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MULTIPLET SEPARATIONS

BV S. GOUDSMIT AND C. J. HUMPHREYS

ABSTRACT

Formulas for the separations of normal multiplets, arising from general configura-
tions, are derived by reasoning from the fundamental assumption that they are due
to the interaction energy between spin and orbital magnetism of the electrons. The
separations are known for multiplets arising from groups of equivalent electrons,
from considerations given in the preceding paper. It is shown in this investigation,
by a simple treatment of the vector model, that the interaction energy for other con-
figurations may be found in terms of that of the equivalent group and the interaction
energy of the electron or group of electrons added, provided the quantum vectors of
the original configuration remain unchanged. Our treatment applies only to multi-
plets showing reasonably close agreement with the interval rule, and which are there-
fore accounted for by the Russell-Saunders coupling. Examples given for illustration
are taken from data on Fe and 0+. Calculated results indicate the validity of our
formulas to the extent permitted by agreement of data with the interval rule.

ULTIPI.ET separations are due to the energy of interaction between
spin and orbital magnetism of the electrons. The value of this energy

for a single electron is indicated by y and is given by the formula:

y = als cos (ls) (1)

In this formula, a=Rn'Z'/[n'l(1+1/2)(l+1) ] for a Kepler orbit, in first
approximation, or a = Rn'ZPZ, '/ [n'1 (l+ 1/2) (l+ 1) ] for a penetrating orbit.
Also s= 1/2 and l = 0, 1, 2 etc. , depending on the type of orbit. When only
one electron is responsible for the spectrum and we thus have a doublet, the
two possible values of y give the separations of the actual levels from the
position of the hypothetical level without interaction energy.

When we have multiplets due to configurations of two or more electrons,
it is sufhcient in most cases to consider only the interaction between the
spin of each electron and its own orbit. While there is some energy due to
interaction between the spin of a given electron and the orbit of another, it
is proportional to a lower power of the nuclear charge, and, for purposes of
this discussion, need not be considered. '

Suppose we have an atom in which the so-called Russell-Saunders
coupling occurs. All the electronic spins s; form a resultant s, and all orbital
moments form a resultant I, while s and l combine finally to give a total
resultant j. The total interaction energy between the spins and respective
orbits of the electrons is then:

I'= ga;1;s; cos (l;s;)

In this ideal case it may be easily shown that

cos (l;s;) = cos (l,l) cos (ls) cos (s;s)

' For the interesting case of the helium triplet in which these terms must be considered,
see W. Heisenberg, Zeits. f. Physik 39, 499 (1926).
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Thus the interaction energy is of the form:

I' =A/s cos (Is), in which A = g(lf/I) cos (I;I) (s;/s) cos (s;s) (2)

The different levels of the same multiplet all have the same coeAicient A.
I' is however determined by cos(is) according to the formula:'-

I' =A/s cos (Is) = —,'A [j(j+1)—I(I+1)—s(s+1) ]

This formula will be recognjped as the familiar interval rule of Lande. If
w'e take the energy difference between two levels of the same multiplet, one
having a total moment j and the other j—1, we find:

The subsequent intervals are thus proportional to the larger value of j corre-
sponding to one of the two adjacent levels. We find the factor A for each
multiplet by dividing the multiplet separations by these interval factors
equ'al to j. If we take for instance a 'D level, s = 3/2, I = 2, and j can have the
values 7/2, to 1/2, as resultant of s and I. The three intervals between these
four levels are proportional to 7/2, 5/2 and 3/2, the proportionality factor
being just A.

In a previous paper one of us' derived formulas for the values of F or A in
cases where we have only a number of equivalent electrons. It was possible
to express A in terms of the values of a; for the single electrons, which of
course are all equal if we take only equivalent electrons.

In this investigation we will show that it is possible to determine A for
other configurations of electrons. In general the method will be to consider
the addition of another electron to a group for which A is known, and to
obtain a new A in terms of that of the original group and a; of the new elec-
tron. Or the expression for A may be in terms of the values of a; for the
different electrons. Likewise the total multiplet separations may be deter-
mined in terms of the different values of a;. The latter method is somewhat
more convenient for application, as it gives at the same time an average
value in cases where the interval rule does not hold strictly.

