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ON THE QUANTUM MECHANICS OF A SYSTEM OF
PARTICLES

HY E. H. KENNARD

ABSTRACT

The "mechanics of a system of particles is developed on the basis of Schrodinger's
stave-equation, " without any use of matrices; it is shown that simple cases can be
handled as easily by this method as by the matrix method, The passage to classical
theory as an approximation stands out very clearly.

The measurement of velocity, momentum, energy and angular momentum as sec-
ondary physical qualities is discussed, the usual probability amplitudes being
obtained.

The conservation of momentum and of energy is treated in terms of the new

theory.

'HE foundation of quantum mechanics can fairly be regarded as com-
pleted since the publication of Heisenberg's paper of last July, ' in which

an inclusive general principle was at last laid down for the physical inter-
pretation of the theory. In that paper the principle was stated in terms of
the generalized matrix theory of Dirac and in this form it was slightly am-
plified and applied to several simple cases' by the present author. To many
physicists, however, the matrix theory seems at best pretty abstruse, where-
as the wave mechanics of of Schrodinger seems much more tangible. In
view of this fact it seemed worth while to show how the entire quantum
theory of mechanical systems can be erected with no loss of generality or.of
simplicity upon the Schrodinger wave-equation for the coordinates as the
sole basis. 4 It seems reasonable to hope that the quantum theory of elec-
tromagnetism, when finally discovered, will be capable of statement in a
similar form.

In the present paper the mechanics of systems of particles is so treated
and the simple problems that were solved so easily with the help of the matrix
theory are shown to be equally easy to solve without it. In this form of the
theory velocity, momentum and energy enter naturally as secondary quan-
tities measurable only indirectly by means of observations of position, just
as in classical theory; and the passage to the classical theory as an approxi-
mation becomes especially simple. The quantum laws of "Conservation of
Momentum and Energy" are easily stated.

~ W. Heisenberg, Zeits. f. Physik 43, 172 (1927).
' E. H. Kennard, Zeits. f. Physik 44, 326 (1927).
4 Cf. also C. G. Darwin, Roy. Soc. Proc. A117, 258 (1927). This paper was unaccountably

overlooked during the preparation of the present paper. The tenor of both papers is the same,
yet there is so little overlapping in detail that it has seemed best not to shorten the present one;
it would be beyond the powers of the present author to equal Professor Darwin's fascinating
discussion of the general situation, but on the other hand the Heisenberg principle that physi-
cal quantities must be physically observable is perhaps carried out here a little more clearly.
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1. The Quantum 3/mechanics of a System of Particles In. classical theory
one treated a dynamical system of n degrees of freedom by deducing from
Newton's Laws of Motion expressions for the values of the coordinates as
functions of 2n constants of integration and the time. In non-relativistic
quantum-mechanics we have, in place of values at a time t, a probability
amplitude P(q, t) =P(q~, q~, , q„,t) with the property that

dP =QIJ/~dq)dq2 dq„

is the probability that an exact experimental determination of the g's at the
time t would yield values lying within dq&, dq&, , dq„. (11 is the complex-
conjugate value of P). In lieu of Newton's Laws we assume with Schro-
dinger that

el9lp/l9f = H( e8 /Bq) q)lp (2)

where e=h/2vrc, h being Planck's constant, and H(p, q) or FI(p~, p2 p„;
q&, q2 q„) is the Hamiltonian function; the p's can be regarded as merely
symbolic, an assumption as to the form of H replacing in the new theory
the assumption of a particular dynamical structure for the system. The
constants of integration representing the initial conditions are then re-
placed in the new theory by known values of lf at some given time.

Equation (1) requires that

dI" = //*de = i, (3)

where dg=dq&dg& dg„, the integral extending, as do all integrals with
unspecified limits in this paper, over the entire physically admissible range
of the variables. Either f or P=~* may be called with Heisenberg the
"probability packet" for the coordinates. The amplitude P'(q', t) for another
set of e variables q' which are functions of the g's is then

q„with respect to q,
' q„' and f(t) iswhere J is the Jacobian of q&

an arbitrary real function.
We shall employ hereafter Cartesian coordinates xI, x& . x„, for the

n/3 particles of the system. Then

H= Q(&, '/2m, )+U(x),
I

(, being the "momentum" for x, and m. the mass to which x, refers, while
U(x) or U(x&, x2 x„) is the potential energy.

