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LIGHT QUANTA AND WAVE MECHANICS
By J. C. SLATER

ABSTRACT

Light quanta are treated by wave mechanics by analogy with electrons. It is
shown that their wave equation is the ordinary optical wave equation. Heisenberg’s
principle of indeterminateness becomes a description of diffraction. In problems in
which localization of quanta is found experimentally, wave packets are to be set up;
these are applied to the experiments of Bothe and Geiger, and of Compton. The
paths of quanta coincide with the rays of geometrical optics, with a deviation of
the error in geometrical optics; by the principle of indeterminateness, more accurate
laws for the paths are neither necessary nor possible.

HE wave mechanics has brought out the fundamental resemblance

between electrons, with their accompanying Schrédinger waves, and
corpuscular light quanta, with their electromagnetic waves. The statistical
relations between electrons and Schrddinger waves have been discussed
mathematically by Dirac and Jordan,! and Heisenberg? has supplied a
physical description of the situation, in his principle of uncertainty. By
analogy, the connections between quanta and light waves can be definitely
stated, and no doubt are familiar to many persons. Nevertheless, since no
treatment of the subject has apparently been published, and since it fur-
nishes the answer to a problem which has been much discussed, and at the
same time a very simple illustration of the principle of uncertainty, it
seems worth while to give an explicit treatment. As will be seen from the
paper below, for many of the most important problems one can use a simple
theory in which the waves exist in a three-dimensional space, and the amp-
litudes are ordinary c¢-numbers, rather than g¢g-numbers as Dirac has as-
sumed.®? The result may be stated as follows: that all experiments can be
explained by the hypotheses that the intensity in the radiation field measures
the probability of the presence of quanta; and that in those cases where a
definite localization of quanta seems to be observed, this localization is to
be described, to the accuracy with which it can be observed, by setting up
wave packets.

The wave mechanics of a quantum can be formulated by the same
principles used with electrons. First one selects coordinates (x, v, 2, {) and
corresponding momenta (pz, py, p.,, —E). Then, in order to find the func-
tion ¥(x,y,2,t) which has the property that yy*dxdydz is the probability
that a quantum with given energy at time ¢ is in the volume dxdydz, one
finds a functional relation between p., p,, p., —E, and, if necessary, x, ¥,
2, t: say f(pz Py P —E, x,v,2,t)=0. In this function, one replaces each

t Dirac, Proc. Roy. Soc. A113, 621 (1927). Jordan, Zeits. f. Physik 40, 809 (1927).

2 Heisenberg, Zeits. f. Physik, 43, 172 (1927).
3 Dirac, Proc. Roy. Soc. A114, 243 (1927).
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momentum by %/2mi times the derivative with respect to the corresponding
coordinate, so that f becomes an operator; one forms the differential equa-
tion

f( h 9 h 0 h 0 h 9 >¢< )=0

——y —— — —— —, —— — x,9,3,t ) ¢(x,y,2,0) =

2wi ax 271 ay 2mi az 2w Gt’ ! 8

and the solution is the desired function y. To find the relation f, there is
no general method given by wave mechanics. But for a quantum, we may
take Einstein’s equation £ =hy, and de Broglie'st relation (P;*+ P2+ P,%)!/?
=h/\, combine with the equation v/\ =y, where v is the velocity, and ob-
tain v(P2+P2+P2)2=E; in order not to have derivatives under the
radical, we may equally well take instead v*(P.*+P,*+P;?) =FE* Then
making our substitution, the equation is

v2(h/ 2m4) 20 = (h/2m6) 0%,/ 912, or VA — (1/v2)9%,/ 912 =0

the familiar wave equation of optics.

To solve the problem of the motion of quanta then, one solves the
optical wave equation, and the intensity of the resulting wave at any point
measures the probability of the existence of a quantum at that point. This
of course is a connection between waves and quanta frequently proposed
before the development of the wave mechanics. Previously, it had to be
admitted that this theory was incomplete, in that it did not precisely de-
fine the paths of the individual quanta; but now it is seen that this inde-
finiteness is just what one would expect from Heisenberg’s principle of in-
determinateness. That principle really involves two statements: first,
that it is not mathematically possible in wave mechanics to set up a descrip-
tion of a motion in which the initial conditions (coordinates and momenta)
are all precisely defined, but that rather the initial coordinates and momen-
ta must be supposed subject to uncertainties, or probable errors, whose
product is at least of the order of magnitude of %; second, that this restric-
tion in the mathematical theory is not of physical importance, for any
possible experimental method of fixing the initial conditions would intro-
duce probable errors of at least this magnitude. Applied to optics these
statements become, first, that on wave theory one cannot set up a solution
in which the initial position and momentum of a quantum are both pre-
cisely defined (on account of the diffraction inherent in a wave theory);
second, that this is never necessary anyway, since real quanta are deflected
to follow the diffraction patterns. From this we can see that definite laws
for the motion of quanta are neither possible nor necessary.

