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MULTIPLET SEPARATIONS FOR EQUIVALENT
ELECTRONS AND THE ROENTGEN

DOUBLET LAW

BV S. GOUDSMIT

ABSTRACT

Expressions are derived for the separation of multiplets arising from configura-
tions of equivalent electrons. It is explained why the Roentgen doublets obey the
Sommerfeld formula, although this formula was derived formerly for a single electron
only. The separations of more complicated multiplets are proved to be connected
also with the Sommerfeld formula. According to Lande the multiplet separations
can be characterized by factors, designated by I", which give the displacement
of each level from the centre of gravity of the whole multiple level. The properties of
these F factors are studied in this paper. They are quite analogous to the well-known
properties of the magnetic separation factors, g, introduced by Lande for the explana-
tion of the Zeeman effect. It is pointed out that there is a F sum rule, corresponding to
the well-known g sum rule, stating that, for given quantum numbers of the electrons,
the sum of the F values belonging to a certain total moment j is a constant, independ-
ent of the type of coupling of the electrons. This rule is important especially
because it makes it possible to obtain expressions for the multiplet separations in

general cases.

' 'N HIS celebrated paper on the building up of electron groups, Pauli' has
' " shown that the absence of a given number of electrons from an otherwise
complete configuration gives rise to quantum states analogous to those which
appear when only this same number of electrons is present. Pauli has
developed a rule for the determination of the quantum states and quantum
numbers of an electronic configuration from those of the electrons involved
in the configuration, but it gives us no information as to the energy relation-
ships of these quantum states. It is well known that a single valence electron
yields a doublet spectrum, and, according to Pauli's reasoning, the energy
levels in the Roentgen spectrum, in the production of which one electron is
absent from a complete group, should exhibit a similar structure. It has never
been clearly explained however why the doublets in the Roentgen spectra
are similar in their energy relationships to optical doublets due to single
electrons, and follow exactly the same doublet formula, which up to now has
been derived only for a single electron. '

Proof of the validity of the Roentgen doublet formula will be given in the
present paper and still other properties of multiplet separations for a given
number of equivalent electrons will be deduced. Results are given first for
cases in which the spectrum shows normal multiplets.

For a single electron the doublet separation is given by the well-known
Sommerfeld formula:

' W. Pauli, Zeits. f. Physik 31, 765 (1925).
' W. Heisenberg and P. Jordan, Zeits. f. Physik 37, 263 (1926).
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Rn'Z, gg4

Dn=
I'l(l+1)

or for penetrating orbits, according to Lande, approximately

Ro.'Z'Z 2

Av=
m 'l(l+1)

(In these formulas R stands for the Rydberg constant, n the Sommerfeld
fine-structure constant, n the principal quantum number, n, the so-called
effective principal quantum number, l the azimuthal quantum number in the
notation of the new quantum mechanics, Z, the effective nuclear charge in
the outer part of the orbit, and Z, that in the inner part)

In connection with what follows this formula for the doublet separation
is written:

hv =a(l+-', )

in which the factor a is consequently given by:

RAZ ff

I'l(l+-,') (I+1)

or for penetrating orbits:

Ra'Zs2Z, '
n.'l(l+-', ) (l+1)

Table I gives the values of the total multiplet separations for equivalent

p and d electrons, expressed in terms of the factor a associated with one
single electron. The quantum numbers of the single electron must always
be introduced in the expression for this factor cr, independently of those of
the multiplet given by the configuration. In the case of p electrons for
example, t is accordingly always made equal to 1 in the factor c, while in
the case of d electrons l is always made equal to 2.

The last column gives the value of the interval factor A. The meaning of
this factor, which is constant for a gIiven multiplet, may be understood by
looking ahead to the expression for the interval rule given by Eq. (4). It
will be seen that A is equal to the displacement divided by the number given
by the interval rule. It may also be found by the same formula by dividing
the separation of two adjacent levels by the larger of the inner quantum
numbers belonging respectively to these two levels.

A minus sign before the separation indicates that it is an inverted multi-
plet, that is that the level with the largest total impulse moment j lies lowest.
As would be expected the values in this table are correct only to an approxi-
mation as close, let us say, as the interval rule of I.ande, for example.