(2) now becomes

1
eBQ/Bt =-', e' Q —(8'iP/Bx ')+ UP

r~l ~r
(2')
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Writing'

and separating real and imaginary parts in (2'), we find

BR 1 BR 80 R 8'0
+Bt, rn, Bx, Bx„2 Bxg

(7)

From (6) and (7)

m Bx

88P-
Bxg

which has exactly the same form as the equation of continuity for a fluid of
density I' flowing with a velocity whose components u; are given by:

89
mu = ——= ———log-

Bx; 4vri Bx;
(10)

Thus 0/ni; or (k/4irim;)log (ip/ip*) is the "velocity potential" for the prob-
ability. From (8) and (10):

Bu, O' 8 1 O'E 1
m2 am~us 2

(3t Sm-' Bx, m, E Bx,' 2 Bx; rex;

The rate of change of velocity for a particular element of the probability is

du; Bu;
+

dt Bt

Bu; du; m, Bu,
Pu,—'=—'+ Pu,—' —';

Bt Bt m; 8x;

hence by (11)

du, h' 8 " 1 O'E 8 V
m2

dt 87t' Bx2, gmR Bx,' Bx;
(12)

Tkus cack element of tke probability moves in tke Cartesian space of cack
particle as that particle should move according to %carton's laws under the clas-
sical force plus a "quantum force" given by the k-term in (12).

The motion here considered occurs in a space of n dimensions. We can
also, however, replace the n-dimensional packet by n separate packets, one
for each particle, all moving in the same ordinary space. The probability
that one particle, say the rth, should be found in an element dx3„dx3„&dx3„2
of its space is the integral of Pdx with respect to all other x's except x3„,

' The equivalent of Eqs. (6) to (12) was given by Madelung, Zeits. f. Physik 40, 322
(&92').
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x3„& and x3„&, so that if we call the probability function for this particle
alone P„, we have

P„= I'dx(„) = //~de(, )

where dxi„& ——dxi dx3„3dx3„+i dx„. (9) gives (P being assumed to
vanish fast enough at infinity):

BP„BP B 80—dx(„i ———g ——dx(„) .
Bt Bt et3„3„2Bx, Bx,

(14)

The mean componen'ts of velocity of the probability in the space of the rth
particle, or the mean components of velocity of P„, are

,g=(I/P) fP;d*, (j =3, 3. —1, 3~ —2); (15)

and, substituting from (10) for 9 in (14) and using (15),

BP ' '" B
(I'„u„,) . —

Bt 3„q Bx,
(16)

P„and u„, are functions of t and of x3„x3„~,x~„„which are the coordinates
of m„and can be regarded simply as coordinates in ordinary space. P, repre-
sents a probability packet for this particle alone; it can be regarded as
moving at each point in ordinary space with components of velocity u„; as
given by (15). But it is not possible to proceed farther and obtain dynamical
equations for P„ in terms of u„alone: the elements of the probability for
one particle alone move, not like a homogeneous Huid, but like the mole-
cules of a gas, the elements located momentarily at a given point having
various velocities and being variously related to the other particles of the
system.

In terms of these results the relationships between quantum and clas-
sical mechanics stand out very clearly. If we put h=0, the probability
becomes a distribution of matter moving classically. In general, if a system
is immersed in a uniform force field, its probability packet will simply execute
the classical motion in that field in addition to whatever internal motion it may
have by reason of internal classical forces or the quantum force; for by (12)
all elements of the probability experience the same classical acceleration in
the field in addition to other accelerations of internal origin, and since the
accelerations imposed by the field do not alter the relative positions of the
particles the internal forces of all sorts are unaffected. The same statement
will hold as an approximation if the field is merely approximately uniform over
the region occupied by the probability packet.

It follows similarly that the inHuence of the remainder of the system up-
on the motion of any one of its particles approximates to the classical inHu-
ence whenever the classical force upon the particle is approximately the
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'
ns of the s stem that stand any appreciable chanceg

or then the relative distribution o t e pro a i i y
'

l ff db }1 'flce of that one particle is approximately una ecte y
of the s stem. Thus the quantum mechanics predicts not,n y

novel interaction between electrons spaced so ar apar a
interaction is slight.

