labor of finding the value of the
series in Eq. (1) is saved.

For instance, we shall apply the Fourier integral to Case I, Section II
of this paper. This gives

F(sin 8) =Z exp (—b sin'8), so that F(Xx/2) =Z exp ( —bX'x'/4) =Z exp
( —n'x') where a'= bX'/4 and Eq. (18) becomes'

U(r) = (4I7r'7r'"Z/a') r' exp (— xr'/ a)

U(r) is a maximum when r =rr/x, that is, the most probable displace-
ment of the atom due t'o the thermal vibrations is a/x and this may be repre-
sented by ~ so that

U(r) = (4Z/n'rr'") r' exp ( —r'/0. ") (2o)

The form of the right hand side of Eq. (20) shows that the distribtuion of
the thermal displacements of the atom is a Maxwell distribution. This is as
it should be because the form of the Debye temperature factor can be ob-
tained from the assumption of thermal displacements distributed according
to the Maxwell law. ' Since n=rr/x we haven=A(b)'"/2x. Since b =2.39 for
'A =0.71A reflected from rocksalt at room temperature, the numerical value
of rr is 0.175A in good agreement with a value of 0.20A estimated by James
and Firth" by another method. Since in this case the electrons of the model
are concentrated at the center of the atom and since U(r) is a maximum
when r =n = 0.175A, we see that U(r) cannot mean the distribution of elec-
trons relative to the center of the atom but must be relative to a lattice
point of the crystal U(r) r.epresents the distribution of the excursions of
the atom from this lattice point.

' Peirce's Integral Tables, No. 508.
' See Compton, X-Rays and Electrons, p, 170."James and Firth, Proc. Roy. Soc. A11'7, 62 (1928).
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Applying the Fourier integral to the Case III, Section II of this paper,
ee obtain

U(r) =(Z/'nssr''")rl exp 1
—(r —s)'/n'] —exp [—(r+s) /a']] (21)

We are now in a position to find the U curve for the model atom of our pre-
vious paper, when the F values are uncorrected for the]Compton effect.
This curve is shown in Fig. 3. The points shown are the values of U found
from Eq. (1) when D=3.06A or sin fi~ ——0.116. It will be seen that the
points fall almost exactly on the curve and this shows the accuracy of the
Fourier series method because a curve plotted from Eq. (1) is almost in-
distinguishable from a curve plotted from the Fourier integral Eq. (18).
It will be noticed that only two humps occur. The hump due to the K elec-
trons is obliterated. This again brings out the point that a U curve gives the
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Fig. 3. Electron distribution as given by the Fourier integral and the Fourier series. Full curve,
Fourier integral; black circles, Fourier series.

distribution relative to a lattice point. The most probable thermal dis-
placement is 0.175A while the radius of the X orbit is 0.033 in our model. .
The K and I electrons are merged together giving a maximum at 0.300A
which is somewhat greater than the radius of 0.29 assumed for the I. orbit,
while the M electrons give a maximum at 0.940A instead of at 0.925A the
value of the radius assumed for the M orbit. It is thus seen that the thermal
vibrations cause the maxima for the L, and M electrons to come somewhat
further out than assumed in the model, but, of course, this is to be expected
since a U curve gives the distribution relative to a lattice point and not
relative to the center of the atom.
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