Before proceeding to a derivation of the expression for A it is necessary
to state the conditions under which we may consider the result of adding a
new electron to a given configuration. A solution of Eq. (2) must involve an
evaluation of cos (I,l) and of cos (s;s). This makes it necessary that the
quantum vectors be determined in a definite fashion. Accordingly we must
impose the following restriction, which the accompanying figure will help
make clear. The values of 1; and s; of the original group combine separately,
according. to the Russell-Saunders scheme, to yield resultant quantum vectors
which we designate by l,

' and s'. These vectors are not to be disturbed or

.. . ' This expression for the cosine of the angle between two quantum vectors was originally
found as an empirical relationship by Lande, but has now been verified by the application of
new mechanics.

' Goudsmit, Phys. Rev. 31, 946 (1928). Preceding paper in this issue.
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altered by the addition of a new electron. We then obtain the resultant
vectors, l and s, of the new conhguration, by combining l' with l2 of the added
electron, and s' with s2. In making this composition we consider l' and s' as
single vectors and are entirely unconcerned as to their origin. The total
resultant, that is of l and s, we again call j.

This special case will not occur very often, since the resultant, l' and s',
of the electrons already present will usually be disturbed by the addition of
the new one, and one cannot say that the new resultant l is built up of the
old l and the added l2 and similarly for s, which is essential for the discussion
to follow. It will appear however that our formula for A is applicable in
cases where the interval rule holds fairly well. Two cases may be mentioned

Fig. 1.

as examples in which we are quite certain that the restriction, as to the
relation of the quantum vectors of the new electron with the resultant vectors
of the original group, is valid.

If we have a group of equivalent electrons and add another kind of
electron, the resultant quantum vectors will be formed as indicated above,
since the interaction between the equivalent electrons will in general be
stronger than between them and the new one.

A simpler case is to be found in the addition of a second electron to an
a&om having only one valence electron. Here it is certain that the new
electron cannot change the quantum vectors, l& and s&, of the original one.
Consequently resultant l is obtained by the combination of l& and l&, and
resultant s from s~ and s2.
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It must be remembered however that these results are not perfectly
general. In all cases we assume that we are to get normal multiplets, to
which the interval rule may be applied with reasonable success. These occur
when the vectors have the so-called Russell-Saunders coupling, in which the
spins always form a resultant spin moment s, while the orbital moments
combine to form a resultant l.

It is now possible to express the total interaction energy in terms of the
coefficient A' and c2 of the original multiplet and the added electron. If
we apply Eq. (2) to this case we get:

A =A (l /l) cos (l l) (s /s) cos (s s)+Gs(4/l) cos (lgl) (sg/$) cos (sss).

Since s is the resultant of only two vectors, s' and s2, we can write for the
cosines involved:

s' s(s+ 1)+s'(s'+ 1)—ss(ss+ 1)—cos (s's) =—
s 2s(s+1)

In the same way

ss s(s+ 1)+ss(ss+ 1)—s'(s'+ 1)—COS (Sss) ==
S 2s(s+1)

l' l(l+1)+1'(V+1) l, (l,+1—)—cos (l'l)—
l 2l(l+ 1)

l2 l(l+ 1)+

is�(lan+

1) l'(l'+ 1—)—cos (lsl)—
l 2l(l+1)

We thus obtain the result:

s(s+ 1)+s'(s'+ 1) —ss(ss+ 1) l(l+ 1)+V(l'+ 1) —l&(i&+1)
X——

2s(s+ 1) 2l(l+1)

s(s+ 1)+ss(ss+ 1)—s'(s'+ 1) l(l+ 1)+lz(is+ 1) —l'(l'+ 1)

2s(s+ 1) 2l(l+ 1)

This formula, applied to the triplet arising from two valence electrons,
is identical with that given by Heisenberg, 4 who obtained the following
equation, expressed in our notation, long before the meaning of the different
quantum vectors was quite clear.

1 l (l+1)+l,(lr+ 1) ls(ls+ 1) —1 l(l+ 1)+ls(ls+ 1) —l, (l,+1)
A =A' +~2

2 2l(l+ 1) 2 2l(l+1)

That this follows, in the case of two electrons, from Eq. (3) is clear when we
remember that s~ =ss ——1/2.

' W. Heisenberg, Zeits. f. Physik 32, 841,-(1925).
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In order to illustrate the application of our formulas we have chosen
examples from published data on the iron spectrum with sufhcient material
on ionized iron to show the building up of the configurations. An example is

TAsz. E I.

