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THE PROBLEM OF THE NORMAL HYDROGEN MOLECULE
IN THE NEW QUANTUM MECHANICS*

Bv S. C. WANG

ABsTRACT

The solution of Schroedinger's equation for the normal hydrogen molecule is ap-
i&ro&d&anted hy the function C[e '&"&+e2&&'+e *&".+";&& ] where a =f&'/4&re&r&e', r& and P& are
the distances of one of the electrons to the two nuclei, and r2 and pg those for the other
electron. The value of Z is so determined as to give a minimum value to the varia-
tional integral which generates Schroedinger's wave equation. This minimum value of
the integral gives the approximate energy B. For every nuclear separation D, there
is a Z which gives the best approximation and a corresponding Z. We thus obtain
an approximate energy curve as a function of the separation. The minimum of this
curve gives the following data for the configuration corresponding to the normal
hydrogen molecule: the heat of dissociation=3. 76 volts, the moment of inertia
JQ 4.59 )& 10 4' gr. cm', the nuclear vibrational frequency s 4 =4900 cm

~

~

ONSIDERABLE work has been done by the various authors' ' in
finding the energy value of specific atoms or molecules as prescribed by

Schroedinger's wave equation. It is well known that the wave equation has
not been rigorously solved for any other atoms or molecules beside hydrogen.
Consequently some kind of an approximate method has to be introduced to
make the energy calculation. While some of the authors use ordinary per-
turbational methods as given by Schroedinger' or the equivalent as given
by Born, Heisenberg and Jordan, " others devise special schemes to solve
particular problems. One such scheme was introduced in a paper by Kellner'
who calculated the energy values of normal He by trying to solve directly
the variational problem corresponding to the wave equation. The present

* A preliminary note appeared in the Bulletin of the American Physical Society, Chicago
meeting, November, 1927. When the paper was near complefion, a recent issue of the Zeits-
shrift fur Physik arrived containing a paper by Dr. Y. Sugiura (Zeits. f. Physik 4S, 484, 1927)
who continued the work of Heitler and London (Zeits. f. Physik 44, 455 (1927) by evaluating
the integral referred to in the present paper in footnote 18 and calculated in Eq. (13). As is to
be expected, Sugiura made calculations of the different atomic constants such as we do here.
However, the present paper is still submitted here for the reason that we used a new method
of calculation and arrived at some results in a little better agreement with the experimental
data than Sugiura's.

Unsold, Ann. d. Physik 82, 355 (1927); Zeits. f. Physik 43, 563 (1927).
' Heisenberg, Zeits. f. Physik 39, 499 (1926).
' Sugiura, Zeits. f. Physik 44, 190 (1927).
4 Heitler and London, Zeits. f. Physik 44, 455 (1927).
' Burrau, Danske Vidensk, Selskab, Math-fys. Meddel. 7, 14, Copenhagen, (1927).
' Condon, Proc. Nat. Acad. Sci. 13, 466 (1927).
' Slater, Proc. Nat. Acad. Sci. 13, 423 (1927).
' Kellner, Zeits. f. Physik 44, 91 (1927).
' Schroedinger, Ann. d. Physik 80, 437 (1926),
'4 Born, Heisenberg and Jordan, Zeits. f. Physik 35, 557 (1926).
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paper will be chieHy concerned with the problem of the normal hydrogen
molecule investigated along similar lines.

When the two hydrogen atoms are at a great distance apart, the problem
has been treated in the quantum mechanics in a recent paper by the author. "
In that case, the two atoms more or less retain their individuality and,
according to a perturbation calculation, the total energy of the two-atom
problem is, to a first approximation, the sum of the energies of two single
atoms plus a mutual term which can be ascribed to the polarizability of the
atoms. When the atoms are close together, such a procedure is no longer
valid and we shall have to resort to a different method.

Two previous attempts have been made to treat that phase of the H2
problem. Condon' proposed to regard it as the perturbed problem of the
case where we have two non-interacting electrons, each in the configuration
of an H~+ ion. The "Eigenfunktion" of such an unperturbed problem is not
yet available but the "Eigenwerte" for different nuclear separations has been
worked out by Burrau' by a numerical method. To Burrau's results Condon
then incorporated his approximate estimate of the perturbation energy
curve as a function of the nuclear separation, which arises out of the inter-
action of the two electrons, from the experimental energy data in the He
problem. (However, in view of the recent work of Slater' and of Kellner, '
we may say the data. are also theoretical. ) The resulting energy value for
normal H~.is in remarkably good agreement with the experimental value.
It will be referred to again in a table near the end of the present paper.

