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ON DIELECTRIC CONSTANTS AND MAGNETIC
SUSCEPTIBILITIES IN THE NEW QUANTUM MECHANICS
PART III—APPLICATION TO DIA- AND PARAMAGNETISM

By J. H. Van VLECkK

ABSTRACT

1. General mathematical theory.—Modifications are given in the general deri-
vation of the Langevin-Debye formula by means of quantum mechanics published in
part I which are required by the moment now being magnetic rather than electric.
The main additions are the appearance of a diamagnetic term, and allowance for the
fact that the magnetic moment consists of two parts arising respectively from orbital
electronic motions and from the electrons’ internal spins. These parts cannot always
be treated as rigidly coupled to form a “permanent” resultant moment. The Hamil-
tonian function used for the internal spin is that of a spherical top.

2. Diamagnetism.—The writer’s previous claim that Pauli’s formula for the
diamagnetic susceptibility can be applied to molecules as well as atoms is shown to be
invalid because of the anomalous fact that the square of the angular momentum, un-
like the average angular momentum, does not vanish even in .S states when there is
more than one nucleus. Pauli’s formula is instead an upper limit to the diamagnetism
in non-monatomic molecules and is a good approximation when the Schrédinger wave
function has nearly as much symmetry as in an atomic S state.

3. Paramagnetism of atoms.—Limiting values for the paramagnetic suscepti-
bilities of atoms are x = N [4s(s+1) +k(k+1)]82/3k T and x = [ Ng2j(j+-1)82/3k T ]+ Na
where B is the Bohr magneton and « is a constant. These two formulas are rigorously
applicable when the multiplet intervals are respectively very small or very large
compared to k7, and are valid regardless of whether the magnetic field is strong
enough to change the quantization by producing a Paschen-Back effect. The formula
for small multiplets yields susceptibilities slightly different from those given by
Laporte and Sommerfeld’s expression for this case, and is much simpler, as they over-
looked the contribution of the portion of the magnetic moment which is perpendicular
to the invariable axis.

4. Paramagnetism of molecules.—The susceptibility is calculated on the basis of
the Hund theory of molecular quantization. Formulas are given applicable to his
couplings of type (a) and type (b) provided in the former the multiplet intervals are
either very large or very small compared to k7. The experimental susceptibilities
for O, and ClO; are in accord with the assumption that the normal states are respec-
tively 35S and 2S terms. In the particular case of .S terms the numerical results are the
same in the atomic and molecular formulas, but, unlike previous theories, it is not
necessary to suppose the orbits are as freely oriented in molecules as in atoms.
Polyatomic molecules may have lower paramagnetic susceptibilities than diatomic
ones because the dissymmetry causes large fluctuations in electronic angular momen-
tum.

5. Paramagnetism of nitic oxide.—Spectroscopists have recently found that the
normal states of the NO molecule are 2P terms separated by 120.9 cm™.. This permits
an unambigous calculation of the susceptibility of NO which agrees with the experi-
mental value within 1.5 per cent. Deviations from Curie’s law are calculated which
result from the doublet interval being comparable with 7. These deviations should
be detectable experimentally if the susceptibility of NO could be measured over a
wide temperature range.
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588 J. H. VAN VLECK

N PART I! a very general derivation was given of the Langevin-Debye

formula for the temperature variation of the susceptibility. This proof
was based on the new quantum mechanics, and assumed only that the
molecule has a “permanent” moment of constant magnitude, and that
the energy intervals between the various component levels of the normal
state are small compared to k7. The latter requirement implies that the
precession frequencies of the moment vector are small compared to kT/k
Part 11? was less mathematical, and described various applications of the
theory of part I to phenomena connected with dielectric constants. Part I1I
will similarly discuss applications to magnetism. The theories of electric
and magnetic polarizations are sufficiently similar so that the analysis in
part I gave simultaneously the main elements of a proof of Langevin’s
formula for the paramagnetic susceptibility and of Debye’s formula for the
dielectric constant. However, in the detailed demonstration in part I we
assumed for simplicity that the moment of the molecule was electrical rather
than magnetic, and so before proceeding to the magnetic applications we
must in section 1 give the modifications in the derivation which are required
by the fact that magnetic moments result from angular momentum, both
of the orbital and spin type, rather than from electrostatic charge distri-
butions. This section may be omitted by readers not interested in the
mathematical detail. As mentioned in part I, we believe our analysis is
considerably more comprehensive than most of the usual treatments with
specialized models, but at the same time it must be emphasized that we do
not aim to probe into the electrodynamics of the interior of the electron which
is responsible for the anomalous spin moment.

Note added in proof. A remarkable paper by Dirac (Proc. Roy. Soc.,
Feb. 1928) has just appeared in which he shows that the requirement that the
Schroedinger wave equation have the invariance demanded by relativity
is adequate to give the terms ordinarily ascribed to internal spins of the
electron. Thus our treatment of the electron as a spherical top to derive the
Hamiltonian function inclusive of spin terms in a magnetic field suddenly
loses much of its interest. However, it must at the same time be emphasized
that all the essential results of the present paper are unaltered; the only dif-
ference is that our work prior to about p. 594 becomes rather antequated, as
Dirac’s postulates give a Hamiltonian function such as (5) directly and
elegantly. From there on everything goes as before. The internal spin may
indeed be a myth, but as Dirac’s magnetic terms are the same to the first
order as for a top model of the electron, the phrase “internal spin” may well
continue to be a convenient label for Dirac’s duality effect. The calculation
of the susceptibility (unlike the ordinary linear Zeeman effect) necessitates,
to be sure, knowledge of the energy through terms of the second order in the
magnetic field . Here there is only an academic difference between the
Hamiltonian with the top model and Dirac’s Hamiltonian, as in the latter

1 J. H. Van Vleck, Phys. Rev. 29, 727 (1927). This and the following reference are referred
to as respectively parts I and II throughout the present paper.
2 J. H. Van Vleck, Ibid. 30, 31 (1927).
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the duality or apparent spin anomaly introduces no terms at all in H?
in an Eq. analogous to our (4) whereas we show that with the spherical top
such terms, which represent diamagnetic induction in the internal motion,
are negligible because the radius of an electron is small compared to the
radius of an orbit.

1. GENERAL MATHEMATICAL THEORY

Hamiltonian function. The first step is to derive expressions for the
Hamiltonian function and magnetic moment in a magnetic field. We shall
start the calculation with classical mechanics and later give the quantum
modifications. If we regard the molecule as composed of a number of
charged particles (nuclei and electrons) then it is well known that in a mag-
netic field derived from a vector potential A, the Lagrangian function is®
Lo+ X .(es/c) (vi-A), where L, is the Lagrangian function in the absence
of the field and where ¢; and v; are respectively the charge and vector
velocity of a particle. The summation, of course, extends over all the
particles in the system. For simplicity in printing we shall henceforth omit
the subscript 4, so that an expression such as 2_p,, for instance, means
2i Pss etc. In virtue of their large masses, the nuclei have such small
velocities that we may disregard? their contribution to the sum. Hence
the summations will be taken only over the electrons in the system, per-
mitting us to put ;= —e with e=+4.774X10-1°, It is, however, to be
understood that the coordinates and velocities of the nuclei will still enter
in the part L, of the Lagrangian function. As the Uhlenbeck and Goudsmit®

3 Cf., for instance, Schott, “Electromagnetic Radiation,” p. 284.

4 According to Langevin’s formula the paramagnetic susceptibility coming from a particle
of charge ¢ and mass m moving in an orbit with an angular momemtum p is proportional to
p*e?/m?. This shows that the paramagnetic susceptibility coming from nuclei is small compared
to that coming from electrons, for the value of ¢/m for nuclei is less than 1073 that for electrons,
while the average value fo p for nuclear motions (i.e. the average rotational quantum number
in band spectra) is well under 102 quantum units #/2= at ordinary temperatures. As a matter
of fact the contributions of the nuclei to the susceptibility are even smaller than suggested by
this estimate, for at ordinary temperatuers the rotational quantum numbers specifying the
motion of the nuclei about the center of gravity, though <102, are sufficiently large so that the
part of the susceptibility due to nuclear angular momentum is nearly the same as though we
used classical theory, where the angular momentum assumes a continuous distribution of
values. Now Miss van Leeuwen (Leyden Thesis; also J. de Physique (6), 2, 361, 1921) has
shown that when there is a classical distribution of angular momenta the paramagnetic and
diamagnetic susceptibilities cancel, leaving zero resultant susceptibility. Consequently the
contribution of the nuclei to the susceptibility is very approximately zero and can be disre-
garded in comparison with the electronic terms even in molecules whose electrons give only
diamagnetic effects. The magnetic moments due to nuclear motions can, however, be detected
in the Stern-Gerlach effect (Knauer and Stern, Zeits. f. Physik, 39, 780, 1926). It has been
variously suggested that nuclei have internal spins, as do electrons, but the contribution to
the susceptibility is, of course, negligible because of the factor 1/m?. The molecular rotation
may change the susceptibility slightly by distorting the electronic angular momentum, but
this is a second order effect which we will not consider.