' A. Landh, Zeits. f. Physik 25, 46 (1925).
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TABLE I. Values of the total multiplet separations for the equivalent p and d electrons.

Config-
uration

M ulti- Total Separa- Config-
plet separa- tion uration

tion factor
A

Config-
uration

Multi-
plet

Total
separa-

tion

Separa-
tion

factor
A

Con fig-
uration

'P 3a;/2 a;
'P ' 3a;/2 a;/2
'D' 0 0
'P 0 0

~D 5a;/2 a;'F' 7a;/2 a;/2
'P ' 3a;/2 a;/2
4F' 7a;/2 a;/3
4P ' 4a;/10 a;/3
'H' 11a;/10 a;/5
'G 27a;/20 3a /10

p5
p4—p'

—d9
d8

—d7

2FI

2D
2P&

'D
'H'
3G
'Flf

'D

3P / J
all

—ja;/12
Sa;/6
a;

Sa;/12
11a;/10
27a;/20

7a;/12
—Sa;/12

3a;/2
0

—a;/6
a;/3
a, /3
a;/4
a;/10

3a;/20

a;/12
—a;/12

a;/2
0

ExAMPI. ES

The spark spectrum of titanium' is the only spectrum in which an
interesting group of levels arising from equivalent electrons is almost com-
pletely known. In the other spectra only one or two of the many expected
multiplets have been found. In the case of the d' configuration in Ti II one
of the two expected 'D levels is still unknown. In this example however, the
interval rule does not hold at all for the 4P state, and it is of course impossible
to decide whether it is valid or not for the doublets. Table II gives the

TABLE II. Observed and calculated multiplet separations in Ti II.

Term
notation
(Russell)

Ti II d' configurations

Multiplet separations

b4F'

a4P '

a'H'

a'G

b'F'

b2D
-2D

a P

obs.
calc.

97.82
(97.8)

128.37
133.Z

120.46
120.0

103.41
103.6

—59.89
51.8

75.84
74.1

122.29
74. 1

129.38

Z74. 1

32.05
44, 4

125.02
88.9

q =11/2 9/2 7/2 5/2 3/2 1/2

observed and calculated multiplet separations, the latter being given in
italics. The constant a; was taken from the 'II separation. The agreement
is very good in most cases. Note especially the inverted 'F term. I t is very

4 H. N. Russell, Astrophys. J. 66, 283 (1927).
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probable that the poor agreement for the separations between the levels
with low values of j is due to the large deviations from the ordinary interval
rule.

Another way to illustrate the formulas given here is to show that the
constant a; for different elements is represented by Eq. (1). Substituting
Eq. (1) in Table I for the cases of equivalent d electrons, one finds that the
total separation of the D level of highest multiplicity [if there is onel is just
given by the well-known relativistic doublet law of Sommerfeld:

Eu'(Z —&r)
'

Av= ——
ss'I(I+1)

In the cases d', d', d' and d' one Finds that 5/7 of the total separation of the
I" term of highest multiplicity occurring obeys the same formula. For the B
separation this has actually been found independently from the observed
data by Dr. O. Laporte. ' The fact that he communicated these results to
me gave rise to this investigation. It could also easily be shown that the
formula also holds for 5/7 of the total Ji separations. Table III gives the total

TABLE III. Total separations for the elements in the scandium rom.

Element Configuration Multiplet Total
separation

Screening
constants

21 Sc
22 Tl
23 V
24 Cr
25 Mn
26 Fe
27 Co
28 Ni
29 CU
30 Zn

d
d2
d3
d4
d5
d6
d7
d3
d'
d10

2D
3P/
4Ff
6D
6S
'D
4F/
'F'
2D
lS

168.5
386.7
552. 7
557.0

—978.1—1809.3—2216.5—2042. 9

67
111
158
223

—391
-517
—632—817

12.72
12.64
12.76
12.94

13.16
13.24
13.53
13.57

Roentgen doublet M33 M32, d' 'D:13.0

separations of those terms in the scandium row of the periodic table. The
constant a; is calculated and also the screening constant 0. by applying the
relativistic doublet formula for non-penetrating orbits. Of course this will
be only an approximation, but nevertheless 0 appears to be near to the
screening constant of the corresponding Roentgen doublet %33 M32.