Finally, let

x = x dP = x;Pdx= x;P„dx3„dx3„ idx3„-g1—

of the "center of probability" of the n-dimen-denote either the coordinates o t e cen er

(
' = 1 2 n), or the coordinates of the pac et or e rsional packet yg=, . n,

particle in ordinary space (in which case we imit j to r,
Then regarding dP as a moving element:

——dP = u, dP,
dt

d X dQJ——dP,
dt' dt

h' O 1 O'R OV

'n first b parts with respect toby (12). But, putting I' =R' and integrating rs y p
x, and x, in turn, and then with respect to x;:

1 O'R (' 1 OR O'E

Ox; mR Ox, '

Hence

2 OU
re; —=m,—u;Pdx =—dx; d

dt' d t Ox;

lied to the separate particles this equatioation states that the centerAs appie o e
d' space as vvould the particleor each Particle moves in or znary s ace

ob bl " fo
'

b bl in classical mechanics under t e 'mean ro a e orc
mber of ~18'~. This resu t was o ai

)The quantum force, represented by the term in con ai
ects rimarily only the relative motion of different parts of t e pro a i-

ac e . is
'

bl f the characteristic quantum inde-
eisenber; but it is also responsible for othertermination pointed out by Heisen erg; u i is

' P. Ehrenfest, Zeits. f. Physik 45, 455 (1927).
4 Ruark, Phys. Rev. , 31, 533 (1928).



QUANTUM MECHANICS 881

departures from classical behavior such as would not result by Newton's
laws merely from an indefiniteness in the initial state (e.g. the phenomenon
of the quantization of atomic energy). Unfortunately the separation of
these two quite different effects presents grave difficulties. The complexity
of the quantum force also seems to make it of little use in thinking out direct-
ly the solution of simple cases. Nevertheless equation (12) can be made to
suggest the solution in all of the simple cases that were so easily handled by .
the matrix method, and this we shall proceed to show by solving two of
those problems.

2. The Case of Free 3/Xotiort With . V=0, Equation (2') is like an equation
for the How of heat' with imaginary "conductivity"; we should expect
therefore to obtain a solution that represents the part of the fiel'd of P or
R' that is present initially at each point as moving outward with time. Let
us seek a simple form of such polar motion. With V = 0, equation (12) would
be very simple if R were uniform in space; then u, =constant for an element
of E.', and a group of elements leaving the point x~o, x2o x„o at time
t=0 would at time t=t have positions x;=(x; x;p)/t Inse—rting th. is value
of u, in (10) and (8) and integrating (R being assumed uniform):

ite/(tt= ,' gm, (x,—x,o)-'/t', fI= —g[m, (x, x,o)P/2—t)+f(x)

Substituting back in (10) (because we ditferentiated once in obtaining (12)),
we find f(x) constant.
Then by (7)

BR/(tt= —rpR/2t, R=Ct "".
This result justifies our assumption as to R. Choosing a special value of C,
we thus have

5(xp, x) = (m)mp m„)' '(i/ht)" 'exp [—(ix/ht) gm. ( xx.p)'] (20)
T

as a solution of (2') with V=O, S is the "transformation function" from xp to
x of Dirac and Heisenberg; it cannot itself represent a distribution of "pro-
bability", for normalization by (3) would require that C=O, but it does
represent a mathematically possible distribution of R'. Now letup(x) =
Pp(x), xp x„) be the amplitude at t=0. Then f(x,t) given by

where dx, =dxpy dxpp ' ' ' dxp, is also a solution of (2') with V=O. We
shall show that, with the constant factor chosen as in (20), it reduces to
lt'p at t 0. Put

x, p
——x,+r, (t)"'

' (.f. Ehrenfest, loc. cit, '
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then (21) and (20) give:

P(x, t) = (mi m„) '"(i/Ii) ""
JINGO(x+rt"')

exp [—(ix/k) gm, r, ' jdr, dry dr„

Since

the right member of the preceding equation reduces to P, (x) for t = 0.
Thus (21) is the general solution of (2') with V=O corresponding to the

initial condition, iP =iPo at t=0; and it agrees of course with Heisenberg s
result.

The other simple cases referred to above which can be solved by the
same method are the case of uniform force field already treated above by
general reasoning, the simple harmonic oscillator in n dimensions, and the
effect of a uniform magnetic field. As the last named introduces a new fea-
ture, we shall treat concisely a simple case of it.