§ Uhlenbeck and Goudsmit, die Naturwissenschaften 13, 953 (1925); Nature, 117, 264
(1926).
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electron which possesses an internal or “spin” degree of freedom is quite
generally accepted, we cannot treat the electron as a point charge, but rather
a continuous charge distribution. Hence we cannot use a Lagrangian
function of quite the form given above, but instead must take it to be

L=Lot foj (/) (v~ A)dV, )

where dV denotes an element of volume of the electron and p is the corre-
sponding charge density. Far too little is known at present about the
mechanics of the spin electron to determine how v and A are distributed in
its interior. Nevertheless, following Darwin® and others, we will treat
the electron as a charged spinning body of spherical symmetry, the justifi-
cation for this model being that it is adequate to give the facts connected
with the Zeeman effect.” Then as generalized coordinates specifying each
electron we may use three cylindrical coordinates R, z, ¢ fixing its center,
and three Eulerian angles® 6, ¢, { associated with its internal spin. If
the magnetic field is of uniform magnitude H and directed along the z-axis,
then A,=—3%Hy, A,=%Hx, A.=0, and it is readily seen that (1) becomes

L=Lo+(H/2c) 3°[—eR$+D(+ cos6)]. (2)

Here D denotes the electrical moment of inertia [/ fo(R—R)?dV of an elec-
tron, where R, is the value of R at its center. The second and third right-hand
terms of (2) are respectively the contributions of the orbital and internal
motions of the electron to the integral in (1). These two contributions are
separated by adapting to electrical rather than gravitational density the
familiar mechanical theorem that the angular momentum of a system
relative to a fixed point equals the angular momentum relative to the
center of gravity plus the angular momentum which would result if all
the mass were located there.

The momenta conjugate to the various generalized coordinates ¢, are
pr=0L/dqg;. Hence pr, p., P have the same kinematical significance? as

6 C. G. Darwin, Proc. Roy. Soc. 1154, 1 (1927).

7 There is, however, the much-emphasized difficulty of double-valued Schroedinger char-
acteristic functions; see Darwin, ref. 6, also Proc. Roy. Soc. 1164, 227 (1927); Pauli, Zeits. {.
Physik, 43, 601 (1927).

8 Here 0 and ¢ denote polar and azimuth angles specifying a given axis in the electron,
while { is the third Eulerian angle required to determine the amount of rotation around this
axis. Darwin notes® that by a proper transformation it is possible to eliminate one of the
three internal coordinates of the electron from the Hamiltonian function because the choice
of axis is immaterial in a body with spherical symmetry; this however, need not concern us, in
the present work.

9 The physical basis for the need of modifying the definition of momenta in a magnetic
field is perhaps more apparent when it is recalled that the angular momentum of a dynamical
system about an axis is not an adiabatic invariant when a magnetic field is applied along this
axis. For instance, in the simple case of a system of one particle without internal spin, pg
is instead an adiabatic invariant and the extra term —HeR?/2¢ in the definition of pg is just
equal and opposite to the change in angular momentum brought about by application of the
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without the magnetic field, whereas py4, py, pr are modified by the addition
of terms linear in H. For instance, p, equals 0Lo/d¢—HeR?/2c, where
dLo/d¢ is the ordinary definition mR%*p (neglecting relativity corrections
etc. to be mentioned on p. 593).

In accordance with general dynamical theory, the Hamiltonian function
is 2r ¢ (@L/d¢) —L. Since the added terms in the Lagrangian function
are linear in the generalized velocities, this is the same as 2_x x(dLo/d¢r) — Lo.
Thus the Hamiltonian function E is exactly the same as in the absense
of the field except that some of its arguments are modified. The physical
meaning of this is, of course, that magnetic forces do no work, so that the
energy is the same function of the coordinates and velocities as in their

absence. Among the arguments of £ we must now take
pe+HeRY2¢, py—DH/2¢c, ps—DH cos §/2c 3)

instead of pg, py, pr, for the expressions (3) are the same functions dL/dgy
of the coordinates and velocities as are pg, py, pr when H=0. Thus the
Hamiltonian function is

E= 3 (1/2m) [pri+p2+(ps"Y/ R |+ T+V+U
+ 22(1/2D) [ po2+ pe*2+ cosec? 6(py " — p;° cos 6)2], (4)

where 4% $,°% p:° are abbreviations for the expressions given in (3) and
hence are functions of H. This result is one which has been often given!®
except for inclusion of the spin terms. The first sum in (4) is the orbital
kinetic energy. The second line is the kinetic energy of internal spin, with
I denoting the electron’s moment of inertia. 7" is the kinetic energy of the
nuclei, whose magnetic effect we have disregarded. V is the mutual electro-
static potential of the charges composing the molecule. U is the mutual
intra-atomic magnetic energy, including that resulting from the torques
on the electrons’ spin axes exerted by the other charges in the atom or mole-
cule. These torques are, of course, responsible for the “spin doublets,”
“multiplet structures,” etc. U, unlike V, is a function of the momenta as
well as the coordinates, and hence will involve H, as in a magnetic field
the arguments (3) must be used. However, U is already small, and its de-
pendence on H enters as essentially a correction term, so that its contribution

field. Thus in such a system it is the elements of the matrix p4 and not mR? ¢ which must be
equated to integral multiples of %/2# in the new quantum mechanics. In other words we must
quantize the constant angular momentum before application of the field rather than the
fluctuating value in the field. When we consider spin effects or more than one particle, an
individual pg is not constant even in the absence of the field and cannot be quantized; it is
rather the sum 2(pg+py) which equals the magnetic quantum number times the factor
h/2w.

10 The orbital part of the Hamiltonian function (4) has often been given in the literature
including the magnetic terms resulting from the modification in the definition of the momenta
(cf., for instance, Born, Atommechanik, p. 239). The part of (4) resulting from spin kinetic
energy is obtained by modifying in accordance with (3) the arguments of the usual expression
for the Hamiltonian function of a spinning body, which is given, for example, in Born’s Atom-
mechanik, p. 31. ‘
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to the part of the Hamiltonian function involving H is very small in com-
parison with the ordinary paramagnetic terms. This contribution is, in
fact, shown in fine print below to be of the same order as the relativity cor-
rections to the Zeeman effect and henceforth will be disregarded. Further-
more we may neglect the termsin H? in the spin kinetic energy of the electron
in comparison with those in H? in the orbital kinetic energy, for D?/I is
very small in comparison to ¢2R?/m since the internal radius of an electron
is insignificant compared to the radius of an orbit. This will later be seen
to mean that the internal spins make no contribution to diamagnetic sus-
ceptibilities. With this discarding of inconsequential terms, the Hamil-
tonian function (4) may be written with the aid of (3)

E=Eo+(He/2me) 3 (py+2p4)+(He¥/$mc?) IR?, (5)

where E; is a Hamiltonian function of the same form and arguments as in
the absence of the field, and the remaining terms may be regarded as per-
turbative ones. In forming (5) we suppose, following Uhlenbeck and Goud-
smit, that D/2cI = —e/mc, or that the ratio of spin magnetic moment to spin
angular momentum is twice the corresponding orbital ratio.

Magnetic moment. The magnetic moment of the molecule in the direction
of the applied field is

M, = —(¢/2c) D R2¢+(D/2c) D (J+¢ cos ). (6)

The first right-hand term ensues since the equations of electron theory show
that the magnetic moment due to the orbital motion of a charge —e is'!
—(e/2c)rXv. The second term is the analogous expression for the
magnetic moment of a spinning charge distributed with spherical symmetry,
for Y -+¢ cos 0 is the z-component of spin, and D is the electrical moment of
inertia. Instead of using (6) it is convenient to have a formula expressing
M, in terms of the coordinates and momenta rather than coordinates
and generalized velocities. Such a formula is immediately deducible from
the Hamiltonian function by a simple differentiation, for

M, =—3E/dH. )

To prove (7) we note that E involves H only through the arguments (3)
and consequently

ey

oH

dps 2¢ 0Opy 2¢ 0pr 2

<6E eR* O0E D OE Dcos 0> ®

The identity of (8) and (6) follows immediately since by Hamilton’s equations
IE/dps =g, etc.

Relativity Corrections. We have so far for simplicity used Newtenian mechanics. It is,
however, not difficult to determine the relativity corrections for the orbital part of the magnetic
moment. In the relativity mechanics, the part of the Hamiltonian function arising from

1 See, for instance, “Theories of Magnetism,” p. 21 (Bulletin no. 18 of the National
Research Council).
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the orbital kinetic energy is2? Y mc[(14+Km22)2—1] instead of D> K/2m, where
K =pp?+p2+ps®/R:. By expanding the radical as a series in H, it is easy to show that the
relativity corrections change the part of the orbital energy which is of the first order in H by
a factor v, where v =(1—v2/C?)!2, This result has, in fact, already been obtained by Sommer-
feld, Debye,** and Pauli* The relativity corrections to the paramagnetic and diamagnetic
susceptibilities, second order Zeeman effect, etc. can likewise be calculated. Here the correction
factors are of the same order of magnitude as v—1.

We give only a subordinate place to the relativity corrections because usually they do not
appreciably affect the susceptibilities. It is readily found™ that in a hydrogenic atom the time
average of v, which is the significant part of v for the first order Zeeman terms is
1 —(2n2Z2%4/n?h>c?) =1 —2.7X107522/n?, where # is the principal quantum number and Z is
the effective nuclear charge. This expression differs appreciably from unity only for the inner-
most orbits. Many such orbits (e.g. the K orbits), however, have no orbital angular momentum,
and furthermore the inner orbits are grouped in “closed configurations” without resultant
angular momentum, such as are completed in forming inert gases, so that )_p4 taken over a
completed group vanishes even when the individual angular momenta do not vanish. Since
similar orbits have the same average value of v, the sum )_vpg also vanishes, and thus there are
no first order terms involving important relativity corrections. Pauli’* shows, however, that
these corrections would be contrary to experiment if we supposed the inner groups had a re-
sultant angular momentum, as in the old Landé model of a magnetic atom core which has been
discarded since the advent of the spin electron. It is not immediately obvious, especially in
the quantum mechanics, that the phase relations in a completed group are such that ) _vp
vanishes instantaneously as well as on the average, so that conceivably even with zero re-
sultant angular momentum the inner orbits might give rise to appreciable rapidly fluctuating
terms proportional to ¥ —+v in the Hamiltonian function, and thus make a contribution to
the paramagnetic part of the second order Zeeman effect. This, however, seems quite im-
probable. Individual electrons do not compensate each other as regards their contribution to
diamagnetism, but the inner electrons have such small values of 72 that they are responsible
for a small fraction of the total diamagnetism, and so here also the relativity corrections are
unimportant.