THE F FACTORS

The multiplet separations are due to the interaction between the spin
and the orbital motion of the electrons. In the case of a single electron this
interaction energy is given by:*

y;= a;l;s; cos (Ifsf) (2a)

* In this expression and in those which follow we indicate by a subscript i those quantities
which belong only to a single electron.

6 O. Laporte, Zeits. f. Physik 4'7, 761, (1928).
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We denote this expression by y; because it differs by only a factor from the
y factors introduced earlier by Lande. ' In the case of several electrons it is
permissible in general to neglect the interaction energy between the spin of
one electron and the orbital magnetic field of another in comparison with
the interaction with its own orbital field, as a first approximation. ' The total
interaction energy for several electrons is therefore:

I'=Zy;=Za, l,s; cos (l„s,)

In general the angle between each s; and its corresponding I„ is now no
longer constant, and consequently the mean value of the cosine of the angle
between the two must be introduced. In the case of normal multiplets it is
known that all values of s; combine to yield one resultant s, and likewise all
values of t; combine independently to form one resultant l. In this case it is
easily shown that the mean cosine between each s; and its corresponding t,
may be written:

cos (s;l;) = cos (s,s) cos (sl) cos (l;l) .

Substituting in Eq. (2) we obtain for the total interaction energy:

I' = ls cos (is)Za, (s;/s) cos (s;s) (l;/l) cos (l;l) =Als cos (ls) . (3)

If the value of ls cos (ls) for a particular multiplet is substituted in this
formula, we obtain:**

I'=Als cos (ls) =-,'A [j(j+1)—l(l+1) —s(s+1) j

The symbol j indicates the resultant of s and l as defined above. I t is there-
fore the total impulse moment of the atom in the given state; Eq. (4)
obviously gives us also the well-known interval rule of Lande. In his treat-
ment of the Paschen-Back effect, Lande' has investigated the relationships
which connect these I" factors for multiplets in a weak magnetic field with
their values in a strong magnetic field, without being able however to make
a study of their deeper significance at that time. He found that these F
factors obey laws similar to those governing the behavior of the magnetic
separation factors, denoted by g, which have been investigated in this con-
nection by Pauli. ' In the celebrated article on the building up of electron
groups, referred to above, Pauli has a1so studied the building up of the g
values o. an atom from those of the individual electrons. We will now give
our attention to a similar investigation of the I' values, in order to obtain
in this manner the results given above.

We must however first call attention to an interesting study by Slater, "
**First determined half empirically by Lande and later verified by new mechanics.
6 A. Lande, Zeits. f. Physik 19, 112 (1923).
7 For the interesting case of the helium triplet in which these terms must be considered,

see%. Heisenberg, Zeits. f. Physik 39, 499 (1926),
' A. Lande, Zeits. f. Physik 19, 112 (1923).
' W. Pauli, Zeits. f. Physik 16, 155 (1923).

J.C. Slater, Phys. Rev. 28, 291 (1926).
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who has attacked this problem from the same standpoint. Slater attempted
to determine the values of the cosines in Eq. (3) with the aid of the vector
model of the atom. Ke are of the opinion however that his results are not
sufficiently conclusive. For instance he assumes that the cosine between
every s; and the resultant s of all values of s; is always equal to +1 or —1.
It is known however that when two quantum vectors are parallel in our
nomenclature, it is not at all assured that the cosine as given by the new
quantum mechanics must be +1 or —1. In fact this is almost always not
the case. His results are consequently not entirely trustworthy, and valid
in part only for large quantum numbers.

THE SIGNIFIcANcE oF THE I FAcTQRs IN THE SPFcTRUM

We will now investigate what part the I' factors play in the structure of a
spectrum. In a doublet level the two states are separated by just the difference
between their I' values, if no external field is present. If then I' were equal
to zero, the two doublet levels would fall together. Consequently the
I' values give the displacement of the actual levels from a hypothetical
level, which would be realized if the interaction energy between the spin
of each electron and its orbital magnetic field were neglected.