3. An Electron in a Homogeneous Magnetic Field. Taking the z axis
parallel to the magnetic intensity, 3f, we have as Hamiltonian,

1 Ql SSco

(P'+—P, ') + (yP* x—P.) + —(*'+y'), —
2m 2 8

where co =s3II/mc, e =charge and m = mass of the electron, and as the wave
equation:

62 O 2p O 2f 660 Bf B$ PL%2
r —=——+———y ——x—+—(x'+ y') iP =0.

Bt 2m Bx' By' 2 Bx By 8

This equation requires some generalization of preceding results because it
contains first-order derivatives. Instead of (7) and (9) we find

BR 1 BR B0 BR B0 R B'0 B20 (v BR B R———+——+ —+- +—x——y-
Bt m Bx Bx By By 2' Bx' By' 2 By Bx

(24)

with

BE B B—= ——(Pu, ) ——(Pu„),
Bt Bx By

mu, = —(Be/Bx)+simcoy, mu„= —(80/By) —~~m(ox. (26)

In (8) two additional terms appear on the right but upon substituting
u from (26) we find simply:

B0 h' O'R O'R nz——+—+—(u, '+u„') .
8~2mR Bx2 By2
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Now for a particular element of R'

dl, BN, BN BN+I +Q
dt Bt Bx By

calculating the latter derivatives from (26) and (27), and repeating for

n„, we 6nd:

dg, h'
m

dt 8x'm

dgy h
m

dt 8m'm

B 1 O'R 1 O'R———+——— +maN„,
Bx R Bx' R By'

B 1 B'R 1 O'R——+——— —mull, .
By R Bx' R By'

(28)

With k=0 these are the classical equations for the electron (which checks
the assumed form for II), and the solution for its position is:

x=A sin cot+8 cos cvt+C,

y=A cos cot —8 sin cot+D.
(29)

If R is uniform in space, the elements of R' will move according to these
same equations. Assuming all elements to start out from the point xo, yo

at t=0, we have xo=B+C, yo=A+D; eliminating the constants by means
of these equations and (29) from the values of u, x and N„=y obtained
from (29), we find:

co sin cot
u, ,=—— — -(x —xp) +y —yp

2 1 —cos(A

Cd sin cotI„=——(*—xo) +— (y —yo)
2 1 —coscot

We now substitute these expressions for u, and u„ in (27), omit the term
in h and integrate, obtaining:

mes sin art
kx xo)'+(y —yo)'1+f(x—, y)

4 1 —cos cot

Substitution of this value for 0 in (26) and comparison with (30) shows that
f(x,y) =oco(ypx —xpy)+const. Then, putting the value of 8 into (24) and

assuming R independent of x and y, we find after integration

R=C(1—cos pot) "'.

im~ Al'mGP Sin (8
~(xo, yo,'x, y) = — exp — —— ((x—xp)'

2h 1 —cos~t 2h 1 —cosset

+i~ ~.~ i+a*., (31)



E. H, KENNARD

and

(32)

are solutions of (23). Analysis of P by the method used above shows that
/~$0(x, y) as t~0 H. ence p as given by (32) and (31) is the general
solution of (23) corresponding to the initial amplitude lf G. This result agrees
with that obtained by the matrix method. "

4. The measuremenlof V, efocity and Momentum Th.e ordinary fundamen-
tal definition of velocity as space divided by time requires two successive
specifications of position. But two exact experimental determinations of
position made upon the same particle will always yield the velocity of light,
because of the indefinitely great Compton-effect or equivalent disturbance
produced by the first one; and two inexact determinations leave an indefi-
niteness in the measured value. There seems to be only one case in which
an observation can be made which deserves to be called an exact measure-
ment of velocity, namely, the case of free motion.

Suppose that at time t the amplitude f(x, t) differs appreciably from
zero only within a distance D from a certain point (o(&, o(2 o(„) (i.e. for

g(x, —(z,)'(D), and suppose that at a very much later time t' the
position of the system is accurately determined, the values thus found for
the coordinates being x'. Then we can regard the quantities

(33)

as experimental values of the components of velocity of the particles; they
become exact as t' —+~, since the indefiniteness in the initial positions of
the particles is less than D/(i —t) and vanishes in the limit. We can rea-
sonably regard these values as referring specifically to the time t because the
result of such an observation for given (t t) would vary st—atistically in a
manner independent of t and it is therefore reasonable to postulate that
the lapse of time until t' causes no error.