Electron configuration

Fe III d«

Equation (3)

'«D A =A"

Separation factor from
adjacent levels total separation

A/I
d««D

exp. &120

Fe IIl"=2,
l2 ——0,

Fe I

d«$s"=2, «D+s
s2=1/2

d«$2

«D A'=4A "/5
4D A'=6A "/5

«D A =A"

A'= 86, 81, 78, 76
=125, 115, 111

A =104, 96, 92, 90

82
119

102
99

98

l'=2,
l2=0,
l'=2,
l2=0,
l"=2
l2= 0,

d«s, s
s' =5/2, «D+s
$2=1/2, A'=4A "/5
s'=3/2, 4D+s
s, =i/2, A'=6A "/5

other coupling;s"=2, «D+iS
s 2 =0 or 1,«D+'S

7D
'D
«D
3D

A =2A "/3
A =14A "/15
A =9A "/10
A =3A "/2

«D A =A"
«D A =SA "/6

A = 69, 68, 66, 65 68
= 93, 91, 88, 86 92
=1'05, 9'3, 82, 43 (91)= 106, 160 (128)
This coupling does not give right
results for A"

ZA ='11A "/6 for quintets 183
«ndependent of coupling

102
99

(101)
(86)

99

l'=2

l2=1

d«SI p
s'=5/2, «D =P

s2 ——1/2, A'=4A "/5

l' =2,
l2=1,

s'=3/2, 4D+p
s2 =1/2, A ' =6A "/5

other possible coupling d«(sp):
«D+«P, «D+'P

~F A =4A "/9 —a2/18

7D' =SA "/9 —a2/36
'IP =A "+a2/12
«F A =28A "/45+a2/18
«D' = 7A "/9+a2/36
«p = 7A "/5 —a2/12
«F A =3A "/5 —a2/12
«D' =9A "/10 —a 2/24
«P =27A "/20+a2/8
«F A =SA "/6+a2/12
«D' =2SA "/24+a2/24
«P =15A "/8 —a2/8

calc.
A = 32, 30, 28, 27, 26

26 28 30
= 42, 49, 49, 54 50 48=117, 119 13'5 118= 58, 57, 55,53 57= 60, 67, 70, 71 65
=138,132 135

A= 69, 72, 73 73 70
= 103, 98, 108, 105 103
=130,126 129

A =125, 110 119 118
=121,126 125 123
=208, 193 243 203
This coupling gives no good agree-
ment. The following sums are
independent of the coupling:

sextets ZA =2A" 192
quintets ZA =113A"/120 558
triplets ZA =15A "/4 444
F terms ZA =SA "/2 274
D' terms ZA =131A "/40 339
P terms ZA =45A "/8 580
Total ZA =57A "/5 1194
calc. a2/72~ S

96
98

118
110
103
103
105

Fe II d7 4F' A =A'
4P' A =A'

A =123, 116,112= 80, 154
A 'd' =118

(108)
118

(108)

l'=1,
l2=0,

s'=3/2, 4P+s
s2=1/2,

Fe I d7s
l'=3, s'=3/2, «F+s
l2= 0, s2=1/2

«F' A =3A'/4

'F' A =SA'/4

«P' A =3A'/4
«P' A =SA'/4

A = 90, 88, 86, 85
= 74, 94, 94, 92
=146, 136
=144, 134

A = 58, 100
= 54, 105

4s 88
Ss (87)
4s 142
Ss 140

(75)
(71)

A'
117

(117)
114
112

l'=3,
l2 1,

d7p
s'=3/2, 4F+p
s2=1/2

«G' A =9A '/16+a 2/16
«F A = 11A '/16+a2/48
«D' A =A ' —a2/12
3G' A = 15A '/16 —a2/16
«F A =55A '/48 —a2/48'D' A =5A '/3+a2/12

A = -10,95, 88, 82
= 67, 62, 59, 56
= 89, 87, 87, 87

A= 78, 78
=119,120
=168, 159

G' terms ZA =3A'/2
F terms ZA =11A'/6
D' terms ZA =8A'/3
quintets ZA =9A '/4
triplets ZA =15A '/4
total ZA =6A'

(56)
63
87
78

119
164

(134)
182
251

(206)
363

(569)

