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THE PHYSICAL PENDULUM IN QUANTUM MECHANICS

BY EDWARD U. CONDON

ABSTRACT

It is pointed out that the Mathieu functions of even order are the characteristic
functions of the physical pendulum in the sense of Schrodinger's wave mechanics.
The relation of various properties of the functions, as known from purely analytical
investigations of them, to the pendulum problem is discussed.

'HE problem of the physical pendulum, that is, of the motion of a mass-
& - point constrained to move in a circle and acted on by a uniform force

field, has played such a great role in the study of analytic mechanics that a
discussion of the same problem from the standpoint of Schrodinger's wave
mechanics cannot be without interest. It turns out that the characteristic
functions are certain of the Mathieu, or elliptic cylinder, functions and that
the arguments from mechanics serve to illustrate in an interesting way
many of the properties of these functions.

Let the mass of the particle be p, and let its position in a circle of radius
a be designated by the angle 0. It will be supposed that the particle carries an
electric charge e, and that there is a uniform electric field acting in such a
way that the potential energy function is —esca cos 8. That is, the force is
in the direction of 0=0. Under these circumstances the wave-mechanical
equation becomes

d'f 8x'p, a'—+ [W+eEa cos e]/=0,
de' h'

in which W' is the energy level parameter. The energy levels are the values
of W for which this equation possesses solutions which have the period
2~ in 0. Introducing the variable, x=-', 0, and the abbreviations,

a=8 sp
'a/W'h, q= 2s'IIa'eE/h'&

the equation appears in the usual form for Mathieu's equation,

d'P/dx'+(4n+16q cos 2x)/=0,

where, now, one seeks solutions with the period 7t in &.

The solutions of this equation which have the period 2m in x are known
as Mathieu functions. ' For g = 0, the case of zero field strength, the prob-
lem becomes simply that of a free rotator with fixed axis. The character-
istic functions are 1, sin 2x, cos 2x, sin 4x, cos 4x with the associated
values of n equal to 0, 1, 1, 4, 4 The problem is degenerate since there

' An account of them is given in Whittaker and Watson, A Course of Modern Analysis,

Chap. 19. (1920). This is, however, quite incomplete now because of the many more recent
investigations by British and Scottish mathematicians.
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are two distinct characteristic functions associated with each energy level,
except the first one. The characteristic function for any degenerate state
is an indeterminate linear combination of the two functions associated
with that state. In particular, the functions which correspond to progres-
sive rotatory motion in the two opposing senses are e" and e ",rather
than cos 2mx and sin 2mx. These latter functions correspond in some way
to equal numbers of rotators turning iri opposite senses and these connect
in a continuous manner with the non-degenerate characteristic functions
for q+0, as q

—+0. The standard notation for the Mathieu functions is
ce„(x,q) and se„(x,q) where as q—&0 these become equal to cos nx and sin nx
respectively. All of these have period 27r, while those in which e is even
have the period z in x and so they are the characteristic functions of the
pendulum problem.

It will be observed t'hat the zero from which energy is reckoned in the
wave equation is from the position at which 0=x(2 or x=a/4. If instead
it is reckoned from 0=0, the minimum of the potential energy curve, one
has to add 4q to each value of n,

It is of interest now to consider a number of properties of the functions,
which have been obtained by purely analytical means, in the light of the
pendulum problem. Firstly, it is clear that the functions will bear an invar-
iant relation to the minimum of the potential energy curve, hence yield
such relations' as

ce&„(-',x —x, —q) =(—1)" ce& (x,q).

Jeffreys' has shown that there are no allowed values of o. such that n & —4q.
Physically this means that there are no states for which the total energy
is less than the minimum potential energy permissible for the system, and
therefore appears natural enough. The relation, n=4q, is a critical one for
classical mechanics in that for o. )4q the motion is rotatory while for 0. (4q
it is oscillatory. This value has also shown itself as a critical one in the ana-
lytical theory of the functions.