Along with the orbital relativity corrections one must consider the term arising because
the intra-atomic magnetic energy U involves H through the arguments (3). Thomas and Fren-
kel have shown that in a hydrogenic atom the secular part of U is the mean value of
eZ(p\p2)/2r*m?c* where r is the radius of the orbit and p; and p; are respectively the orbital
and spin angular momentum vectors. To calculate accurately the correction coming from U
it would be necessary (unlike the usual calculation of spin doublets to terms in 1/¢? for H =0)
to know the periodic part of U, for the product of this part of U and the factor R? involved by
(3) will give a significant secular contribution. Unfortunately the periodic part of U is unknown
at present, but for calculating only orders of magnitude we may assume U is given rigorously by
the preceding expression. In a magnetic field the change in py, is by (3) of the order HeR?/c,
while we neglect the change in p; since the spin electrical moment of inertia is small compared
to eR? Thus to first order terms in H the contribution of U to the additional energy due to
the magnetic field is roughly of the order wHZ2e/nhmc?, as R*/r® is of the order 4w2Ze*m/n2h?.
This contribution is clearly comparable with the relativity correction to the Zeeman terms,
which is the mean value of eH(y—1)py/2mc and in fact involves the constants e, 4, ¢ in the
same way. In the foregoing we have discussed primarily the effect on the energy, but the cor-
responding corrections to the magnetic moment can be deduced from Eq. (12) below.

In studying internal spins of the electrons it is probably quite vital that one use relativity
mechanics, as Breit, Thomas,!® and others show that the spin may be so rapid that peripheral

2 Cf. for instance, Born, Atommechanik, p. 232.

13 A. Sommerfeld, Phys. Zeits. 17, 491 (1916). P. Debye, Ibid. 17, 507 (1916).

“UW. Pauli, Jr., Zeits. f. Physik, 31, 373 (1925).

15 L. H. Thomas, Nature, 117, 514 (1926). J. Frenkel, Zeits. f. Physik, 37, 243 (1926).
18 G. Breit, Proc. Nat. Acad. 12, 451 (1926). L. H. Thomas, Phil. Mag. 3, 1 (1927).
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velocities are comparable with that of light. However, far too little is known about the internal
structure of the electron to permit us to use the relativistic analysis, as in the preceding work
we would have to know how the charge distributes itself inside the electron. Nevertheless,
the value —e/mc for the ratio of spin magnetic moment to spin angular momentum seems well
established from evidence on the Zeeman effect and multiplet separations, and this must be
regarded as applying inclusive rather than exclusive of relativity corrections since they are
important for the spins. (Then m denotes the rest mass, and spin angular momentum is to
be defined in the generalized relativity sense which allows for variation of mass with speed).
In using this value of the ratio we have thus perhaps rather illogically incorporated the rela-
tivity corrections in our Newtonian model of the electron’s spinning motion. We use this
model simply to show that internal spins do not contribute appreciably to diamagnetism, and
also, as do others, because it is a convenient way of formulating what is known about the
electron’s spinning motion in the absence of an adequate electrodynamics of its interior.
(Note added in proof: Dirac’s work alredy quoted clears up this situation greatly.)

Passage to quantum mechanics. In studying actual molecular systems it
is, of course, necessary to use quantum mechanics, but fortunately the
adaptation of the preceding analysis to this is immediate. The Hamiltonian
function is still (5), and Eq. (7) is still applicable. Only, of course, the
coordinates and momenta, also £ and M,®, are now matrices.!” The justi-
fication for these statements is that the Hamiltonian function (5) involves
no non-commutative products, except possibly in E,. In other words there
are no terms of interest involving simultaneously a coordinate and its
canonically conjugate momentum, so that by the correspondence principle
there can be no ambiguity in the quantum adaptation. This is the same
argument as that given by Heisenberg and Jordan'® in their paper on the
Zeeman effect, in which they use a matrix Hamiltonian function similar to
(5) except for omission of the diamagnetic term. If we use the abbreviation

M,= ——(6/21%6) Z(P¢+2P¢)J (9)

then a typical matrix element of the perturbative part of the Hamiltonian
function is by (5)

— HM (njm; '§'m")+(H?/8mc?) Y R(njm ; w'j'm’). (10)

We use in (10) and elsewhere in this paper the same notation as in part I,
except we no longer print matrices in bold-face type, and the reader is
referred to p. 733 of I for a full explanation of its significance. Briefly,
the first index » represents the totality of quantum numbers whose effect
on the energy is large compared to &7, while the index j represents those,
other than m, whose effect is smaller than, or comparable with 27". The third

17 As already mentioned on p. 731, part I, we use the matrix rather than wave formulation
of the new quantum mechanics. The same results are, of course, obtained with either formu-
lation in virtue of their general mathematical identity, and the popularity of susceptibility
calculations by means of the wave equation seems rather surprising inasmuch as the matrix
method has usually yielded the susceptibility formulas first and most directly. Except for the
spin terms, a wave equation corresponding exactly to the Hamiltonian function (5) is deducible
from the generalized Schroedinger equation given by Gordon (Zeits. f. Physik, 40, 117, 1926)
and others, which includes the vector as well as electrostatic potentials.

18 W. Heisenberg and P. Jordan, Zeits. f. Physik, 37, 263; (1927).
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index m is the magnetic quantum number specifying the spacial orientation,
and is not to be confused with the mass of the electron, which appears as a
factor in the denominator and is also denoted by m. It is to be clearly under-
stood that R2(mjm; n’j'm’) denotes an element of R?, not the square of an
element of R. Also it is to be noted that the summation sign immediately
preceding R? means a sum over all the electrons in the molecule, and is not
to be confused with the other sums of the matrix elements over various
quantum numbers indicated by subscripts after the summation signs.

Energy and moment of a stationary state. The effect of the magnetic field
on the energy may now be calculated by the perturbation theory for the new
quantum mechanics which has been developed by Born, Heisenberg, and
Jordan,!® provided the field is weak enough to permit power series develop-
ment in H. We may suppose the system non-degenerate as this involves
no essential loss of generality in calculating susceptibilities (see note 19
and p. 740 of part I). If we retain terms through H?, the energy of the state
njm is

SNSRI S AN P
W = W i) — EM i mjn) 2 S 52700

hw(ngm 3 n'j'm’)
+ (H?2e/8mc?) 3 R¥(njm ; njm), (11)

as the first and second terms of (10) correspond to Hi, H,in the notation
of Born, Heisenberg, and Jordan. The prime after the summation sign means
that the one term #’j'm’ =njm is to be excluded. The frequencies », energy
elements W(njm), and other matrix elements appearing on the right-hand
side of (11) are to be calculated for H =0, as indicated by the absence of the
superscript®,

The time average of the magnetic moment of a state in the direction of
the applied field can be obtained directly from (11) by means of the for-
mula20.21.22

19 Born, Heisenberg, and Jordan, Zeits. f. Physik, 35, 557 (1927); especially Egs. (29)
and (31), p. 567.

20 Eq. (12) is not to be confused with (7), as (12) gives the average rather than instan-
taneous value of the magnetic moment defined by (6); also the Hamiltonian function E in (7)
is the energy expressed in terms of the generalized coordinates and momenta, whereas in
(12) W denotes the energy expressed as a function of the quantum numbers. The distinction
between the instantaneous and average values of the magnetic moment is only a nominal one,
at least with the definition (6) we use, for (6) is based on the conventional formula
(—e/2mc)rXv of the electron theory for the orbital magnetic moment and this formula is
valid only on the average, as in its derivation terms are omitted which average out if the
motion is recurrent.

21 It is interesting to note that formulas similar to (7) and (12) also hold in the case of
electric rather than magnetic polarization. In the electric case E=FEy,+p Fez so that
dE/dF =) ez=— M, and from this a formula analogous to (12) can be established by
the same method as that given above.

22 Eq. (12) can also be established by application of the principle of adiabatic invariance.
As magnetic forces do no work, the change in energy of a stationary state when subject to a
magnetic field is due to the work done by electric forces attendant to creation of a magnetic
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M, =—3WB/3H or M. (njm ; njm) = — W H (njm)/dH . (12)

Eq. (12), which is even taken by some writers as the definition of the mo-
ment, is easily proved to follow from our definition (6) by the theorem that
the change in energy brought about by the addition of a perturbative term
to the Hamiltonian function is to the first order the mean value of this term.
This is a well known theorem in the old quantum theory, and Born, Heisen-
berg, and Jordan!® show that it also holds in the new quantum mechanics,
with, of course, the understanding that the requisite mean value is formed
by keeping only diagonal elements in the matrix representing the perturba-
tive term. If we change the magnetic field from H to H+AH and if we neglect
terms in (AH)?, the term thereby added to the Hamiltonian function is
(QE/dH)AH, and by the theorem just quoted the corresponding change
AW in energy is very approximately the average value of this term.
Eq. (12) now follows on using (7).

The formula for the magnetic moment obtained by combining (11) and
(12) is similar to Eq. (3) of part I except that it applies to magnetic rather
than electric polarization, and except for addition of the diamagnetic term,
which arises from the second line of (11) and finds no analog in the electrical
case. It is to deduce this term that we have given most of the preceding
analysis, as otherwise we could have started directly with a formula similar
to (3) of part I. The diamagnetic effect is essentially a correction for the
fact that in a magnetic field the moment is no longer given by (9) because
of modifications in the kinematical significance of the canonical momenta.
Even without the diamagnetic term, however, the time average M,*® (njm;
njm) of the z-component of magnetic moment of -a stationary state in the
presence of the field would not equal the time average M.(njm; njm) of this
component in its absence, for there is another term in H?2, on the first line
of (11), which is similar to that in the electrical case. This other term is
associated with the type of second-order Zeeman effect for which the formula
is given by E. Hill and the writer in a preliminary abstract (No. 41) on p.
715 of thisissue, and would be absent were Larmor’s theorem applicable.