Furthermore in the case of any normal multiplet other than a doublet,
the energies of the different levels differ only by their I' values, since only
the angle between the resultant s and the resultant / is changed. Therefore
when we consider the group of levels belonging to a given multiplet, a
particular value of I' gives-the displacement of the corresponding level from
a certain hypothetical level, which, as may be easily shown by the interval
rule of Lande as given in Eq. '(4) above, lies exactly at the centre of gravity
of the multiplet.

The I' values of the different levels of a given multiplet may also be
calculated with the aid of Eq. (4), in terms of A (which is the only unknown)
if F is known for one of the levels. A little farther on we will show how F
can be determined in certain cases for one of the levels of a multiplet. Two
examples will illustrate the use of this formula. For a 'I' sta, te, where
s=1, 1=1,j=2, 1, 0,

'I', I = +A 'I', F= —A 3P, F= —2A.

For a 'I' state, where s=1-,', 3=3, and j=4-„3-;, 2-„12; 'I"4„ I" =+4-, ;

'F3, , I'=0; 'I', ;, I'= —3-,'A; 'F, ;, I'= —6A. A further consequence is that,
in the case of all states consisting of a single level, that is, where either
s=0 or /=0, I' is equal to zero.

Of course all this is valid only when it is assumed that the multiplets
show no more than small deviations from the I ande interval rule. In
the case of a spectrum in which the levels are no longer arranged in multi-
plets at all, it may still be asserted however that I' represents the sepa-
ration of the levels from a hypothetical level, which would be realized if the
interaction between the electron spin and the orbital motion were equal
to zero.
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EFFECTS OF WEAK AND STRONG MAGNETIC FIEI,DS UPON THE I FACTORS

According to the theory of the Zeeman effect, when the source of radiation
is in a weak magnetic fie.d, the vector representing the total impulse moment
j of the atom has definite quantized orientations with respect to the direction
of the field, while the angle between s and / remains unchanged. For a given
value of j the values of I' are consequently independent of the projection
m of j upon the direction of the field and are the same as without a magnetic
field.

In a strong magnetic field however, where the Paschen-Back effect
occurs, the coupling between resultant s and resultant 1 is broken. Each
has its own set of quantized orientations in the field, and each yields its
own set of projections on the magnetic field, indicated respectively by
m, and ml. In this case the angle between s and /. is no longer constant

Fig. 1. Fig. 2.

and the mean cosine of this angle has now a different value from that in the
weak field. It may be found easily that the mean cosine between s and t

is given in this case by

cos (sl) = cos (sH) cos (lH) = (m,/'s)(mi/1)

In the case of a strong magnetic field the I' values are therefore given by
the formula:

1'=Als cos (ls) =Arl, m&.

Table IV gives the I' values for a weak and a strong magnetic field for the
simple case of a 'D term, where s = 1 and l = 2. They are arranged in the table
according to the values of the total projection nz. In the case of a weak field
m is simply the projection of j, while for the strong field it is given by
m=m, +m&. The values for the weak field are therefore calculated by
Eq. (4):
1"=Als cos (ls) =-'A [j(j+1)—l(l+1) —s(s+1) ], where l= 2, s=1, j=3, 2, 1.
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We obtain the values of r for the strong field by Eq. (5):

I'=A/scos (ls) =Ames~, where m, = +1,0; m~=+2, +1,0.

TABLE IV. 1 values for 'D.

+2A

0 +1 +2

+2A +2A +2A—A —A —A—3A —3A

+2A
weak
field

Zr = +2A —2A —2A —2A +A +2A

m8 1
m, =0
m. =+1

+2A +A
0

0
0—2A

—A —2A
0 0 0—A 0 +A

strong
+2A field

A given sum of I' values, which is found from one vertical column, is the
same for the weak as for the strong magnetic field. This is the result of the
investigation of Lande.

