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THE THEORY OF THE HERSCHEL-QUINCKE TUBE

BY G. %V. STEWART

ABSTRACT

The well known simple explanation of the Herschel-Quincke interference tube
is inadequate. It is herein shown that the ratio of the transmitted to incident acoustic
energy is

[4(sin (n&+ns)/2) (cos (ns n~)/2)—,~ ( [1—2 cos (n3+n2)+ coslns n~) ]—+4 sins ins+nt) }

wherein a2 and n3 are the phase changes over the two branches of the tube. This
ratio is zero not only when a3 —n& =(2n+1)2r, as formerly explained, but also when

&3+A2 2n2r, provided a3 —a&Q 2n&7r, where n and n1 are independent integers.

Comparison of the new theory w'.h exyeriment. —The transmission in an inter-
ference tube having branches 10.0 and 14.3 cm in length was studied and showed
satisfactory agreement with the new theory. Practically zero transmission was
found at frequencies of 1100 and 3300 d.v. and this is in accord with the simple
theory of difference in path, as well as the revision here presented. But there was
also serious interference at 1000, 2000, 3000 and 4000 d.v. and this fact is in accord
only with the revised complete theory.

'HE Herschel-Quincke tube' consists of a branched conduit as shown in
Fig. 1 constructed with constant total cross-sectional area. Assume a

wave travelling to the right. If the difference in path is (2rs+1)X/2, m an
integer and X the wave-length, then the excess pressure at the distant junction
point is zero and the wave therefore is not transmitted to the right but is
reflected back. This is the accepted simple explanation. That it is not suN-
cient was found by the writer in an experimental test shown by the indicated
points in Fig. 1. The frequencies A and II are those given by (2n+I)X/2.
Clearly the actual frequencies at which there is interference are much more
numerous. The purpose of this article is to outline the theory, and to make
a comparison of theory with experiment.

Theory. Assume a plane wave incident in conduit 1 at junction 123. There
are seven possible waves to be considered; two each in conduits 1, 2, and 3,
and one in conduit 4. The waves to the right in Fig. 1 will each have the dis-
placement amplitude indicated by A and a subscript designating the conduit.
Waves to the left will be similarly designated by 8, Excess pressure, P,
and displacement, (, may be represented as follows:

P =pa~He'"', $
—3e'"'

wherein p and a are respectively the density of and velocitv in the medium,
co is 27t times the frequency and e'"' represents the simple harmonic nature
of the oscillations. In the waves 8, it will be necessary to use the positive
sign for pressures and negative signs for displacements, for a displacement

' Herschel, Phil. Mag. 3, 401 (1833); Pogg. Annal. 31, 245 (1834); Quincke, Pogg. Annal.
128, 177 (1866}.
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to the right is positive. At the junction 123, the continuity of pressures and
displacement may be written:

Pressures: (A 1++1) (A 2+ +2) (A 3+2I3)
Displacements:S&(A& —&&) =S2(A2+AB 82 B3)

(2)

wherein S indicates the area and the subscript the conduit.
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Fig. 1. Diagram of Herschel-Quincke tube and the relation between percentage transmission
and the square root of the frequency.

If o.2 is the change of phase in conduit 2 and n3 in conduit 3, then corres-
ponding equations for junction 234 are:

2&
—ia 2++2~i+ 2 —g 4

—g &~-ia3+ +3~ia3

S,(A, '"—8, '"+A, '"—8, '"j =S,A, f (3)

There are in Eqs. (2) and (3) seven unknowns and six independent linear
equations. By solving, the ratio bet&veen A4 and A & can be found as follows:

~

A 4/A g
~

= [ [4 sin (n3+~2)/2] [cos (a.'3 —~&)/2] ]

[ [1—2 cos (n3+n~)+cos (n3 —n~) ]'+4 sin' (n3+ag) ] '" (4)

This is the square root of the transmission or of the ratio of the trans-
mitted to the incident intensity.
Inspection of Eq. (4) shows that: transmission=0, if n& —aa ——(2m+1)s,
n =0, 1, 2, 3, etc. or if n2+n3 ——2n~, m =0, 1, 2, 3, etc. , provided in each case
that n2 —0.3/2n~m, n~ ——0, 1, 2, 3, etc. The former condition is well known,
but the latter is new.
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Measurement of transmt'ssion .The apparatus was the same as that des-
cribed' in the measurement of acoustic impedance. The Herschel-Quincke
tube was inserted and removed from the conduit and the ratio of the two
intensities taken as the transmission of the interference tube.

Comparison of theory and experiment F. ig. 1 is self-explanatory. The
frequencies A and 8 have the well known conditions a& —n2=(2n+1)sr.
The other minima, at 1000, 2000, 3000 and 4000 d.v. , are more numerous and
comply with the condition o,3+o.'2 = 2n~, 0.'3 —o,2/2n&vr. In fact the curve is
drawn by computation from Eq. (4) assuming a=34300 cm/sec. The
observed values of the minima are not in exact agreement with the theoretical
curve and for several reasons. In the first place the junction points are not
made with sufhcient care to conform to the ideal condition of constancy of
total area. The junction should be a Y-tube. Moreover, no consideration is
given to viscosity in the theory. In view of these considerations experiments
and theory agree very satisfactorily.

The question arises as to why the incorrectness of the theory of the tube,
known for almost a century, was not noticed. Apparently the explanation
in terms of the difference between a.3 and u2 was so simple that no one
observed that the waves in 2 and 3 travelling to the left do not exper-
ience constancy of area on arrival at junction 123 and consequently suffer
a reHection. In fact, in general, the waves travel about the 'circuit in a very
complex manner, impossible to follow without resorting to the use of equa-
tions.

The conclusion is that the theory of the Herschel-Quincke tube as herein
derived is in satisfactory agreement with experiment.
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