Calculation of susceptibility. Because of the similarity of (11-12) to Eq.
(3) of part I, the analysis in sections 2 and 3, part I, may now be applied,
and should be read conjunctly by those desirous of following the present sec-
tion in detail. The addition of the diamagnetic term occasions no particular
difficulty, for it was shown on p. 744, part I, that the effect of averaging
over the various quantum-allowed orientations is to replace R? by 27%/3,
just as in the classical theory where the orientations are random. We use
r? to denote x%+y2+422, the square of the radius, while R?=x2+y2. We
now separate the matrix M, defined by (9) into “high” and “low” frequency
elements, as fully explained on p. 733, part I, which are denoted respectively

field, which can be shown to give (12) if the field is applied adiabatically. We do not use this
method because it would require us to enter into the rather involved quantum mechanics of
non-conservative systems. However, a paper by Born shows how the concept of adiabatic
invariance can be given a meaning in the new mechanics (Zeits. f. Physik, 40, 167, 1927).
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by M.(njm; n'j'm’) (n’#n) and u.(jm; j'm’). Similar expressions without the
subscript z will be used to denote the high and low frequency elements of
the scalar magnitude of the magnetic moment vector measured, of course,
before application of the field H.

There is, however, one respect in which it is necessary to modify the
calculation of the susceptibility given in section 3, part I. The magnetic
moment in general consists of two parts, viz., the “orbital” and “spin”
moments. In the various component levels constituting the normal state
these two parts may be inclined to each other at different angles, so that
their vector resultant may have different values. Thus we cannot always
suppose the resultant magnetic moment “permanent,” so that we cannot
always effect the simplification given at the top of p. 738, part I. Instead
the contribution of the low frequency elements must be expressed as in the
first line of (12), part I. If we make only the fundamental assumption
that the “low” and “high” frequencies are respectively small and large
compared to kT/h, the analysis in part [ shows that the formula for the
susceptibility is

x=Na+Nu/3kT, (13)
where by (6) and (12), part I,

;:2= Zi.m[{ Ei’m’ I /J,(jm ;j'm'l 2}8_W(M)IkT] . ' (14)

Zi’me—W(ni)lkT

Eq. (13) differs from (1), part I, only in the insertion of the double bar in
the second right-hand term. The expression (14) has the significance of
being the time average of the square of the low frequency part of the mag-
netic moment vector, this average itself being averaged over the various
component levels of the normal state weighted in accordance with the
Boltzmann factor e 7 ®d/¥T  This follows since by the rules for matrix
multiplication the expression in the inner sum of the numerator of (14)
is a diagonal element of the matrix u?, i.e. the time average of u? for the state
njm, which is no longer assumed to have a numerical value invariant of j.
The sum over j, m, of course gives the average over the various component
levels of the normal state. We use a double rather than single bar in (13, 14)
in order to emphasize the distinction between the statistical mean (14) of
the time average, and pure time average for a single state.

The term N« in (13) represents the diamagnetic effect, together with the
contribution of the high frequency elements, which may be simplified as
on pp. 738-740, part I. Using (17), part I, and adding the diamagnetic term,
the value of this term is seen to be

|M(n;n’)]2 Ne?

v(n' ;n) 6mc?

2.7, (15)

2N
Na=—- n’ (n'n
«@ 3 Z (n’5n)

where M (n; n') is defined as on p. 739, part I. In order to make the denomi-
nator positive, we use the emission frequencies »(#’; #) which have the
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opposite sign from the negative or absorption frequencies »(z; #n') used in
(17), part I. We have assumed in (15) that the matrix element r2(njm; njm)
representing the time average of the square of the radius of a given orbit
for the state njm has the same magnitude in all the component levels of the
normal state; i.e., has a value invariant of j or m, which we denote by #2.
This condition is usually met in gases, as the magnetic quantum number m
merely quantizes the spacial orientation, and in atoms the various j-levels
usually represent various relative orientations of the spin and orbital angular
momenta. Such differences only in orientation clearly do not affect the size
or shape of an orbit. In molecules the index j may in addition be associated
with a splitting into components due to different amounts of molecular
rotation, but the rotational quantum number does not influence the mag-
nitude of 7 if we neglect the slight centrifugal expansion studied on p. 54,
part II.2

2. D1AMAGNETISM—D1iscussioN or Eq. (15)

If the magnetic moment matrix M contains low frequency elements, the
second right-hand term of (13) is usually much greater than the first, and the
material is paramagnetic. If, however, the moment contains only high fre-
quency elements; i.e., vanishes if we average over the high frequency part,
this second term vanishes. The susceptibility is then given by (15), and is
paramagnetic or diamagnetic according as the first or second-right-hand
member of (15) is the greater. Now the expression (15) is independent
of the temperature as long as the number of molecules N per cc. does not
vary. This is in accord with the fact that experimentally in gases the
diamagnetism is usually independent of the temperature at constant density.
On the other hand the diamagnetism of many solids vary with the tempera-
ture. A possible explanation of this difference is that in solids conditions are
more complicated than assumed above in deriving (15), so that possibly
the different levels constituting the normal state do not have the same radii.
When this is the case it is necessary to replace #2 by the statistical mean of
the time average of 72, i.e., by an expression 72 defined by an equation iden-
tical with (14) except that u is replaced by 7; the term Ne, of course then
varies with temperature due to varying distributions among orbits of different
sizes. Also (15) breaks down if the frequencies »(»’; #) are not all large com-
pared to kT /h. »

Diamagnetism of atoms. 1If it were not for the spin anomaly, the con-
stancy of angular momentum in atoms would also imply the constancy of
magnetic moment, and the matrix M would consist solely of diagonal ele-
ments so that the first right member of (15) would be wanting. Actually
because of different ratios for the spin and orbital parts, the resultant
magnetic moment and angular momentum vectors are not parallel, and M
contains periodic elements whose frequencies are classically that of the mutual
precession of the spin and orbital angular momenta, and quantically are
proportional to the energy intervals in multiplets whose components differ
as to inner quantum number. However, the normal level of a diamagnetic
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atom is ordinarily a 1S state, for the existence of either a spin or orbital
angular momentum different from zero implies paramagnetism (see also
note 34). Consequently the periodic terms in the moment matrix still dis-
appear, and the expression for the susceptibility becomes

x= —(e2N/6mc?) Y _r*. (16)

This formula is one which has been derived clasically by Pauli,® and as
noted by Glaser and Barnett,? differs by a factor 2 from the original Langevin-
Weber formula, which was derived not with real electronic motions, but
with the assumption of hypothetical particles confined to move in one plane.
Pauli assumed Larmor’s theorem, which is legitimate in singlet states.

The average value of 72 needed in Eq. (16) is easily deduced for hydrogenic
atoms from Waller’s formula for mean values in Keplerian motion in the
new quantum mechanics, and has been calculated by the writer? and by
Pauling,® both of whom find 7*=2%a?n?(5n2—3k2—3k+1), where
ao=h¥4m*mZe?=.53 X 1078271, the radius of a one-quantum orbit in the
old theory, while # is the principal quantum number, and % is one unit lower
than the conventional azimuthal quantum number of the old theory. The
old quantum theory would have —3(k+1)? in place of —3k2—3k+1. An
experimental value of the diamagnetic part of the susceptibility of atomic
hydrogen can only be deduced rather indirectly by applying the method of
mixtures to compounds. Even if hydrogen gas could be dissociated into the
monatomic form, it would be paramagnetic like the alkali vapors because of
spin doublets. However, approximate comparisons of the theory with experi-
ment can be made by assuming the orbits in other atoms to be approximately
hydrogenic in character if a proper value be assigned the effective nuclear
charge. Such comparisons have been given by the writer for helium,?” and
especially by Pauling? for a large number of other atoms. The reader is
referred to their papers for details. The diamagnetism calculated for atomic
hydrogen and helium is three times as great as in the old quantum theory,
and agrees much better with experiment. ,

Diamagnetism of molecules. In non-monatomic molecules the first right
member of (15) does not vanish. The reason is that the total electronic
angular momentum contains fluctuating terms due to the continual transfer
of angular momentum back and forth between the electrons and nuclei even
though the resultant angular momentum of the entire molecule is constant.
The low frequency and constant elements of the magnetic moment vanish,
to be sure, in a diamagnetic molecule but because of this transfer effect the
high frequency elements will not disappear even if the molecule is in alS
state. This statement will be proved in detail in the following paragraphs in
fine print. Hence in non-monatomic molecules the square of the magnetic
moment or of the electronic angular momentum does not vanish even when

28'W., Pauli, Jr., Zeits. f. Physik, 2, 201 (1920).

24 A, Glaser, Dissertation, Munich, 1924; S. J. Barnett, Phys. Rev. 25, 835 (1925).
% J. H. Van Vleck, Proc. Nat. Acad. 12, 662 (1926).

2 L. Pauling, Proc. Roy. Soc. 1144, 181 (1927).
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the average amount is zero. This result at first seems contrary to the cor-
respondence principle, for in classical ‘theory most diamagnetic models of
the molecule have zero magnetic moment instantaneously as well as on the
average. The explanation of this paradox is that the expression in classical
mechanics which corresponds to the first right member of (15) involves the
derivatives with respect to the action variables of the amplitudes in the
Fourier expansion of the magnetic moment,?” and these derivatives, of course,
do not necessarily vanish because the amplitudes themselves do. Also,
the frequencies involved in transfers of angular momentum between nuclei
and electrons are, in the terminology of band spectroscopists, “electronic
frequencies” associated with transitions from normal to excited states. In
applying the correspondence principle we must consider both the initial and
final states in classical models, and classically the excited states may be
paramagnetic and have non-vanishing amplitudes in the Fourier expansion
of the moment because of the transfer effect. This effect is, of course,
absent in atoms, and the periodic part of their magnetic moment arises only
because of the spin anomaly previously discussed.