Instead of introducing the energy of interaction between electron spin
and orbital magnetic field, the magnetic energy in the external field divided
by the field strength could have been substituted. It is well known that
for a weak field this may be expressed by

h e j (j+1)+s(s+1)—l(1+1)
m g——

~ whereg=11-
2m 2nsc 2j(j+1')

while for the strong field it is

h e
(m(+2m, ) ——.

2K 2tpsc

Here again the sums of corresponding vertical columns are equal for the
weak and strong fields, as Pauli has pointed out.

THE AssEMBLIIvG oF I' VALUEs

In order to calculate I' values for cases of configurations of several
electrons, it is necessary to make use of the same method which Pauli
devised for the determination of g values, especially in the somewhat
altered form introduced by the author" in which the quantum numbers,
mg and I, were found to be useful.

Let it now be supposed that the atom is placed in a magnetic field so
strong that the magnetic energy of each electron in the field is much stronger
than the interaction energy of the electrons with one another. In that case
to a first approximation each electron will orient itself in the field as if the
other electrons were not present. The values of I; and s; for each electron

"S. Goudsmit, Zeits, f. Physik 32, 794 (1925).
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are now space quantized individually, so that each electron now has its own
projections m&i and m. .. upon the direction of the field, subject however
to the rule of Pauli that no two electrons may have all their quantum
numbers exactly alike.

The I' values of the entire atom are as before the sums of the y; values
of the individual electrons. That is

I'=Zy; =Za;m„m)i. (6)

A table of all possible values of I' may now again be assembled for given
values of the quantum numbers of the electrons, arranged according to the
values of the total projection m. The values of nz are found by adding to-
gether m~,. and m, i for all the electrons in the configuration. That is

m =&(mi;+m. ;) .

There are thus as many m's as there are sets of quantum numbers mg,. and
m, i permitted by the Pauli restriction rule. These m values are not neces-
sarily all different.

We nore assert that the sum of all F values belonging to a definite value of m,
is independent of the strength of the field The . corresponding result was
announced by Pauli for the magnetic energies in an external field, divided
by the strength of the field. We have succeeded with the help of these rules
in determining the I' values in certain isolated important cases.

THE I SUM RULE ILLUsTRATED BY THE CAsE QF Two
EQUIVALENT P ELECTRONS

We will treat as an example the case of two equivalent p electrons. Then
for both electrons, l~=l2 ——1, and s~ ——s2 ——-,'. Since we have chosen both
electrons equivalent, the factor a; is also the same for both. In the first

TABLE Va. Tv' equivalent p-electrons.

m s1 m l1 me~ m l1 me m7

+1 +y
+1

0
+1
+1
+1

0
0
0—1—1—1

+1
+1

0

0—1—1
+1

0—1
+1

0—1
+1

0—1
0—1—1

+-',a
+~a

0
+~a
+La
+pa

0
0
0—-a1
2——a1

—-a1
2—ga——a1
2

0—-a1
2—ga

0
+~a

xa
0

+)a
la
Q

+,a

+ la
+-',a

+1 +1
+1 0
+1 —1

0 +2
0 +1
0 0
0 +1
0 0
0 —1
0 0
0 —1
0 —2—1 +1—1 0—1 —1

+2
+1

0
+2
+1

0
+1

0—1
Q—1—2
0—1—2

+/a
0—~a
0

+)a
+a—$a

0
+)a—a

0—&a
0

+)a

column of Table Va is given an assembly of all possible m~i and m, i values,
which are so chosen according to the Pauli restriction rule that both electrons
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never have the same complete set of quantum numbers. The second column
gives the values of both y s according to Eq. (5). The fourth gives the m
values according to Eq. (7), and the last of the I' values according to Eq. (6).