The simplest form of solution of the wave equation is a plane
wave, = e2rr(t-Ustmytna) [v) - This solution, as we can easily see, corresponds
to a quantum whose momentum, with components lkv/v, mhv/v, nhv/v,
and energy kv, are precisely determined, but whose coordinates, x, y, 3, ¢,

¢ This formula may be taken either as a generalization of the equation that momentum of

a quantum=hv/c=h/\, to the case where the velocity is v instead of ¢; or as an analogy to
de Broglie's equation A =% /(momentum), or (momentum) =#h/\, holding for an electron.
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are entirely indefinite (thus obeying Heisenberg's rule). The indefiniteness
of the determination of the coordinates is seen by observing that yy*=1,
independent of position, so that the quantum has equal probability of being
at any point of space. On the other hand, the momenta are y/(/27%) (3/dx)y*
=lhv/v, etc., and the energy is —y(h/2mi)(3/3t)¢* =hv quite independent
of the coordinates, and definitely determined. This sort of wave is, of course,
the one needed in most optical problems; for generally we can determine
with great accuracy the direction and frequency of a beam, but we have no
idea as to the location of the quanta in it.

One can easily set up an experiment, however, in which there is definite
information about the location of quanta, as well is about their momenta. It
is only necessary to take a perfectly plane monochromatic wave, allow this
to fall on an opaque screen containing a small hole closed by a shutter, and
open the shutter, closing it again very soon. Then on the far side of the
screen we have light, of which we know that the quanta were at the position
of the hole at the time the shutter was open, and were travelling in the
direction of the initial beam. It might seem that, by making the hole smaller
and smaller without limit, and the shutter faster and faster, we could make
as accurate a determination of position and time as we please, without
corresponding sacrifice in the accuracy of determination of the momentum.
We note, however, in agreement with the first part of Heisenberg’s rule,
that this would be impossible in the wave theory. For since the wave passes
through a small hole, the problem is one of diffraction, and the smaller the
hole, the more bending of direction of the wave there is (that is, diversity
of the momentum is introduced by the process of passing through the hole);
and since the wave train which passes through is limited in time, there is a
broadening of the spectrum (resulting in a diversity of energies). The wave
theory does not permit of a solution limited to a certain region of space and
time, and yet without diffraction and broadening of the spectrum. Next,
agreeing with the second part of Heisenberg’s rule, one observes that quanta
actually travel so as to fill all parts of the diffraction pattern predicted
by wave theory; we infer that quanta, originally all of the same momentum
and energy, are actually bent and changed in energy by the mere process
of passing through a hole and shutter, so that it is useless to try to get exact-
ly precise initial conditions or laws of travel.

The numerical part of Heisenberg's rule is easily verified in our case.
Suppose the beam is travelling along the x axis. Let the diameter of the
hole be D, the length of time the shutter is open, 7. The wave after dif-
fraction can be at once analyzed into plane waves, for this is just what the
telescope does in Fraunhofer diffraction. In the theory of that subject,
one sees that there will be waves of appreciable intensity in the diffracted
beam making angles up to the order of \/D with the original direction.
The spectrum can be found by Fourier analysis, and it appears that fre-
quencies differing by as much as 1/7 from the original frequency will be
present. Thus one infers that in the beam which has passed through, »
will vary from its original value by as much as 1/7, m and » will differ from



898 J. C. SLATER

zero by as much as A\/D, and I will equal 1 to the first order of small quan-
tities. The uncertainty of p,=Ikv/v will then be of the order of %/vT, of
py=mhv/v of the order of (hv/v)(N\/D)="h/D, of p, of the order /D, and of
E=hv of the order 2/T. But the uncertainties in the determination of
the coordinates are v7 for x (the length of the wave bundle in the direction
of its travel), D for y and 2, and T for ¢. Thus in all cases the uncertainty
introduced into the momentum, multiplied by the uncertainty in the de-
termination of the coordinate, equals %, as the rule requires.