Proof that periodic part of electronic angular momentum does not vanish in non-monatomic
molecules.?® We shall neglect the spin moment, as this does not enter appreciably in the trans-
fer effect. From the relations between matrix and wave mechanics established by Schroedinger,
Eckart, or Dirac, a diagonal matrix element of the square of the orbital electronic angular
momentum is

Pin; n)= —(h2/47r2)f < fﬂn*[( S P (P ( P Jundxy - - - dudyy - - - dge (17)

where u, is the Schroedinger wave function for the state », »,* is its conjugate, and P, is the
operator ¥9/dz —2d/dy, with similar definitions of P,, P,. The index # symbolizes the aggregate
of all the electronic quantum numbers. To prove (17) different from zero it suffices to prove
that P2(n;n) does not vanish. Let us suppose that the axis joining two of the nuclei is located
in the xy plane and makes an angle 6 with the x-axis. Let us introduce the new coordinates

i’ =ux; cos O4y; sin 0, i’ = —ux; sin O4y; cos 9, 2=z @GF=1,-++,59)
which are fixed relative to the nuclei, and let us suppose that u.(x:/, - « -, 2,’) is expressed in
terms of the coordinates xy, * - +, 2, and 8. Then we find
P2(n; n)=P,%(n; n)=—(h2/4=?) f cee fu,,*am,,/amdx, oo das. (18)

Now (18) has a value P,”*(n;n) invariant of 6, and so it is immaterial if we average over 6.
This permits a partial integration with respect to 8 which throws (18) into the form

P2(n; n) = (12/4x%) f ce f | 014n /0 |*dss + - + dza. (19)

The expression (19) can clearly vanish only if %, is independent of 4. This is, however, incom-
patible with the fact that the wave equation involves 6 through the mutual potential energy
of the electrons and the two nuclei under consideration. In other words the wave function in
the xyz system will be different depending on how the molecular axis is oriented relative to
this system. Thus the square of the electronic angular momentum will vanish only if % is a

27 This may be verified by noting that Eq. (17), part I1, is the classical analog of (3), part I.
28 This method of proof is suggested by Born and Oppenheimer’s paper on molecules,
Ann. der Physik. 84, 457 (1927). :



MAGNETIC SUSCEPTIBILITIES IN QUANTUM MECHANICS 601

a function only of the relative positions of the electrons and their distances from a single fixed
center. This is, of course, possible only if the nuclei exerted no forces or if all the nuclei coin-
cided, 7.e. an atom.

It may be remarked that the above proof applies to a molecule with any number of nuclei
and electrons. In the particular case of a diatomic molecule we may distinguish between the
different behaviors of the components of angular momentum parallel and perpendicular to the
axis of figure. The parallel component is constant, and an integral multiple of #/27 and so may
vanish, as it does in S states. The perpendicular component is easily shown to vanish on the
average (due, essentially to the continual precession of the electronic angular momentum vector
about the axis of the molecule), but its square does not vanish, as we have taken the z-axis in
(18) perpendicular to the line joining the nucleus. In the very special case of a molecule with
only one electron, the vanishing of (17) or (18) requires that the wave function be a function
of r only.??

The foregoing shows that I was in error in stating in'a former article®
that Pauli's formula (16) could be applied to molecules as well as atoms.
Instead the complete expression (15) must be used.?® The cause of my mistake
was that I naturally supposed the electronic angular momentum vanished
- instantaneously rather than only on the average. I am indebted to Dr.
Kronig for questioning my extension of Pauli’s formula to molecules. His
letter, which advanced considerations closely related to those given in note
30, led me to discover the need of always including both terms of (15) in
non-monatomic molecules. This modification does not affect my calculation®
of the diamagnetism of H,, as this was made by treating the hydrogen
molecule as a hydrogenic atom with properly adjusted “effective charge,”
and with this rough approximation the first right member of (15) is zero,
as it vanishes for atoms in the .S state.

Experimentally most gases are found to be diamagnetic, and this shows
that the first right member of (15) is ordinarily less than the second in 1S
molecules. Perhaps the symmetry of the wave function is often sufficiently
close to that of a 1S atom so that (16) is a fair approximation. Itis to be noted
that in any case Pauli’s formula (16) is an upper limit to the diamagnetic
susceptibility.

3. PARAMAGNETISM OF ATOMS

We shall treat only the case where the spin angular momenta can be
considered firmly coupled together to form a resultant spin angular momen-

29 This can also be seen by transforming to polar coordinates in the manner of L. Bril-
louin, J. de Physique, 8, 74 (1927), especially footnote, p. 77.

30 A simple general illustration of the need of considering both members of (15) is furnished
by a hypothetical system of two concentric rigid bodies of spherical symmetry, 1.e., two spheri-
cal magnetons, of electrical and mechanical moments of inertia Dy, I1 and Ds, I respecitvely.
The diamagnetic susceptibility to be expected if we treat the magnetons as separate bodies
and keep only terms analogous to the second member of (15) is readily shown to be — (N/4c?)
(D2/I+D:/I,), whereas if we let the two magnetonsbe rigidly joined together to forma single
body, the true susceptibility is — (N/4c?) (D14 D2)?/(I1+12), as D1+D2 and I+ I, are the
total moments of inertia. Thus a different result is apparently obtained depending on whether
we treat the magnetons as a single rigid body or as two bodies so strongly coupled as to form
a virtually rigid whole. The cause for this discrepancy is that when the magnetons are con-
sidered as separate bodies the first right member of (15) will not vanish if there is interaction
between them.
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tum vector P; of permanent magnitude, and where the orbital angular mo-
menta likewise form a resultant P, of permanent size. The quantum
mechanics shows that the matrix elements of the squares of these vectors are
then

P2(n; n)=s(s+1)h*/4x?, Pi2(n ; n)=k(k+1)h2/4x2, (20)

where s=4% in doublets, 1 in triplets, etc., while £ is the Russell-Saunders
quantum number which quantizes the total orbital angular momentum.
Thus k=0, 1, 2,31in S, P, D, F terms. This k (often denoted by I) is not to
be identified with the azimuthal quantum number of an individual electron
unless there is only one not in a completed group. The type of coupling which
we are considering is characteristic of the simpler forms, of spectra, the so-
called “normal multiplets” or “multiplet structures of the first order.” The
extension of the theory to other types of coupling where the interaction be-
tween individual spin and orbital momenta is stronger than the coupling
of spin or orbital momenta among themselves, furnishes no particular
difficulty.

The spin and orbital magnetic moment vectors are, of course, connected
with the corresponding angular momentum vectors by the relations

M,= —¢P;/mc, M= —eP/2mc. (21)

The various values of the total angular momentum P, which is the resultant
of P, and Py, give the various components of a “multiplet” level. Because of
the different proportionality factors in the two Egs. (21), the resultant
magnetic moment is not in general parallel to P. We may consider two limit-
ing cases, in which the separation of components, or in other words the energy
of interaction between P, and Py, is respectively very large or very small
compared to k7. :

1. Multiplet intervals small compared to kT. As already mentioned on
p. 598, the only periodic elements involved in the magnetic moment vector of
an atom are those associated with the mutual precession of the spin and or-
bital angular momentum vectors. Thus when the multiplet intervals are
small compared to kT, these elements will be entirely of the “low frequency”
category, and the first right member of (15) disappears. If then we neglect
the small diamagnetic effect always superposed on the paramagnetic we
may set a=0 in the expression (13) for the susceptibility. Since u is the
resultant of the vectors u; and u; we have

vz=982+yk2+vs'yk+9k'vl- (22)

By u, u., urx we mean the “low frequency parts” of the vectors M, M,, M.
Now in the absence of high frequency elements the distinction between the
uw's and M’s disappears, and we may take u, ur=usr u, in (22) since P,
and P; commute in multiplication (cf. ref.!8).

Since the temperature factor e¢~%/*T may be disregarded under the
supposition of energy intervals small compared to k7T, the statistical average
of the product u,- ur may be taken as zero. This is an obvious result in very
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strong fields, where P, and P; are quantized separately relative to the axis
of the field and hence have no correlation between their directions if we
average over all orientations. Furthermore the statistical average of this
product is invariant of the field strength (neglecting small saturation terms
proportional to %) and hence vanishes in all fields if it does in very strong
ones, for an easy extension® of the spectroscopic stability relations given in
section 4, part I, shows that it is invariant of the mode of quantization if
the system is made degenerate with respect to j, m by neglecting the inter-
action between P; and P, and between H and both Pj, P,. We can also
verify directly that the statistical average of Pj- P, vanishes in weak fields
by noting that here P2(nj; nj) =j(j+1)h%*/4x?, so that using (20) and a
relation between the components of P analogous to (22) we have

i=k+s

P, Pi=(h/4r*B) > (2j+1)[j(j+1)—s(s+1)—k(k+1)]=0.

7=l k—s|

The constant factor B in the denominator is the total number B=(2k+1) -
(2s+1) of components constituting the normal state and the factor 2j+1
is the a-priori probability or number of m components belonging to a given
value of the inner quantum number j.