Heitler and London, 4 also using a perturbational method, started their
calculations from hydrogen-like "Eigenfunktionen. " Of course, they recog-
nized the weakness of assigning each of the electrons to only one of the nuclei,
which would amount to saying that in the zero-order approximation each
electron is not affected by the other nucleus. To remedy this defect, they
construct, out of considerations of the degeneracy of the problem, an "Eigen-
funktion, " consisting of hydrogen-like terms but symmetrical to the two
nuclei so far as each of the two electrons is concerned. They did not carry
through the numerical part in the calculation of the first order perturbation
energy; that was done in a later paper by Sugiura, already referred to at the
beginning of the present article.

In the calculations here presented, we propose to attack the problem from
a slightlv different angle. Schroedinger" has shown that the. wave equation
for an atomic system of k degrees of freedom with a Hamiltonian T(ga, PI)
+ V(gz) is nothing more than Euler s differential equation for the minimizing
of the following generalized volume integral

h' 8$1= —1' q, ,
—+PU(q, ) jS "'d

4m' BqI,

"Wang, Phys. Zeits. 28, 663 (1927)."Schroedinger, Ann. d. Physik 79, 734 (1926).
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subject to the condition

(2)

where Jdx is an abbreviation for f fdgq . dye, and Ap '~' is the recipro-
cal of the square root of the determinant belonging to the quadratic form l.
Besides, what is perhaps of more importance here, the minimum values of
the volume integral are just the "Eigenwerte" of the wave equation.

To solve the variational problem directly, we can use what is commonly
called the Ritz method. " It consists of first setting up an infinite sequence
of functions of the coordinates (known functions of the independent vari-
ables), satisfying certain requirements regarding completeness, and so forth,
which we shall not go into here, and then approximating the unknown
function P by a linear combination of a finite number of the selected co-
ordinate functions with constant coefficients to be determined later. When
this approximate P is substituted into the integral I and the integration
performed, I reduces to a homogeneous quadratic function of the coefficients.
The latter are then so determined as to minimize this quadratic function,
subject to the restriction that condition (2) is always satisfied. The calcula-
tion made in this paper corresponds, though only roughly, to a Ritz approxi-
mation of two terms; the approximate P function used involves the two con-
stants in a quite complicated way instead of linearly.

We shall first set up the variational integral connected with the problem
of the hydrogen molecule. Let ri and p& be the distances of the first electron
to the two nuclei and r& and p2 those for the second electron. Let s be the
distance between the two electrons and Pi be the azimuthal angle of one of
the electrons, say the first, referred to the line joining the nuclei as the polar
axis. -We shall use these six quantities r~, p~, r2, p~, s and Pi as independent
variables; the separation between the nuclei, which we shall designate by
D enters into the problem as a fixed parameter. We may also have occasion
to use the ordinary spherical coordinates r&, 8&, P& and r2, 6&, Q2 for the two
electrons referred to one and the same nucleus.

Now let us first remark that if we try on the wave equation of the hydro-
gen molecule the substitution f = U4 where 4 is a function of Pq alone and
U of the remaining variables, it is found that the part involving Pi can be
separated from the rest. For the lowest "Figenwerte, " we therefore need
only to take @=constant so that the solution P is actually a function of five
variables.

In spherical coordinates the integral to be minimized is

I= — —+——+— —+

+——+— —— +P'V dn, da,

"See Riernann-Webers Differentialgleichungen der Physik, 7th ed, , vol. I, p. 678 or Ritz,
Ann. d. Physik 28, 737 (1909),
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where

dQzdQ~ = rz'r2' sin 8"1 sin P~drzdr2d8 zd82dpzd$2 (4)

and

V=
g2 g2 g2 g2 g2 g2

+ +
rz pz r2 p2 s D

We now make the following change of independent variables for the integrand

rl rl p r2 r2)

pz' ——rz +D' —2rzD cos Bz, p2 = r2 +D —2rgD cos D2

s' = ri'+ri' —2rir2 [cos 8i cos 82+ sin i7i sin 8icos (4 i g4) ]

Noting that 8$/Bgi ——0, we find

I= —— —— + —— + —+ +2

r 2+P 2 D2 gP (jig r 2+P 2 D2 gP gltIr s2+r12 r22
+—'— +

rzpz arz Bpz r2p2 ar2 ap2 rzs as arz

s2+r~2 r12 gp ~p s2+p12 p22
+ ——+

r2s Bs 8r~ pzs Bs Bpz

s2+p2 p2
+ ——+f'6 dQzdQ2

p2$ 8$ Bp2

while the restricting condition remains formally

J= p'dQzdQ2 = 1

As for the volume element dQzdQ~ we can either preserve its meaning in
Eq. (4), or we can write it in the new variables. In the latter case, we find
that the expression is in general very complicated. But, in case the integrand
is independent of s as well as Pz so that we can integrate with respect to
these two variables at the very beginning, then the volume element expressed
in the remaining four variables has the very simple form

4x'
dQzdQg =—r 1pzr2p2dr zdpzdr2d p2

D2

In the subsequent work we shall interpret dQidfI& either by (4) or by (7)
as occasion demands.