For n)4q, Jeffreys finds (approximately) that n must be such that
2'

(4o.+16q cos 2xi'~'dx=2xm,
0

in which m is an integer. Recalling the meaning of 0. and q, this requirement
becomes

Pgdg= yah,
0

' See e.g. Goldstein, Trans. Cambr. Phil. Soc. 23, 303, (1927) Par. 1.5. This memoir con-
tains a good many of the newer results not given in Whittaker and Watson,

' Jeffreys, Proc. London Math, Soc. 23, 437, (1924—25), This paper and the one preceding
it are especially interesting in that the methods of approximate integration which he uses are
closely related to those by means of which the connection between classical mechanics and
quantum mechanics. is established.
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so that the condition reduces to the classical quantum condition for even
values of m, the ones which correspond to allowed quantum motions.

The most complete tables of the values of 0. as a function of g are those
of Goldstein (loc. cit.). He has given the values of n for ceo(x,q), se2(x, g)
and cea(x, g) besides several others which are not related to the pendulum
problem. He gives an asymptotic expansion good for small m and large g
as follows:

n~ —4qy (2m+ 1) (2q) ' '—

In this one recognizes that (n+4g) which is the energy counted up from
the minimum of potential energy at 0 = 0 goes linearly with the number m in
just the way that the energy levels of the harmonic oscillator go in wave
mechanics. Moreover, the interval between levels, 2(2q)'~', when expressed
as energy is exactly equal to hv where I is the frequency of the small oscil-
lations of a pendulum in the field of strength 8, reckoned on classical me-
chanics, i.e, ,

v = (eE/4x'ys) '".
The rapidity with which the three lowest energy levels approach the values

-IQ

0 I

Fig. 1. The three lowest energy levels of the physical pendulum as a function of field

strength (abscissas, q. ordinates, 0,). The straight line of positive slope divides the region of
classical rotatory motions from that of classical oscillatory motions. That of negative slope
gives the value of the potential energy minimum which forms a more natural origin from
which to count the energy of the small oscillation states.

appropriate to the small oscillations theory is indicated in Fig. 1, where A is
plotted as a function of g, from Goldstein's tables.
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An interesting feature is the way the second and third energy levels
cross the line, n=4g, without any discontinuity, this being the critical
place at which the associated classical motion changes character from rota-
tory type to oscillatory by passing through a motion of infinite period. The
discontinuous behavior of a pendulum moving with constant energy in a
field of slowly decreasing strength caused some trouble in the old mechanics,
as noted by Ehrenfest and by Bohr. That this discontinuity is not a feature
of-the wave mechanical treatment was first recognized by Hund. 4 In a sense
this discontinuity still appears in wave mechanics but at q = 0 instead of at
q =n/4, for the characteristic functions, as q

—+0, do not join on continuously
with those solutions of the equation for the force-free rotator which repre-
sent rotatory motion, as already remarked. *

Similarly one expects for small values of the quantum number and large
values of g, that the characteristic functions will go over into the character-
istic functions of the harmonic oscillator problem. The Mathieu functions
do have just such an asymptotic connection with the Hermitian polynomials
or parabolic cylinder functions. ' This behavior is just what one would ex-
pect from the relation to the pendulum problem. Thus it makes clear the
theorem of Ince (loc. cit.) concerning the clustering of the zeros of the
Mathieu functions within a region of the order of magnitude —Eg &x
(+Eg '/' as q

—&Oo, where E is a constant. This is because the wave func-
tions in wave mechanics only show a distinctly oscillatory character inside
the region of the associated classical motion, where the de Broglie wave-
length, h/p, of the system is real. A simple calculation shows that the amp-
litude of the classical motion for a given quantum state tends to zero as
q

"4 for greco.
It thus appears that the principal properties of the Mathieu functions

of even order are simply related to the mechanical problem of which they
are the characteristic functions in Schrodinger's wave mechanics.
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4 Hund, Zeits. f. Phys. 40, 742, (1927) especially footnote, p. 750.
~ See e.g. , Ince, Jl. London Math. Soc. 2, 46, (1927).
* Added in proof: The p function that joins on with e' "

is, of course,

(z ~)s2wgsgt/h+gse (g q)e2xisgtfh

where E~ and E& are the energy levels associated with ce& and se2„respectively. If one compute
the quantum mechanical expression for the current associated with this p, it will be seen that
it depends on the time through a factor cos 2'(E~ —E~)t/h. For small g, E&—E2~0 so the
current reverses itself with a small frequency which becomes zero for q=0. This behavior
reminds one of the "gallows problem" of Ehrenfest and Tolman (Phys. Rev. 24, 287 (1924)),
although here there are no forces due to twist of thread to cause the long period reversal!