In the problem we have just discussed, there is a determination of both
the initial coordinates and momenta of the quanta; the determination is not
perfectly definite, it is true; yet, when one considers the relatively small
magnitude of diffraction effects, one is tempted to say that ordinarily the
definiteness of the determination is more striking physically than the in-
definiteness, as the rectilinear propagation of light is more striking than dif-
fraction. The light transmitted through the hole travels as a fairly compact
packet of waves, following the path of the “ray” of geometrical optics, and
gradually spreading out. Since the intensity of this wave determines the
probability of the presence of quanta, all quanta transmitted will travel
somewhere within the packet. Thus we can say that the paths of the quanta
are the rays of geometrical optics, with an error of the order of magnitude
of the error in geometrical optics. To a greater accuracy than this, we neither
have nor require any law of the paths of quanta. In particular, one notes
that individual quanta must be deflected, and change their frequency, as
they pass through the hole; yet we need not infer from this the existence
of forces producing the deflections. For the laws of conservation of energy
and momentum, and the concept of force, need not apply precisely to the
individual quanta; any more than any other law. They hold, as does the
whole of ordinary dynamics, in the approximation to which we may use
geometrical optics; beyond that, they need no longer be assumed to apply.

One error, in connection with the wave packet which we have set up by
our experiment of the hole and shutter, is particularly to be avoided. This
is the supposition that our wave packet is a dynamical “model” of a light
quantum, or that it can give any information about the “dimensions” of a
quantum. Such questions are entirely foreign to the theory; the dimensions
of the wave packet, as we have seen, are derived entirely from the initial
conditions of the problem, as regulated by experimental circumstances.

In the actual experiments that have been performed, there are only two
in which the localization of light quanta has played a conspicuous part.
These are the experiments on the Compton effect, performed by Bothe and
Geiger, and by Compton.® In them, a plane wave of x-rays fell on atoms
which scattered them. Both the recoil electrons, and the photo-electrons
ejected by the scattered light, were observed. Bothe and Geiger observed
that photo-electrons were ejected simultaneously with recoil electrons;
Compton found that, correlating recoil electrons with photo-electrons, the

& Bothe and Geiger, Zeits. f. Physik 32, 639 (1925); A. H. Compton, Proc. Nat. Acad.
Sci., 11, 303 (1925).
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scattered quanta must have travelled in such a direction as to have the
relation to the direction of the recoil electron demanded by the laws of
conservation of energy and momentum. These experiments are somewhat
more complicated to discuss than the cases we have taken, for we do not
know the exact nature of the interaction processes between light and atoms.
Nevertheless, a qualitative explanation can be given, which seems un-
doubtedly true in its broad outline.

If we knew merely that the plane wave was being scattered by the atoms,
we should use a solution of the wave equation in which a plane wave struck
the atoms, and spherical scattered waves came off from all of them. From
this sort of solution, we can compute the probability of ejection of a recoil
electron from an atom; we can also, knowing the intensity of the scattered
light, compute the probability of the emission of a photo-electron;and our
theory gives us no reason to expect a correlation between the two. But
actually in the experiment our information is more precise than this; for in
investigating the photo-electrons, it must be assumed that we know from
which atom the recoil electron was ejected, and we know when and with
what direction and velocity it was sent off. We must set up our wave repre-
senting the scattered light, making full use of these observations. The
atomic wave function representing the scattering atom is to be so constructed
that a wave packet representing the ejected electron is sent off within the
limits of time and limits of angle observed in the experiment. Although
we do not know in detail how to set up the scattered light wave in such a
case, it seems certain that it would be in the form of a wave packet, emitted
roughly during the time the recoil electron’s packet was being ejected, and
in roughly the direction demanded by the corpuscular theory of the Comp-
ton effect. The diffuseness of the wave packets, demanded by wave theory,
is again to be correlated with the fact that the laws of the quanta are not
known in detail, so that they do not precisely obey the law of conservation
of momentum and energy in their encounters. We now have a probability
of finding scattered quanta only within this wave packet; and the fact
that photo-electrons were ejected only in the proper direction and time
follows directly from the probability interpretation of the wave. This is a
good example of Heisenberg’s remark that the mere process of making an
observation (in this case, observing the recoil electron), may greatly affect
the probability of subsequent observations (in this case, restricting the
possible places for the ejection of photo-electrons to a certain small beam);
more generally, it illustrates the universal property of statistics, that the
probability of an occurrence depends conspicuously on what is assumed
known to start with.
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