The values of the first two terms of (22) are furnished immediately by
(20, 21). Since (20) does not involve the indices j, m, the insertion of a double
bar over these terms in substituting (22) in (13) is unnecessary. Since the
preceding paragraph shows the third and fourth terms of (22) give no effect
on the average, we see that the expression (13) for the susceptibility becomes

x=N[4s(s+1)+k(k+1)]8%/3kT (23)
where (8 is an abbreviation for the Bohr magneton
B= he/4nmec. (24)

It is to be emphasized that the derivation of (23) has not rested upon a
quantization peculiar to a particular field strength, as this is not involved in
(20). Consequently if we neglect saturation effects, which are disregarded
throughout the article, and which are ordinarily small in paramagnetic
media, the susceptibility is invariant of the field strength, even though the
Paschen-Back effect may materially alter individual Zeeman components.
As we have so often mentioned, such results are typical of the new mechanics.
If the field is so strong that the separation of Zeeman components is larger
than the multiplet intervals, it would be necessary to develop the energy in
descending rather than in ascending powers of I as assumed in part I, but
(23) then clearly applies if we neglect small terms proportional to 1/H, - - -,
as there is then separate spacial quantization of the spin and orbital momenta;
our main result is that (23) applies also in weak fields.

81 A proof similar to that given in section 4, part I, establishes the invariance of sums of
products of the form fg* as well as ff*.
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2. Multiplet intervals large compared to kT. When the separation of
multiplet components is large compared to #7', only the one component which
has the lowest energy is the normal state. The matrix elements of M are
now all of the “high frequency” type unless J=J’. Here J is the inner quan-
tum number, which we denote by a capital letter when it is different than the
general index j used throughout parts I, II, III. In the previous case 1,
J and j were identical, but now J belongs to the high frequency category #.
The low frequency part of M is now only the part which is parallel to the
resultant angular momentum P and so does not involve the precession about
the “invariable axis” of P. Heisenberg and Jordan’s analysis!'® shows that the
square of this part of M is g?J(J+1)3? where g is the Landé g-factor
(3/2)+(s*+s—k2—k)/2(J2+J). Thus (13) becomes

x=Ng2 I (J+1)8%/3kT +Na. (25)

The first member of (25) can also be deduced from quite elementary con-
siderations, as is usually done, by noting that in the present instance the
mean square of the magnetic quantum number m is J(J+1)/3 in either the
old® or new?® quantum theory. The second member, given by (15), is usually
disregarded, as it is often small. A later paper by E. Hill and the writer on
the second order Zeeman effect shows that in the present case it becomes

Net T 1) fG+1) 7 Ne
Na= : - 2
@+ DrlG—1;7) v(j+1;j>} o ="

with the abbreviation f(j)=j'[(s+k+1)?—;2][2—(s—Ek)%]. Usually the
normal state is a minimum or maximum of J, depending on whether the
multiplet is normal or inverted, and then the first or second term of (25)
vanishes. The frequencies in the denominator of (26), although assumed
large compared to !eT/h, are usually small enough to make the sum of the
first two terms large compared to the third, except in S states, where only
the diamagnetic effect remains.?

Comparison with other work. We shall omit comparisons of Egs. (23, 25)
with experiment, as we have nothing new to contribute. In the absence of

(26)

82 Sommerfeld, “Atombau,” 4th Ed., pp. 630-648 and references.

3 J. H. Van Vleck, Nature, 118, 226 (1926).

3 A peculiar situation arises when the only level in which there is normally an appreciable
concentration of electrons is a multiplet-component which has a zero inner quantum without
being an S-term. The first member of (25) will then vanish, so that the susceptibility will be
equal to the expression (26), and further the second term of (26) will be different from zero.
Thus the material will exhibit a weak paramagnetism which is independent of the temperature,
in striking contrast to the usual Curie law. Hund interprets the lowest level in Eutt* as a
7F term having j=0, while Laporte and Sommerfeld consider the lowest level in Cr** to be
a 8D term likewise with j=0. These are thus cases in which there might conceivably be this
weak paramagnetism invariant of temperature. However, the strong paramagnetism of Eut++
and Cr** seems to show pretty definitely that in these ions there is an appreciable concentra-
tion of electrons in states having inner quantum numbers different from zero, so that if the
assignment j =0 to the lowest level is really correct there must be other components separated
from the lowest by an interval small compared to k7/k.
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data on paramagnetic monatomic vapors, most of the experimental check
is furnished by monatomic ions in solution. The calculations of other
writers’?:® have ordinarily been made on the supposition that only one
multiplet component need be considered, so that (25) is applicable. Now
neglecting the second right hand term, Eq. (25) is exactly the formula
which Sommerfeld and others have derived with the old quantum theory,
so that it is unnecessary to revise their comparisons with experiment. This
agreement between the old and new theories is rather fortuitous, and results
because both give the same z-components of the angular momentum P
even though they give different values of P and of the angle between P
and z. This agreement, however, applies only with “strong” special quanti-
zation in the old theory, and as discussed by the writer on p. 37, part II,
and also in an earlier note,* the new mechanics has the great advantage that
it is immaterial whether there is weak or strong special quantization. The
most satisfactory experimental confirmation of (25) consistent with existing
spectroscopic data seems to be found in Hund’s® calculation of the suscepti-
bilities of the rare earths.

The susceptibilities of ions of the iron group, also even the rare earths
in some cases, are not adequately explained by Eq. (25) without contra-
dicting spectroscopic theory on normal terms. In a noteworthy article
Laporte and Sommerfeld® attribute this to the fact that the multiplet
intervals may not be large compared to #7. They show that susceptibilities
in the iron group are intermediate between those predicted for very wide and
very narrow multiplets, provided “inverted” multiplets are assumed in some
instances. One correction, however, must be noted to the work of Laporte
and Sommerfeld. Their formula for the limiting case of intervals small com-
pared to kT is not (23) but a considerably more complicated expression
(their Eq. 6). The reason is that they overlook the fact that the second as
well as first order Zeeman effect, in other words both terms on the first line
of (11), contribute to the second right member of the susceptibility expression
(13) in narrow multiplets. This extra contribution results from the component
of magnetic moment perpendicular to the resultant angular momentum,
as the Landé g-factor embodies only the parallel component. The effect
of this correction is usually not large and so leads to no important change in
their results. (It makes the magneton numbers p,,(0) in their table 2 become
0, 14.9, 22.2, 25.8, 27.2, 29.4 instead of 0, 14.5, 21.6, 24.7, 26.0, 29.6)

When spectroscopists have accurately determined the width of multiplets
contiguous to the normal state it will, of course, be possible to make exact
calculations of the susceptibility by means of equations such as (5), part I,
instead of relying on the limiting formulas (23) and (25) which are rigorously
applicable only to infinitely narrow or wide multiplets.

% F, Hund, Zeits. f. Physik, 33, 855 (1925).
% Laporte and Sommerfeld, Ibid., 40, 333 (1926).
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4. PARAMAGNETISM OF MOLECULES

Diatomic molecules will first be treated. Hund?’ has emphasized that
in such molecules we must distinguish between two kinds of coupling of the
spin axis relative to the rest of the molecule, which he disignates as types
(a) and (b). In (a) the energy of interaction between the spin and orbital
angular momentum is large compared to that between the spin and the
angular momentum due to rotation of the molecule as a whole, and con-
sequently the spin axis is firmly quantized relative to the “axis of figure”
which connects the two nuclei. In (b) the reaction between the spin and the
molecular rotation is the more important; the spin axis then no longer makes
a fixed angle with the axis of figure, and instead the spin angular momentum
vector and the remaining (or orbital+rotational) angular momentum of the
molecule are quantized relative to each other to form a resultant represented
by the quantum number j. In either (a) or (b) the component of the orbital
angular momentum P which is parallel to the axis of figure equals o3h/2,
where ¢}, is an integer. The perpendicular component of P; will generally
belong entirely to the high frequency category, for the effect of the value of
o, (unlike o, below) on the energy is very considerable, or, interpreted
kinematically, the vector P; precesses rapidly about the axis of figure. This
ineffectiveness of the perpendicular component is perhaps the main distinc-
tion from the atomic case, and is exemplified by the fact that terms in band
spectra are classified as of the S, P, D, F,---, type according as
cx=0, 1, 2, 3, - - -, rather than on the basis of the value of k. Thus in (22)
we must identify u;%, the square of the low frequency part of the orbital
moment, with the square ¢,28? of the component of this moment parallel to
the axis of figure. At first thought it may appear as though oi(ox+1)
should enter in place of ¢;2, as it so often does in quantum mechanics, but
the square under consideration is one of a component rather than of the entire
magnitude of a vector, and so can have the same value ¢;?3% as in the old
quantum theory. (In the hydrogen atom, for instance, the square of the
z-component of angular momentum is 7242/4x2, not 7(r+1)h?/4w?, where 7
is the magnetic quantum number.) That our value of the square is correct,
can of course, also be verified by writing down the matrix elements?®® repre-
senting the x, v, z projections of this component, and then actually calculat-
ing the square.

Case (a). In (a) the component of spin angular momentum parallel to the
axis of figure is o,h/27, where o, is a half or whole integer according as the
multiplicity is even or odd. A multiplet is generated by giving o, different

37 F, Hund, Zeits. f. Physik, 36, 657 (1926); 42, 93 (1927).

38 These matrix elements are those of the symmetrical top and have been given by Den-
nison (Phys. Rev. 28, 318, 1926); Kronig and Rabi (Ibid. 29, 262, 1927) and Rademacher and
Reiche (Zeits. f. Physik, 41, 453, 1927). They are, of course, the equivalent of the Héonl-
London intensity formulas. In applying these matrices to our problem, it is, of course, neces-
sary to determine the constant factors in accordance with a magnitude o3//2w parallel to the
axis of figure, as in Condon’s (Phys. Rev. 30, 781, 1927) work on the Zeeman effect. This
means, for instance, taking a; =b; =0, ¢;= o8 in Dennison’s paper.
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values ranging from —s to +s. As with atoms, the susceptibility will be
different according as the intervals in such a multiplet are small or large
relative to #7". In the former event the matrix elements of the spin moment
vector will be entirely of the low frequency type, for the only motion of the
spin vector relative to the figure axis is a precession about the axis of figure,
whose frequency is identified with the multiplet intervals. Therefore there is
no distinction between M,? and u,?, permitting us to calculate u,® from (20)
and (21). Furthermore the statistical average of the product u,-us is zero,
for with narrow multiplets we may neglect the temperature factor, so that
components in which the sign of o, is the same as or opposite to that of o
have the same weight. Thus by (13) and (22) the susceptibility now becomes
neglecting the small term (15)

X=N[4s(s+1)-}—¢rk2]ﬂ2/3kT. (27)

In the alternative event that the multiplet intervals in case (a) are large
compared to kT, the quantum number o, assumes in the normal state only
the one value which gives the lowest energy. The matrix elements represent-
ing the component of the spin moment vector perpendicular to the axis of
figure belong to the “high frequency” type, for they represent transitions
Ag,= +1 to other multiplet components which must now be classed as
excited states. Thus only the parallel component of the spin moment is
effective, and so us? is given by an expression 40,232 analogous to that for
uit. Furthermore ue: uir=ux- 4, is now simply 20:0,82%, and so we have

x=NQ20s+01)?8Y/3kT, (28)
as is also obvious from the fact that now the low frequency part of M is the
component (20,+0)B parallel to the figure axis.