The amplitude for x' will be, by (20) and (21):

(m( m„)'"[i/h(t' t)]""J[(h—(x, t)exp[ —[i)r/h(t' —t)] gm, (x,' —x )']dx (34)

and for () by (4) and (33):

(35)

Here the last two terms in the bracket are independent of the variables of
integration and so result merely in multiplying P by a factor of absolute
value unity, which has no effect on the probability: this factor, together,

7 E. H. Kennard, 1oc. cit. p. 348.
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with i before the integral sign, we shall simply omit. The second term in
the bracket vanishes as t'~~. Hence in the limit we can take as the am-
plitude for v at time t

and for the momenta t, =m;o;, by (4):

(36)

The last equation is the familiar result yielded by matrix theory; M($)
M*(() (E $ is the probability that an exact measurement of the momenta
made as described above would yield values lying within d t. Equation (36)
leads at once to the Heisenberg relation between the degrees of indetermina-
tion of a coordinate and its momentum.

We shall verify the normalization of M (f); one of the formulas obtained
in doing so will be required later. Putting I = f3f($) IlI~($)df we have:

I= h "Judg J)J) i()))xf*((x")exp[2m.ih ' g,f,(x, ' —x,")jdx'dx", (37)

I= h —" x' dx' d * x" exp 2m.ik ', „x,' —x"," dx".

This change in the order of integration could be made without question if
both P(x ) and M($) vanished outside of certain finite limits (besides satis-
fying the usual requirements). Now it happens that (as is not hard to show)

P and M cannot have this particular property simultaneously. Accordingly
we shall simply assume that P and M vanish at infinity fast enough so that
the change of order is possible (caution in regard to this is really necessary;
for instance, the integration with respect to $ cannot be carried out first of
all). We now recognize in the double integral following dx' simply the Fourier
integral expansion of g*(x'), multiplied by h". Hence

I= jf ~(x')~*(")dx (38)

and I=1 by (3).
The physical definition of velocity contained in equations (33) is not

immediately applicable to cases other than free motion. According to
Heisenberg we are at liberty to imagine the forces abolished at any instant,
so that the motion becomes free and exact measurements of velocity and
momentum can then be made. If we do not wish to adopt such an assumption
then wg might still call 3II ($) as defined by (36) the "amplitude for the
momenta, " without asking whether this quantity has an immediate physical
meaning or not; this will be done during the remainder of this paper.

5. The "Coriservatioe of IIIomeritum "Equ. (36) lea.ds to an important
connection between momentum and force. The total component of momentum



of all particles in one direction, say that of $, where cr = 1, 2 or 3, isPt:It) ~&i,
the "mean probable" momentum of the whole system is therefore

ts—1

F4+it M(k)M*($)4
k~P

=h—"
g+3g,,d) P x' P* x" exp 27i-~h

—' $, x, ' —x," dx'dx"

lldbl lt, —p*( x) epx[2 irrh ' Q$, (x, ' —x,")]dx'dx"

by (36), after an integration by parts in each term of the sum (f being
assumed to vanish at the limits). The integrals in the last equation are the
same as that in (37) except that a derivative replaces f (x'); hence, making
the corresponding change in (38):

h t' BP(x)r.= ——P l
P*(x)dx.

'21/'Z 8Xex+3$

We can also shift the differentiation onto f* by an integration by parts;
hence we can write

(40)

Now from (10)
ss-1

gm&'~i& u J iiPdx= —g
k~0 4m i ~ &a+3)c ~&a+8)'e

I' therefore equals the first member of the last equation and from (18)

dF " ' p' BV
dx.

dt l 0 Bx+qy,

(41)

(42)

Eqs. (40) and (41) might be interpreted as identifying the total "momen-
tum of the probability" with that of the particles. Eq. (42) shotvs that the

time rate of change of the total mean probable momentum of the system is equal
to the total mean probable classical force uponit, internal forces cancelling out in
the usual manner This is the .theorem of the conservation of momentum in the

nezo mechanics.
The same theorem can be deduced for one particle alone, or for any other

separate portion of the whole system, but we shall not elaborate the details.
6. The Measurement of Energy and other Secondary Magnitudes In order.

to arrive at the Schrodinger theory of atomic energy levels from the present
standpoint it is necessary to exhibit each energy value as the result of a
mechanical experiment. Now in any measurement the quantity actually
observed seems to be always a position (on a scale, plate, etc.); from the
standpoint of physical observation the coordinates seem to play a funda
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mental role, while such things as momentum and energy are arrived at only
as subsidiary quantities. The measurement of a magnitude of the latter type
can be illustrated as follows:

Let II (P, q) =H (P', ' ', P"; q&, ' ', q„) be the Hamiltonian for a
system when the motion of the center of mass is omitted, and let F (p, q)
= F (pi p„, qi q„) be any function of coordinates and moments which
"remains constant in time. " In order to "measure" F let us suppose that we
are able to immerse the system in a field that exerts a uniform force upon it
parallel to the coordinate x of its center of mass and "proportional to F" (an
actual example being a non-homogeneous magnetic field exerting a force
proportional to magnetic moment, as in the Stern-Gerlach experiment).
Then the total Hamil tonian is

Hi =H(p, q)+($'/2M) PF(p, q—) z (43)

where (= momentum corresponding to p, M = mass of system and I' is the
field constant; and

8P 8 8'f 8
~—= H —4—r g f+———PgF

Bt Bq 2M Bx' Dq

Putting

& =Pi(q, t)P«(z, t)

we find that the variables will separateprovided F ( ) p=xp for all &

is, provided

Pi(q, t) =y(t, «)~(q, «)

(45)

(46)

F( «8/Bq&q)Q(q, K) =KG(q, g),

x being a constant. The usual argument then leads to the equations:

H( «8/Bq, q)N—(q, ') = Wm(q, ') )

«d~/dt —II'p p-«2+i«w&

(48)

(49s, b)

—p~+g,
Bt 2M Bx' (50)

where W is a new constant. (We could also add an arbitrary term g(tg « in
(50) provided we subtracted q(t)y in (49), but this would not alter II'). We
shall suppose that u and P, are separately normalized to satisfy (3)'; to make
this possible, ~ and H/' must be "characteristic values" for their respective
equations.

If u is to satisfy both of Eq. (47) and (48) it is necessary that the operators
F and H should "commute, " i e., if we write F( ), H( ) for

' For normalization in the continuous spectrum by the Weyl method cf. E. Fues, Ann. d
Physik 51, 281 (1926)
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F( s—d(f)q, q), etc. , we must have F( ) H(') =H( ) F( . ).
For, applying H( . ) to both sides of (47) and F( . ) similarly to (48)
and comparing: H( ) F( . )u=z H( )u = KWu= WF( )u
= F( ) H( )u. This condition upon F severely restricts the number
of mathematical quantities that can be measured physically in this manner;
angular momentum is, however, among them.

Assuming that F and H do commute, application of H( ) to both
sides of (47) yields the result that

F( ) [8( )u] =«[H( )zc].

Thus, if u is a characteristic function of (47), H( )u is likewise a solution
of this equation, and, since we may safely assume that it will satisfy the same
boundary condition of finiteness as u, it must also be a characteristic function.
If only one such function exists for the value of ~ in question, then we have
H( )u =Au where A is a constant, and u satisfies (48) with W=A. If ~ is
a multiple characteristic value, it is easily shown that a corresponding number
of linear combinations of the functions belonging to ~ can be constructed
which are cha. racteristic functions of (48) as well for certain va, lues of W.
In short, when F and H commute (47) and (48) have in general a common
set of characteristic functions.

Turning now to Eq. (50) this has the same form as the wave-equa. tion
for a particle in one dimension subjected to a uniform force Px(cf. (5) with
n=1, s= —P~x). We have seen above (below Eq. (16)) that such a force
merely gives to the entire packet the classical displacement 5 = ,'Pst'(M-To.
be sure, the packet also spreads out in the x-direction, just as it would in the
absence of the field, but this spreading is easily seen from equation (20) to be
ultimately proportional to t, so that the uncertainty in 8 due to it can be
diminished at will by increasing t, We can then take

z = 28M/Pt'

calculated from observed values of 5 and t and the known values of M and P,
as a "physically observed" value of F.

Now, in general, we cannot assume that Pi satisfies (45) to (47) initially.
Probably we can, however, safely write the initial amplitude for t =0 in the
form, gati'(q)fz'(x), and we can then expand pi'(q) in terms of the normalized
characteristic functions u(q, s) of (47), thus:

the series extending over the point spectrum and the integral over the con-
tinuous spectrum for ~. The complete packet at time t is then

(I „)g,(,t „)+f(I'"' '(I )I', ( i )d, (S2)

where $2(x, z, t) is the solution of (50) for the value ~, chosen so as to reduce
to P2'(x) at t = 0, and W„or W has the value for which u(q, g)- is a character-
istic function of (48) as well.