In Table IV we have already illustrated the operation of the F sum rule.
We will now prepare two tables and make use of this rule to show how
the sums of the I' values may be calculated for the case under consideration.
In Table Vb the values of I' obtained in Va are arranged in vertical columns,
according to the value of nz with which each is associated, and the sums are
calculated. We next consider the case of a weak field and recall that there
will be a value of F for each value of j, but, since the interaction between
l and s remains unaffected by the field, these values of I will be i'nde-

pendent of m. (Compare Table IV) It is well known that a configuration
of two p electrons yields two quantum states with j=2, one with j=1,
and two with j=0. We indicate the corresponding I' values by I"~', F&",
I'&, I'o', and I'o", respectively. These are assembled, in accordance with the
considerations just given, in Table Vc. A comparison of I" sums for like
values of m yields us then

I', = —a/2; ~o'+ ~o"= —

TABLE Vb and c.

m, =+1
m, =0

m, = —1

j:2
2 —2
j=1
j=0
j=0

+|.a
+2a

+la

r, '

r //

r',

—-a1
2

+a
0—a—~a2

r, '
//

r,
r",

//

0
+2a—-a1

'2

+la

b.
strong
field.

ml m ms

C.
weak
field

sr= r, '+r, " r, '+ r /+r //

+r,+'
r /+r //

/+r //

This method therefore enables us to calculate the sums of the I' values for
those levels which have equal j's, just as Pauli has been able to treat the g
sums. These I' sums roill remain constant for all couplings The in. dividual
values of I" can be determined however only in special cases, which we will
discuss in what follows.

The most important applicatio'n of the I" sum rule is to be found in the
Roentgen doublets. Here we have to do with a configuration of equivalent
electrons, where just one is missing out of a complete group. In this case
we find a double level, the doublet separation of which will in first approxima-
tion be due only to the interaction between the spin of each electron and
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its orbit. If we consider a group of electrons, of which each has the same
given value of /;, the doublet levels will be found to have the j values:
j=t+ —,, j=/ —-', . If we now make a table for this case similar to our Table V,
we will find the vales of 1' to be: I'= l;a—;/2 and I'=+(f;—1)a;/2, for

j equal to I;+-', and l; —~2 respectively. In this case the values of F are com-
pletely determined. We find no F sums because there are no different
levels with the same j. The F values found are therefore independent of the
kind of coupling, and the doublet separations will under all circumstances be

or the modified form of this expression given above for penetrating orbits.
The coupling will in fact be very different in different cases. For inner
orbits and high nuclear charge we expect the total resultant j to consist
of the individual j; of each of the electrons. For outer orbits and lower
effective nuclear charge however we expect the ordinary Russell-Saunders
coupling to be valid. We now know that the same doublet formula holds
nevertheless for all cases. The reasoning given here is thus the proper proof
of the validity of the Sommerfeld formula for Roentgen doublets.

By adding an s electron to a multiplet state one can prove in exactly
the same way that in certain cases the total separation of the resulting
multiplet with highest multiplicity is also independent of the coupling.
This is illustrated, for example, by the fact that in the neon and argon spectra
the separation of the s levels with j= 2 and j= 0 is exactly constant through
the whole series of levels and equal to the p doublet of the ion. "

THE INDIVIDUAL F VALUES

If we assume that the interaction between the spins of different electrons
is much smaller than the interaction between the orbital magnetic field
and the spin of each electron, then the individual F values for this case
may be calculated in a simple manner. Moreover this special coupling affords
a simpler method for the determination of Lande g sums, especially in cases
of non-equivalent dectrons.

With this coupling of the quantum vectors, each s; and each l; combine
to form a resultant j;.They, value for each electron is calculated by Eq. (2a),
and the sum of these values gives F for the whole atom. In our somewhat
complicated example of two equivalent p electrons, j; may have the value
1-, or ~. The corresponding y; values are +-', a& and —a& respectively. If
both electrons have j,=1-'„ then F =y&+y&=+a&. In this case the building
rules of Pauli for two equivalent electrons give one state with the total
impulse moment j= 0, and one with j= 2. Ifj;= 1-', for one electron and j;=-,'
for the other, one state is obtained with j= 2 and one with j= 1, each with
the F value, -', a~ —c~= —-', c~. If j;=-', for each electron one state is obtained
according to Pauli in which j is equal to zero, and for which F becomes —2a~.
These results may be tabulated as follows:

"S. Goudsmit and E. Back, Zeits. f. Physik 40, 530 (1927).
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P ' j& 12

jl 12 j2= 2

j=0
j—2

I = gGI+ 2Cy= CI
1 '1

F= —81
2 1

1jl 2

For

For

For

F = —Qy —Gy = —28I

In most spectra there is a different coupling of the quantum vectors, th)e

Russell-Saunders" coupling, which is responsible for normal multiplets.
The spin moments of the individual electrons, s;, form one resultant s,
and the orbital moments, l;, form a single resultant l. The total resultant

j is then obtained by the combination of s and l.
In the case of only two electrons the mean cosines appearing in Eq. (3)

may be calculated very simply, since they are constant. This calculation
may be carried out as follows:

Sy sy(sg+ 1)+s(s+ 1) —ss(ss+ 1)—cos (s)s) =
S 2s(s+ 1)

l, (1i+ 1)+l(l+ 1)—ls (1s+1)—cos (lil) =
2l(l+1)

Our example of two equivalent p electrons yields us then the following results
in the case of the Russell-Saunders coupling:

Sp t=0 $=0
'D2 =2 =0
'P2 =1 =1
P] 1 1

Pp 1 1

=2
=1

=0
=+g~i

The total separation of 'I' is therefore +-', a& —(—ai) =12&i.

THREE EQUIVALENT d ELECTRONS

As soon as one has several equivalent electrons, more complicated
methods must be employed, in order to be able to determine the separate
F values for important cases of the Russell-Saunders coupling. We give here
only one example, that of three equivalent d electrons.

If complete tables are made for this example corresponding to Tables
Va, Vb, and Vc, for the other example, the following results are obtained:

"H. N. Russell and F. A Saunders, Astrophys. J. 61, 38 (1925).



S. GOUDS j/IIT

1 Level for which j=5+»
3 Levels"

3 CC CC

CC

4 CC CC

3 CC CC

cc j 41

cc j 31

cc j' 21

cc j 11

CC j 1

1gay

—ay

The value of I" is thus uniquely determined only in the case of the first level,
for which j=5-,'. We obtain only the sums for the other values of j.

Let us now make the special assumption however, that we have here the
Russell-Saunders coupling and consequently normal multiplets. This con-
figuration will then give the following multiplets:

4p~ 4p~ 2g ~ 2Q 2p~ 2D 2D 2p~

If we take as unknowns the single values of A corresponding to each of
these normal multiplets, we can express the I"s in terms of these A values
by means of Eq. (4). We thus have eight unknowns and the determined
I sums give us only six equations for them. Moreover these equations will
be found to be not independent. For example we cannot separate the un-
known A values for the two expected 'D states. We must therefore first
apply another method.

This is to make use of the fact that, if each multiplet is considered sepa-
rately, the sums of the I' values will be the same in weak and strong mag-
netic fields, as is also the case with the g values. We would be prepared
to apply this method if we could only tell which configurations from the
table, constructed for this example after the manner of Table V, would
give a certain one of these multiplets. This is not possible for all con-
figurations, but for just a sufficient number to determine the values of A
for our multiplets.

If we consider for instance the 4F level in a strong magnetic field, among
the levels which arise there is one with the projections mi ——3 and m, =3/2,
giving m =4-', . This level originates from the 'I'"4; level, that being the only
one which can have m=4-', . Now indeed our table, alluded to above, gives
one configuration for which

m, =Em„.= 1~, and mi =Em~; =3,
V1Z . m„.=m„=m„= +-, ; and mg, = 2, m~, = 1, m~, =O.

For this configuration we find: I' = Za&m~cm, , = 1-,'a&. As this is the only one
of the 4I" levels with m=4-„ this I' will be the same in a weak field and it
follows thus that I"=1-',a~ for Ji4, . If we denote the A value of this mul-
tiplet by A ('F), we find from Eq. (4) and the example on page 5, A ('F) =ai/3,
and for the total separation

Av=10-,'A(4F) =7a,/2
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We use the same process once more to determine F for the4P~; level. After
that we can finally use the six equations given by the determined I' sums
and find the results as given in Table I. This example is the most complicated
one. In the other cases the results can be obtained much more simply but
by using the same methods.

The author wishes to express his thanks to Dr. Laporte for many valuable
discussions which have given impetus to the present paper.
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