Case (b). In Hund’s (b) coupling, the matrix elements of the spin moment
are clearly all of the low frequency kind, for case (b) arises only when the
spin multiplets are narrow compared to the spacing between the different
rotational energy levels, and it has already been shown in part II, pp. 34
and 46-49, that the latter intervals can be considered small relative to &7
Further the statistical average of the product ws-us is zero, as follows by
the spectroscopic stability relation indicated in note 31 or as can also be
seen by averaging the expression for this product in case (b) to be given by
E. Hill and the writer in a later paper. Consequently the susceptibility is
given by (27), the same formulas as for case (a) when in (a) the multiplets are
small compared to kT. Formula (27) will likewise hold for types of coupling
intermediate between (a) and (b), where the rotational and multiplet energy
intervals are comparable, as (27) demands only that the spin moment contain
no high frequency elements. This is just another example of the invariance
of the susceptibility of the mode of quantization, so long as the magnitudes
of frequencies relative to kT are unaltered. As a matter of fact, case (b)
is most often encountered only when ¢; =0, as usually a value of ¢ different
from zero will give sufficient interaction between orbital and spin moment
to yield the firmer coupling (a).%

39 Cases, however, are known in which there is épproximately (b) type coupling even
with oz=1. Cf. Mulliken, Phys. Rev. 30, 785 (1927).
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Paramagnetism of O2. The two common paramagnetic gases are O, and
NO. There is at present no definite spectroscopic evidence on the proper
term assignment to the normal state of the oxygen molecule, so that all
that can be done is to see what assignments will explain the observed magnet-
ism. This is nicely accounted for by supposing the normal state of O, to
be closely spaced %S levels, for substitution of the values s=1, 6;=0 in (27)
yields a volume susceptibility .142X10-¢ at 20°C and 76 cm pressure.
Bauer and Piccard’s?® experimental value is .1434X107%, while Wills and
Hector find* .1447 X 107%. We have here applied the formula (27) appropriate
to narrow multiplets which is, of course, legitimate on account of the weak
interaction between the spin and the rest of the molecule in 3S states. The
odd multiplicity demanded by 3S states is reasonable since O; contains an
even number of molecules. Usually, to be sure, the singlets have lower
energies than the triplets, and so the expectation for the normal state would
be a diamagnetic 1S term, but an unusual assignment is not surprising
inasmuch as the paramagnetism of the oxygen molecule is itself extraordinary.
It is, in fact, the only known paramagnetic molecule with an even number of
electrons, whereas paramagnetism is the usual rule for molecules with an
odd number of electrons.*?

The suggestion of 3S terms for the normal state of the oxygen molecule
is by no means new, for Sommerfeld,*® Stoner,® and others have called
attention to the fact that its susceptibility is the same as that of an atom in a
3S state. The same susceptibility is obtained whether we set s=1, k=0 in
(23) or s=1, ¢,=0 in (27), for the atomic and molecular formulas (23) and
(27) are the same for .S states, and these only. However, there does not
appear to have previously been any adequate theoretical justification as to
why the atomic formula could apply to a non-monatomic molecule unless
we supposed the electronic angular momentum so loosely oriented to the
rest of the molecule that it is quantized relative to the direction of any applied
magnetic field of ordinary magnitude, so that its component in this direction
is an integral or half-integral multiple of %/2, as in the atomic case. Such
a supposition would be entirely incomprehensible if the electronic angular
momentum were orbital in character, but after the advent of the spin elec-
tron it is known that electronic angular momentum in S states is due to
internal spins of the electron, and is there so loosely coupled to the rest of
the molecule that it is by no means impossible that a magnetic field might
be strong enough to uncouple the spin axis from the rest of the molecule.
The wide Zeeman separations found by Watson and Perkins* and others in
the band spectra of certain metallic hydrides are strongly suggestive of this
condition. If the width of the oxygen multiplets were known we could, of

40 Bauer and Piccard, J. de Physique, 1, 97 (1920).

4 Wills and Hector, Phys. Rev. 23, 209 (1924).

42 N, W. Taylor, J. Amer. Chem. Soc. 48, 854 (1926); Taylor and G. N. Lewis, Proc. Nat.
Acad. 11, 456 (1925).

4 E. C. Stoner, Phil. Mag. 3, 336 (1927); also “Magnetism and Atomic Structure.”

4 W. W, Watson and B. Perkins, Jr., Phys. Rev. 30, 592 (1927) and references.
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course, immediately determine how large a field would be required to produce
a Paschen-Back effect on the quantization. Hund mentions that the multiplet
intervals found by Fassbender® in the .S states of No* are of the order
.01 cm™!. If the O, fine structure were of this magnitude a field of about
1,000 Gauss would be necessary, as the normal Lorentz Zeeman separation
is.472X10~* cm™!. Such a field is lower than that used in most susceptibility
measurements. The feature of the theory in the present paper, however, is
that it shows that the susceptibility is the same whether there is coupling of
Hund'’s type (b) or whether the field is strong enough to break down such
coupling, and so the preceding speculations as to what field strength is re-
quired to produce a Paschen-Back effect are unnecessary.

Polyatomic molecules. When the molecule contains more than two atoms,
there is in general no axis of figure about which any component of electronic
angular momentum remains constant. Consequently we cannot at present
assign any definite amount of orbital angular momentum to the low frequency
category, and it is quite conceivable that there is so little symmetry in the
forces on the electron that the orbital contribution is entirely of the inef-
fective, high frequency type. If this is the case, or if the molecule is in
something corresponding to an .S state, the energy of interaction of the spin
axis with the rest of the molecule will presumably be small compared to &7,
and then we will still have at least approximately u2=4s(s+1)82%. The
susceptibility ‘will then be x =4Ns(s+1)82/3kT+ Na. This accords nicely
with the susceptibility .0557X10~¢ found experimentally by Taylor*? for
ClO; at 20°C and 76 cm, for the value calculated from this formula if we set
s=% and neglect Na is .0534X 1078, The discrepancy is no greater than
Taylor’s estimate of the experimental error as about 5 per cent. The assump-
tion s =% means a doublet system, and is, of course, reasonable since ClO;
contains an odd number of electrons. In contrast to ClO, the low suscepti-
bility .009 X10~% observed by Soné* for the triatomic molecule NO; is not
explained by assuming a formula like that for an S-term in a diatomic mole-
cule. The low paramagnetism found for NO; as compared to most other
paramagnetic gases including NO, suggests that sometimes, though not in
ClO,, the asymmetric structure of triatomic molecules causes rapid fluctua-
tions even in the spin angular momentum, which make this considerably
less effective than in diatomic molecules.

5. PARAMAGNETISM OF NITRIC OXIDE

Nitric oxide gas provides the most striking confirmation®’ of -our entire
theory, both because the NO band spectrum furnishes unambiguous term
assignments, and because the doublet width is of such magnitude as to test
quantitatively the finer points of the theory. Various attempts have been
made to explain the susceptibility of NO on a quantum basis. The best

% M. Fassbender, Zeits. f. Physik, 30, 73 (1924).

4 T, Soné, Tohoku Univ. Sci. Reports, 11 (3), 139 (1922).

47 A brief account of this part of the paper has been given by the writer in Nature, May 9,
1927; also presented at the Feb. 1927 meeting of the American Physical Society.
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known of these is perhaps Pauli’s early work,*® now renounced by Pauli
himself.** Sommerfeld® and Stoner® suggest the possibility that the normal
states of NO are %S terms as this gives a susceptibility within about 15 per
cent of the experimental value, a mediocre agreement. All these attempts lack
adequate theoretical foundation both as regards the type of quantization
and the assignment of term values, but this is only natural since both the
Hund theory of molecular quantization and the quantum analysis of the NO
spectrum are subsequent developments. The systematization of the NO
band spectrum by Birge, Mulliken, Miss Guillery, and Jenkins, Barton, and
Mulliken®® has recently shown that the normal state of the NO molecule is
a doublet P level. The doublet is “regular”;i.e., the P, component (¢,= —3)
has a lower energy than the Ps(o,= +1%), but the spectroscopic data on this
particular feature were not available when the writer made his susceptibility
calculations which led him to conclude independently that the order was
regular. Upper and lower limits to the susceptibility, corresponding to
doublet widths very narrow and very wide relative to k7", can now im-
mediately be obtained by substituting respectively s=1%, ory=1 in (27) and
o,=—1%, 0,=11in (28). The upper limit would apply were the temperature
so high as to give equal concentrations of molecules in the P; and P states;
it gives a Curie constant corresponding to two Bohr magnetons, and yields
a volume susceptibility .071 X 1075 at 20°C, 76 cm. The lower limit, on the
other hand is zero, for in the lower or P; state, where all the molecules are
concentrated at 7'=0, the components of spin and orbital moment parallel
to the axis of figure are equal and opposite. The actual susceptibility observed
by Bauer and Piccard?*® is .0609 X107 and by Soné* is .0610X10~¢, and so
is much closer to the upper than the lower limit, but nevertheless inter-
mediate between the two. The reason for this is not hard to discover, for
the spectroscopists find that the doublet interval between the two P com-
ponents is 120.9 cm~'5. Now expressed in wave numbers, kT equals .707,
and so this interval is about .6kT at ordinary temperatures. Consequently
it is necessary to carry through a special calculation in which the energy
intervals are allowed to be comparable with kT, thus introducing what we
might call “medium frequency terms,” which we have not admitted pre-
viously. The details of this computation are given below, but we will state