QUANTUM MECHANICS

The factor f&(x, z, t) will then produce in each term of P or partial packet
the displacement 8 described above. The components of the initial packet
corresponding to diferent values of ~ will thus be spread out into a physical
spectrum; those corresponding to the discrete values, ~„, will finally become
clearly separated from each other, while those belonging to the continuous
spectrum will overlap with components belonging to a continually decreasing
range of ~ as time goes on. It is easily shown that the probability of finding
the system in any particular component packet is equal to c„c„*,or to
c(x)e*(K)dK; also that the probability for particular values of q is u(q, z„)u*
(q, K, ) or n(q, x) u*(q, x), respectively.

A process of this general nature seems to be the justification, from the
mechanical point of view, for the common assumption that the coefficients
c„and e(x) represent the probability amplitude for the quantity F

If we put Ji =H, we have the case of a measurement of the "energy. " In
this case (47) and (48) both become the ordinary Schrodinger equation
without the time factor.

7. The Convervation of Energy and Angular 3IIomentum. This topic has
been discussed by others but perhaps a few additional remarks from the
present standpoint may not be out of place.

Let P be expanded in the series (52) with W in place of x, n denoting
characteristic functions of Schrodinger's equation, (48). Then if the system
is isolated and conservative the quantities c„c„*or c(W)c*(W), representing
probabilities for the energy, are independent of the time: this is the well-
known equivalent of the Conservation of Energy for an isolated system.

But we can sometimes measure the energies of separate parts of a system,
as of an electron and atom before and after a collision. To illustrate such a
measurement let H =H~+H2 where Hi and H~ commute with each other and
therefore also with H; then we might subject the system simultaneously to a
force in the x-direction proportional to H&, another in the y-direction pro-
portional to H& and a third in the s-direction proportional to H and thereby
measure by the above method H&, H& and H all at the same time. In that
case we should have three equations in place of (47), viz.

H, ( eB/Bq, q) u —Wgn, =H2( eB/Bq, q) u = W—,u,

and

Hl( eB/Bq q) +Hng( eB/Bq q)n = Wn,

which also represents (48). The partial packet that is brought to any given
point in xys space then represents energies t/I/'& and W'2 for the parts and j/t/

for the whole and it is clear from the equations that

Wg+Wg= W.

Thus, as is usually assumed, the conservation of energy holds exactly
between a system and its parts.

Finally, if the potential energy V contains the. time, we have classically

dH/dt = BV/Bt.
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On the new theory it can be shown that

dW/dt = J)P(BV/itt)de (53)

where

W = g„c„c*W„+Jf c(W) c*(W) Wd W (54)

and represents the "mean probable" value of the energy; the c's are the
coefficients in (52) when Ii =II and z = W and are functions of the time along
with t/. The proof of this theorem involves only a straightforward use of
eqs. (2) and (48) and of the formulas for the coefficients in an expansion in
terms of the n's and will not be given here.

Similar results can be obtained for any quantity F which commutes with
the Hamiltonian II. The fact that the c's in (52), which are the probability
amplitude for F, are independent of the time whenever H is, constitutes the
quantum equivalent of the classical theorem that F is conserved during the
motion of a conservative system.

An important case is that of angular momentum and magnetic moment,
which has been discussed brieHy by Oppenheimer'0 and Weyl" and more
completely by Darwin with special reference to the Stern-Gerlach experi-
ment.

The theory of quantum mechanics has been presented in the present
paper from a strictly mechanical point of view. This approach seems to be
the most natural one, but it leads unfortunately to very few predictions that
are within the reach of experimental verification. The field of atomic energy
levels, in which the theory has so far achieved its principal successes, can be
explored only with the aid of radiation, employed not as a geometrical clue
to position but with reference to the process of its emission and absorption
by matter. This process has been treated by Dirac, "but in a very abstract
manner. The most urgent need at present seems to be a satisfactory theory
of the electromagnetic field; when this has been found, we may hope that it
will be capable of statement in a readily apprehended form similar to the
theory which Schrodinger and Heisenberg have given us for mechanical
phenomena.

CORNELL UNIVERSITY,
Feb, 10, 1928.
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