The next question has to do with the precise form of the two constant
approximation for P. Let us note in the first place that the lowest "Eigen-
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funktion" must be symmetrical'4 with respect to the two electrons and the
two nuclei; or more explicitly, it should be invariant to the substitutions

Now, if we have two H-atoms so far apart that their mutual influence is
negligible and if we assign electron 1 to nucleus 1 and electron 2 to nucleus 2,
then the lowest "Eigenfunktion" for the two atom problem would be
Ce—("1+2'2)' . On the other hand, if we interchange the assignment of the
electrons to the nuclei, we would have the "Eigenfunktion" Ce '"+2'1)~'.

A function which satisfies the properties of symmetry just mentioned and
which approaches the one or the other of the above functions as the separa-
tion between the atoms becomes greater and greater, is evidently the follow-
ing: C[e &"i+&~&&~+e—&"~+3'i&&']." If we had two nuclei of charge Ze each to
start with, we would have instead the function

C[g—2&"i+a~&&~+&, z&"a+ni&l~—]

It is this latter function that we shall use as the approximate solution for
our problem. Perhaps, instead of considering our calculation as a modified
form of the Ritz process, we had better regard it as one similar to that of
Kramers in the He problem" (or more recently, that of Hutchisson" for
H&) in the classical quantum theory. Roughly speaking, Kramers uses for
the unperturbed motion of the He problem a potential due, in part, to a
fictitious nuclear charge Ze, the value of Z being determined by the condition
that the ratio of the perturbing force to the actual force shall be a minimum
on the average. In our work, following the ideas of the new quantum
mechanics, we have replaced the latter criterion by the one that Z shall
have the "best" value in making the variational integral a minimum.

Returning to our calculations, we first make use of the symetrical proper-
ties of P and of dQ&dQ~ and we find that (5) reduces to

h2 gp 2 8$ 2 4. g2+f12 f22

2(r&'+p&2 —D') BP Br/ 4 1 1
+ g2$2 dQId02

fyPy Bfi spy f] s D

The above equation holds rigorously for the case of the lowest "Eigenwerte"
and the exact solution is that symmetric function of r&pjr2p2 and s that

'4 See Hund, Zeits. f. Physik 42, 93 (1927) and also Heitler and London, loc. cit. In the
latter problem the same problem of H2 was investigated. They were, however, more interested
in the general aspect of the formation of the molecule than in the methods of calculating
particular energy values.

~' Heitler and London decided upon this function as the unperturbed Eigenfunktion after
considering a modified form of the resonance phenomenon first pointed out by Heisenberg.

'6 Kramers, Zeits. f. Physik 13, 312 (1923)."Hutchisson, Phys. Rev. 29, 270 (1927).
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minimizes (9) among the entire class of such symmetric functions. We now
substitute the approximate form for 2/ as given by (8) into Egs. (9) and (6),
we find they become

hgz~ —
2(r, +p, ' —D')

C2 —4 2Z(rt+P2) /a+ — e Z(r1+»+ g+pz) /

8m2mu2 ~1P1

e2
1 1 —2Z(rt+P2) /a+ e

—2Z(r&+») /ae
s D

6.2; r. . . rr t(drr, drr, (10)

J—Q2 e
—z(r1+P2) /a+ e

—z(r2+») / 'dQIdQ2 ——1

The condition (11) evidently just determines the value of C. We can
therefore dispose of it by dividing (10) by (11). The function to be minimized
then becomes

A=I/J (12)

We will have to simplify this expression by actually carrying out the integra-
tion. Most terms in the above expression can be readily integrated by a
ju icious c'udicious choice of one form or the other of d01d02. In the integration of the
terms of the type (1/s)e &'+'2", use was made of the well known theorems
concerning the averages of a harmonic function over a sphere.

The only integral that gives rise to some difhculty is due to the term
(1/s)e '"1+"+" +""." It is the total Newtonian potential energy of that
distribution of mass which consists of homogeneous confocal ellipoidal layers
of revolution with the density falling off as e '~ where I~ is a constant and )
is the major axis, the fixed foci being in all cases the two nuclei. The result
of the integration process gives:

~ ~~

1 g5~2
dll, drr —'66Q +=—6Q+122 (1 2 —+2)s 60Z' Q

+2Ei (Q) X (Q +6Q+ 12) (Q —6Q+ 12) —e@Ei(2Q) (Q' —6Q+ 12) 2 j

—e @ —+92+—
(13)

where Q is the abbreviation for 2ZD/a, y is the Euler's constant and Ei(x)
=f„"(I/u)e dgd, the numerical values of which can be found in tables in a
paper by Glaisher. "

"Essentially the same integral came up in the calculation of Heitler and London (loc.
cit.) but they did not attempt to evaluate it exactly. See, however, the note after the asterisk
on the first page of this paper.