48 W. Pauli, Jr., Phys. Zeits. 21, 615 (1920).

4 W. Pauli, Jr., Handbuch der Physik, Band 23, p. 274. °

50 The interpretation of the normal states of NO as doublet P levels appears to have been
reached more or less independently by Mulliken and by Birge (Nature, Feb. 27, 1926) in
connection with Baldet’s analysis of the comet-tail bands (Comptes Rendus, 180, 820, 1925)
which indicated the existence of doublets. The evidence for this view has, however, been greatly
strengthened by the extensive recent measurements of Miss Guillery (Zeits. f. Physik, 42,
121, 1927) and of Jenkins, Barton and Mulliken (Phys. Rev. 30, 150, 1927) on the v and 8
bands respectively of NO.

81 We take the doublet interval as 120.9 cm™ rather than the value 124.4 quoted by Jen-
kins, Mulliken, and Barton, as for our purposes it is better to use energy differences which are
inclusive rather than exclusive of the term — Bo? representing the part of the rotational energy
independent of j. It makes little difference which value is used, as (34) shows that the cor-
responding change in the effective number of Bohr magnetons is only § percent.
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in advance that it gives a susceptibility .0600X 10~% at 20°C, 76 cm, agreeing
with the experimental value to within 1.5 per cent, or less than the experi-
mental error. This removes the apparent contradiction between band spec-
trum theory and magnetism encountered by Stoner,* who to explain the
susceptibility even proposed an electron orbit as freely oriented in the NO
molecule as in an atom. The calculation shows that there is a very vital
contribution to the susceptibility from the component of spin moment
perpendicular to the axis of figure, for a doublet interval comparable with
kT means that this component is partially effective, as it precesses about this
axis with a frequency of the order #T/k. If one overlooked the perpendicular
component (as the writer naively did when he first began the work) the
computed susceptibility would be too small, even if the doublet were sup-
posed “inverted” so that the state with the higher moment parallel to the
axis of figure had the lower energy.

Details of calculation. We must now go back to section 3, part I, and
modify the work to admit energy intervals comparable with 27. The absorp-
tion frequencies of NO are so high that we may neglect the contribution of
the “high frequency” elements of the moment matrix which correspond to
transitions in the electronic quantum numbers, and which represent the part
of the orbital moment perpendicular to the figure axis. If at the same time
we discard the small diamagnetic term, this is equivalent to omitting the
part (15) of the susceptibility. We may thus drop the index » used in part I,
and the elements in which we are interested may be characterized by a set
of indices ojm, where j is the rotational quantum number of the molecule,
m is the magnetic quantum number specifying the component of j parallel
to the field, and o is the quantum number ¢ =0-+0,=1=+% proportional to
to the total angular momentum parallel to the axis of figure. Elements in
which o706’ will be of the “medium frequency” type, while those in which
o =0’ but in which j may change will be of the low frequency catagory. The
analysis on pp. 733-737 of part I including simplification of the low frequency
elements, is now applicable if we substitute the index o for #, (in other words
introduce “medium” for “high frequency” terms), and provided we introduce
the two following modifications: 1) the abbreviated notation u(jm; j'm’) can
no longer be used for M(ojm;oj'm’) as there are two values of ¢, and 2) the
summation must include ¢ in addition to j,m, since there is an appreciable
concentration of molecules in both the P; and P; states.®? Thus Eq. (12) of

52 The assumption at the top of p. 737, part I, that »(ajm; o’j'm’) can be replaced by
a value »(o; ¢’) independent of j, m, however, calls for some comment, as it is not strictly
valid. For one thing the values of j are different in the initial and final states but as j cannot
change by more than one unit this does not cause difficulty as then the approximation is good
if merely the rotational energy intervals rather than the rotational energies themselves be
small compared to the doublet width (cf. note 26, part I). A more important fact is the cir-
cumstance that if spectral terms be represented by the customary formula 44 Bj(j+1), the
constant B, which is inversely proportional to the apparent moment of inertia, has slightly
different values in the P; and P; states. The theoretical reason is the rotational distortion of
spin doublets (E. C. Kemble, Phys. Rev. 30, 387, 1927). The data of Jenkins, Barton, and
Mulliken shows that the difference of the B values is .049 cm™. By the classical equipartitution
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part I now becomes

X=(B/3ET) D a,ism.itsur | M(ajm ; aj'm") |23—W(vi)/kT (29)
SR RV N L
_._2,1_3_ I M{ojm 5 o5'm’) ] e W @Ik
3h a,7,m,a’, i’ ,m’ (¢’ #%0) V(G" ;0")

with the abbreviation (cf. Eq. 6, part I)

B=N/ > e Wi, (30)
og,],m
The summation over @, of course, embraces only the two values 1/2 and 3/2.
Now elements of the form involved in the first line of (29) arise from the

component of moment which is parallel to the axis of figure, while those in
the second line are to be ascribed to represent the component which is perpen-
dicular to this axis. This can be seen by inspection of the familiar matrix
formulas for the symmetrical top, and is also obvious from the fact that
changes in the value of ¢ are identified kinematically with precessions about
the axis of figure, and so will appear in the perpendicular but not the parallel
component. Hence we have

S| M(ajm 5 af'm’) | 2= M por®= (c1+20,)282 = (1+ 1)282 (31)

oo
since by the foregoing and by the rules for matrix multiplication the sum in
(31) is the square of the component of combined orbital and spin moment
parallel to the axis of figure. Similarly

Z ‘ M(ajm ; o'j'm") I =M perp?=4(s+52—0,%) 82 = 282, (32)

o’ j'm’ (¢'<0)

where Mperp? is the square of the component of purely spin moment perpen-
dicular to the axis of figure, for we have already mentioned that the
perpendicular orbital component is of the discarded, high frequency type.
The value of M,,* is that given in (32) since the square 4s(s+1)82 of the
total spin magnetic moment is equal to the sum of the squares of the perpen-
dicular and parallel components, and since the square of the parallel spin
component is 40,%8%2. These results would not be true if any part of the spin
moment were of the discarded, high frequency type, but actually the

theorem the average value of the rotational energy Bj(j-+1) is approximately k7. As B is
about 1.7, the effect of the different B values is to make the average value of »(3/2 jm; } jm)
exceed Ay by about 5 percent. Eq. (33) shows that change of x in (34) by 5 percent alters the
susceptibility only about 1 percent. This is, of course, only a crude estimate of the order of
magnitude of the error. An accurate calculation would have to use the amplitudes inclusive of
rotational distortion to be given by E. Hill and the writer in a later paper, rather than the ideal
symmetrical top matrices. Such a computation would be laborious and give only a minor
correction.

We may mention that at least the Py levels show the characteristic “o-type doubling”
or hyperfine structure of the band spectroscopists, but it seems clear that the effect of thison
the susceptibility is negligible, as the width of this hyperfine structure is negligible, and as
we showed in part I the susceptibility is invariant of the way degeneracy is removed.

&
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motion of the spin axis is very closely that of a secular precession about the
axis of figure without appreciable rapid nutations.

Now »(s; ¢’) equals Ay if =4, ¢’ =%, while »(}; §) equals —Av where Av
is an abbreviation for the frequency difference 120.9 cm™! of the two doublet
components. Also we may set W(3, j)=W@&, 7)+hAv as v($jm; jm) is
approximately Av. Since furthermore the expressions (31) and (32) have
values invariant of j, 7, the sum D _; »e~"1/2.9/*T is thus by (30) a common
factor which can be cancelled from numerator and denominator of (29).
Using these simplifications and substituting (30-32) in (29) we get the final
formula

x=N6%/3kT, (33)
with
02=48*(1—e*+xe)/(x+xe?), x=hAv/kT=173.2/T. (34)

Deviations from Curie’s law. Eq. (34) shows that 6 will not be a constant
independent of T as it would according to Curie’s law. Because of the formal
similarity of (33) with (13) we may term 6/8 the apparent number of Bohr
magnetons. The variation of this expression with T predicted by (34) is
shown in the following table:

Apparent Bohr magneton number 0/8 as a function of absolute temperature

T 0 S0 100 175 250 293 350 500 1000 ]
6/8 0 1.098 1.489 1.713 1.806 1.836 1.864 1.908 1.954 2.000

It is seen that at room temperatures the apparent number of Bohr magnetons
varies but slightly with T, so that the departures from Curies Law are not
great and so may be difficult to measure. The only reliable experimental
data are Bauer and Piccard’s*® and Soné’s® value 1.85 at T =293, which
we have already quoted as agreeing well with the theory. Curie’s law has
been verified to be nearly applicable to oxygen even down to liquefaction,??
which is not surprising since the multiplet structure in S states is exceedingly
fine. If the susceptibility of NO had been measured over anything like the
large temperature range that it has for 0, the departures from Curie’s law
should certainly come to light. It would be most interesting if experimental
data could be obtained on this.

The writer wishes to thank Professor Kronig for correspondence on dia-
‘magnetism, and Professors Mulliken and Birge for data on the NO band
spectrum.
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8 Onnes, “Atoms et Electrons” (Paris, 1923), p. 144.



