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THE ZEEMAN EFFECT AND STARK EFFECT OF HYDROGEN
IN WAVE MECHANICS; THE FORCE EQUATION AND THE

VIRIAL THEOREM IN WAVE MECHANICS

BV ARTHUR EDWARD RUARK

ABSTRACT

The Zeeman levels of hydrogenic atoms are determined by a new and simple method,
neglecting terms in O'. The frequency of the Larmor precession is I =L0 (1+E/mc').
L0 is the frequency of precession obtained by Newtonian mechanics and E the energy
of the atom. This agrees with a formula of Pauli obtained by ordinary relativity me-
chanics. The formulae for the first order Stark effect and for the Paschen-Back effect
can be obtained by similar methods,

An extension of Ehrenfest's lan of motion for a particle is proved. It is applicable
to any conservative system. From it, a theorem of wave mechanics analogous to the
virial theorem is obtained.

1. THE ZEEMAN EFFEcT AND STARK EFFEcT QF HYDRoGEN

IN WAVE MECHANICS

HE Zeeman effect of hydrogen has been treated in terms of the new
mechanics by several authors, neglecting the modifications due to the

relativistic change of mass of the electron. Heisenberg and Jordan' studied
the Zeeman effect by means of matrices. Epstein' treated the problem by
obtaining the energy of a system composed of the atom and the apparatus
which produces the field. This procedure is advantageous, for it is capable
of showing the nature of the interaction between the atom and the magnetic
field. For example, it is well known that when a quantum jump occurs
there may be an exchange of angular momentum between the atom and the
field producing mechanisms, as well as a contribution of angular momentum
to the radiation field. This indicates that we might expect a difference
between the energy of a quan turn and the decrease of energy of the emitting
atom, because of a possible interchange of energy between the atom and the
magnet. The calculation of Epstein shows that the correct result is the same
as that obtained by neglecting the reaction of the atom on the field, —that is,
by treating the field strength II as quite independent of the behavior of the
emitting atom. Brillouin' has treated the problem in wave mechanics, with-
out the modifications due to relativity.

The method is to set up the wave equation, and transform it to coordi-
nates rotating about the lines of magnetic force with the frequency
Lo = eH/4s mc of the Larmor precession. (The charge of the electron is taken
to be —e, where e=4.77 10—"electrostatic units. ) In these coordinates the

' Heisenberg and Jordan, Zeits. f. Physik 37, 263 (1926).
Epstein, Proc. Nat. Acad. Sci. 12, 634, (1926).

' Brillouin, J. de Physique 8, 74, (1927).
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wave distribution is identical with that of the field free atom and the solution
contains the factor

exp [i(mf' —27rvot) ],
m being the equatorial quantum number, hvo the energy of the atom, and

g the equatorial angle, as measured in the rotating coordinates. The equa-
torial angle Q in the resting coordinates is given by

g =g+2xLpt.

Substituting this in (1) we obtain

exp [imp —2s i(vo+ml o) t]

Thus the energy in the resting coordinates is

(2)

meIIh
~0+mLoh =~0+—

4xmc

It is possible to solve the problem in relativistic wave mechanics in a
somewhat similar fashion, but there is a complication which would make
it necessary to resort to perturbation methods. In ordinary relativity
mechanics, the variation of mass of the electron causes small but rapid varia-
tions of the speed of the Larmor precession. In relativistic wave mechanics,
a corresponding effect appears. It is found that there is no privileged coordi-
nate system in which the wave system appears like that of the field free atom.
The velocity of precession which will make the layer of the P distribution
between radii r and r+dr appear like the corresponding layer of the undis-
turbed atom is found to be a function of r. We are confronted with a problem
analogous to that of motions within a nebula, instead of that of a rigid rotat-
ing body. To avoid these complications, we adopt a much shorter method,
based on the virial theorem for a system of particles.

In either relativistic or Newtonian mechanics, the theorem may be stated
as follows:

For a system of particles in periodic motion or in a steady state,

grss' = —g(xX+ yy'+sZ) .

m is the actual mass, (not the rest mass) of a typical particle of the system,
x, y, s, its coordinates, and X, V, Z, the components of force acting on it.
P indicates a summation over all the particles and the bars denote time
averages. It is shown in many texts' that if the potential energy Uo of an

4 See appendix of any edition of Sommerfeld's "Atombau. " The following is a useful ex-
tension of this theorem;

If the potential energy is the sum of several functions, U1+ U2+ ~ ~, homogeneous in

the coordinates, and of degrees n&, n&, ~ ~, respectively, then

Qmv =n.gVg+egV, + (next page)
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atom or molecule is a homogeneous function of the coordinates, of the nth
degree, then the virial theorem reduces to

mv' =nVp

For the particles of an atom, -subjected to Coulomb forces, n= —I,
and in non-relativistic mechanics, (5) yields the relations,

—To= Vo/2 =Eo,

where Ep is the total energy. If a uniform constant magnetic field
H is applied, then each electron experiences an additional force —(e/c) [vH].
The average value of the potential energy is unchanged, and if 1 is the
time average of the kinetic energy, then (4) yields the result

Vp eT= ——+ BP~
2 2mc

(7)

where pH is the component of angular momentum parallel to the field.
It must be noted that pH is not the same as the variable conjugate to @,
which we call P&. In the presence of an electromagnetic field having the
vector potential 2 „2„, A„ the variables conjugate to x, y, and s, are given
by the relations

p, =sos, —eA,/C.

For a magnetic field parallel to the Z-axis

A, = PyH, A„—=pxH,

A brief computation shows that

A, =O.