'9 Glaisher, Phil. Trans. 160, 367 (1870).
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Collecting the different integrals in (12), we find it finally reduces to

E —1

64+—'(0'+6Q+12l' &28+—~(Q'+6Q+&2)( —Q'+&9+&2)I

Q2s2 4 —1 16
64+—e &(Q'+6Q+12)' && 128(1+Q)——(Q'+6Q+12)'e &

4D' 9 15

log —+y +2Ei '+6 +12 ' —6 +12 (14)

—esEi(2Q)(Q'+6Q+12)' +e &(11.2Q4+97. 6Q'+316.8Q'+176Q

where R is the Rydberg constant. For every separation D we choose a value
of Z which minimizes E; or, equally well, since D is a fixed parameter in
each case, we may choose the Q that makes E a minimum. The energy curve
of two H-atoms expressed as a function of the nuclear separation D is there-
fore obtained by eliminating Q between the following two equations:

E=E(Q, D) (14')

(15)

The minimum of this energy curve gives the data for the equilibrium con-
figuration, which corresponds to the normal hydrogen molecule.

However, there does not seem to be any feasible way of making the
general elimination between Eqs. (14) and (15), either analytically or graphi-
cally. We can only give the solution of the most interesting case of the
equilibrium configuration which can be treated in the following manner.
The set of values Ee, Qe and De for this case is evidently the solution of the
simultaneous equations:

E=E(Q, D) (14')

BE/BQ=O

(dE/dD=O) or BE/BD=O

(15)

(16)

where the total differentiation denotes the one on E as a function of D alone
obtained by elimination of Q between Eqs. (14) and (15). It turns out to
be a very simple matter to eliminate analytically the quantity D between
Eqs. (14) and (16). If we then plot the resulting as a function of Q alone, the
minimum of this curve evidently just gives the Ee and Qe for the equilibrium
case. They are thus found to be Ee ———2.278R, and Qe = 3.28. The value De
can now also be computed from one of the equations. We find DO=1.406a, -
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jv0 Jo Pp

—2.278R 4.59X10 "gr.cm' 4900 cm '
—2.325R 4.26 X 10 4' 5300
—2.24R 5.2 X 10 4' 4800
—2.326R" 4.67X10 "" 4360"

Finally as a check on the calculations leading to the energy equation (14),
the latter equation is examined for very large and very small values of D.
In the first case, we have two independent H-atoms and it is found that the
optimum value of Z is unity, giving Z = —2R as we should expect. In the
second case we have the normal helium atom; the value of Z found is 1.6875
and that of Z is —77.4 volts. They are in complete agreement with the
results obtained by Kellner" for the helium atom.

I take this opportunity to thank Professor A. P. Wills for his encourage-
ment and his kindness in going over the manuscript.
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COLUMBIA UNIVERSITY&

December 12, 1927.

which corresponds to a moment of inertia J0=4.59X10 " gr. cm'. From
the relation Q = 2ZD/a we also find Z, = 1.166.

By using this same value of Zo found for the equilibrium separation to
calculate the approximate energy values for separations in its neighborhood,
we obtain an approximate value for the nuclear vibrational frequency
@0=4900 cm ' from the curvature of the resulting energy curve.

For comparison, we tabulate below the values found in the above calculation
and the values obtained by Condon' and Sugiura* of the various atomic
constants and those values determined experimentally, mostly from band
spectra data:
Calculated values Z

This paper 1.166"
Condon
Sugiura

Observed value

20 Witmer, Proc. Nat. Acad. Sci. 12, 238 (1926); also Phys. Rev-. 28, 1223 (1926).
21Hori, Zeits. f. Physik 44, 834 (1927); Dennison, Proc. Roy. Soc. A115, 483 (1927).
"Hutchisson (loc. cit.) obtained the value Z=0.823 from the classical quantum theory

calculations. It must be mentioned, however, that he introduced another term of the form
Pe'/s~ in his unperturbed problem. Our value of Z is also to be compared with those given by
Van Vleck (Proc. Nat. Acad. Sci. 12, 662 (1926), who, using the new quantum mechanics
obtained for the Z of H2 the values 1.08, 1.14 and 1.11 from the experimental values of the
energy, the dielectric constant and the diamagnetic susceptibility of H& respectively.

~' Kellner, loc. cit.s, see especially Eq. (9) of that paper.