(89)
99

(92)
97

(95)

also taken from the spectrum of ionized oxygen. The iron spectrum is very
satisfactory for this purpose because a very complete and evidently correct
analysis of it has been made, and also because it exhibits a large number of
multiplets which obey the interval rule closely enough to satisfy our theory.
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A very brief explanation of the tables will suKce. In the example from
the iron spectrum, we begin with Fe++ having the configuration d' which
yields a 'D term. All interesting configurations of Fe+, from which Fe is
derived, are built upon this d' group. '

The values of the separation factor, determined from adjacent levels and
the total separation and indicated in Column 3, are introduced to show how
closely the interval rule is obeyed in a g'iven multiplet. Equal numbers for a
given multiplet would indicate perfect conformity with the interval rule. All
bracketed values of the separation factor are derived from examples showing
very poor ag'reement with the interval rule.

In all cases the value of the separation factor for the equivalent d' or d'
group, for which the given configuration is derived, is calculated. The values
obtained are tabulated in the last column. These should be equal except for
the screening effect of the outer electrons added. In the d' case the values

- of A" are very nearly constant, indicating that the added electrons do not
change the screening due to six d electrons by a very large amount. The

TABLE II

Electron con6guration Equation (3)
Separation factor from

adjacent levels total separation

0 II
L'=1,
li =0,

sasss'=1, 3P+s
si =1/2

iD+s

p4s
3P+s

iD+s

spp
»+p

4P' A =2A'/3

'P' A =4A '/3

sD A=0

4P' A =2A'/3
2P' A =4A'/3
sD A=0

4P A =A '/3+ai/6
4D' =A '/3+a i/6
2P =2A '/3 —ai/6
&D' =2A '/3 —ai/6

sP A =0—ai/2
sD' =0+ai/6
sF =0+ai/3

A = 64, 70
= 65, 70
=120
=125
= —0.4
= —0.3

A=-65, —55=—115=-4

A = 37, 31
= 36, 37, 37

40
~ 76

Total ZA ~2A '
A= 31

= —8
7

3s 66
4s 67
3s 120
4s 125
3s -0.4
4s -0.3

-61—115—4

34
36
40
76

186
31-8

7

A'(p&)
99

100
90
94

A'(p4)
-91
-86

deviations from the mean value in the A" column are in general smaller than
the deviations from the interval rule in many multiplets, and. may doubtless
be ascribed to this poor agreement with the interval rule, which would

actually lead us to expect larger variations of A" than are found.
In the case of configurations built upon the d' group, we find that an

added s electron does not change the screening very much, but that it is
changed considerably by the addition of a p electron. If we consider d7s or
d7p; configurations separately we have excellent agreement in the A' values
obtained from different multiplets.

' An almost complete term table in accordance with the classification of Laporte is given

by W. F. Meggers, Astrophys. J. 60, 60 {1924). For a discussion of the assignment of levels,
see O. Laporte, Proc. Nat. Acad. Sc. 12, 496 (1926). The lowest levels of Fe+ are given by
H. N. Russell, Astrophys. J. 64, 194 (1926).
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In the 0+ example' we have the interesting case discussed in the previous
paper. Since six p electrons constitute a complete shell, we should obtain the
same value of A ' derived from p's as from p4s, except that the algebraic sign
would be negative in the latter case and the value should be slightly smaller
because of the somewhat larger screening of four p electrons. This is actually
observed, and we also find good agreement in the A' values of different
multiplets if we consider p's and p4s separately.

When we consider p'p configurations of 0+ we find that both quartets,
4P and 4D', show good agreement in the values of the separation factor, but
that the doublets show considerable deviation. This may be due to. lack of
agreement with the interval rule but this cannot be concluded definitely,
because it is not possible to say whether the interval rule is obeyed or not in
the case of doublets.

We expect this method to be useful in checking the assignment of configu-
rations and terms in complicated cases. Calculations, not included in this
paper, on the quintets of Ti I, and the quartets of Ti I I, came out in agree-
ment with the assignment made by Russell. ' Also the separations in the
0 III' spectrum are in perfect agreement with the formulas given here.
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February, 1928.

~ For a complete term table, see H. N. Russell, Phys. Rev. 31, 27 (1928).
~ H. N. Russell, Astrophys. J. 66, 283 (1927) also 66, 347 (1927).' A. Fooler, Proc. Royal Soc. January, 1928.