P& P& eH(x——'+y—')/2c =Pa 2orLom(xo+—y'),

which tells us that p~ is the angular momentum in the rotating coordinates.
In equation (7) pa can be replaced by po if we are interested only in

terms containing the first power of II. Since P is an ignorable coordinate,
po is constant. Adding to (7) the equation

V=2Ep,

and neglecting the term in H', we get

T+V =E=Eo+(eH/2mc) po

In ordinary mechanics, we write for p& its quantized value ufo/2or, and obtain
the change of energy DE=—E—Ep.

bE=Lpmh, ms=0, +1,+2,

This follows at once from Euler's theorem for homogeneous functions if we substitute

-(av,/a*) —(a v,/a~)—

for X in (4},and similar expressions for P' and Z.
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To solve the same problem in wave mechanics, we start with (9) in the
form

Pp AF/—27rl. p =0. (9a)

This is really a Hamilton-Jacobi equation to determine p&. By going through
the usual variation principle procedure, using the complete wave equation,
we can show that it is legitimate to substitute the operator kB /2sfBQ for
P&, to obtain a simplified wave equation from (9a). Applying the operator
thus formed to the wave amplitude function, P, we have

h 8$ PAE

2xi 8& 27rLQ

= 0.

The solution is p = Fe' &, where F represents the part of lt depending on
coordinates other than P, and mk=hF/I. p. In order to make this solution
have the same period as the corresponding classical motion of the electron,
it is necessary that m be an integer, so we arrive at the formula (10) for the
change of energy in the presence of the field.

In relativistic wave mechanics the value of AE is obtained by a similar
device. Pauli solved the corresponding problem in ordinary mechanics,
including the effect of the variation of mass with velocity. His result is this:

EQ
AE=LQ 1+—— 2mPp

SPY C

(12)

The evaluation of E proceeds just as before, in both ordinary and wave
mechanics, the final formula being

EQ
~E=LQ 1+—mh, m=0, +1,+2,

SPIC

'The methcds u ed in this section are extensions of those introduced by
the author in a previous paper' and are capable of other applications.
For example, the first order Stark effect and the Zeeman levels of atoms
exposed to a very strong magnetic field are easily obtained. Each case must
first be examined by the aid of the general wave equation, however, to be
sure that the simplified procedure is legitimate.

2. THE FORCE EQUATION AND THE VIRIAI. THEOREM IN WAVE MECHANICS

Ehrenfest has derived an equation which can be considered as a generali-
zation of Newton's law of motion, by considering the motion of the center
of gravity of the wave group accompanying a particle. His proof is given for
a particle with only one degree of freedom, but can easily be extended to a
conservative system containing any number of particles, as follows:

' Pauli, Zeits. f. Physik 31, 373 (1925). Handbuch der Physik, volume 23, page 154.
' Ruark, J.O.S.A. and R.S.I. 16, 40, (1928).
7 Ehrenfest, Zeits. f. Physik, 45, 455 (1927).
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Let the ith particle in the system have mass m, , and Cartesian cooruinates
x, , y;, s;. Berne new coordinates by the relations

X;=m ".x;) Y;=m /'y;) Z;=m; s.1/2.

~ ~Then the element of volume in the coordinate space used by Schrodinger is

d~ =dXl d YidZ~dX2

The wave equation is

Also

87r' 4m. i 8%'
M ——V% ————=0.

h' h
(14)

if +* is the complex conjugate of 4'.
We shall need the auxiliary relation

4x'i 8%'
%M*—+~A%+-- 0+—4* =0.

h Bt Bt
(16)

Let us deans the X-coordinate of the eth particle by the equation

X„++*d7.

(The denominator is unity because 0' is normalized. )
Differentiating $„with respect to t, we obtain

h 8%'*
dv. ,

2mi BX„
(18)

after using (16) and integrating by parts.
j:n evaluating the integral, we use the fact that + and its derivatives

vanish at the boundaries of the coordinate space in problems of the type
dealt with here. Equation (18) defines the momentum of the center of
gravity of the wave group, in the coordinate space. Differentiating (18),

We replace 8%'/Bt and 8'4*/BX„R b'y their values obtained from the wave
equation and g„reduces to
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Integrating the last term by parts, and applying Green's theorem to the
second integral, we find that it vanishes. Then, if we write
g„=m„'~'s~ we have

m„' 'x„= C e~ —8V 8 m„"'x„dT

m„S„= 0'O'* —BV Bx dv- (20)

This is the generalized law of motion, which reduces to Newton s if ap-
preciable values of 4' are confined to a narrow range in the i.mmediate neigh-
borhood of x„; for then the right-hand member reduces to —(8 V/rix„) f@gf*
dr, or ( BV—/.Bx„) since @ is so normalized that the last integral is unity.

Schrodinger showed that the group velocity of a nearly-monochromatic
"Wellenpaket" is such that the point of coinciding phase obeys the laws
of classical mechanics. The content of his theorem is different f'rom that of
equation (20), although the two are related. Equation (20) holds true when-
ever (14) is valid, provided 4 is properly normalized. In many ways it is
to be considered more fundamental than Schrodinger's theorem.

Let us apply (20) to obtain a theorem analogous to the virial theorem
of ordinary mechanics. Dropping the use of bars to denote centroids and
noting that d(mxx)/dt =mx'+mxx, we have for each particle

mx' = mx x+d(m—xx)/dk (21)

where now the bars denote time averages. Summing equations of this type
over all the coordinates and applying the usual restriction that the system
is either periodic or in a condition of kinetic equilibrium, we obtain the
generalized virial theorem, on substituting the values of x, x, and i.
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