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THE PROPAGATION CHARACTERISTICS OF SOUND
TUBES AND ACOUSTIC FILTERS

BY W. P. MASON

ABSTRACT

The process of measuring the propagation characteristics of uniform sound tubes
and acoustic filters is complicated by the reflections which may occur at the ends of
these structures. The present paper applies some theoretical results on the effect of
reflections, obtained in a previous paper, to the measurement of the propagation
characteristics of tubes and acoustic filters. In making these measurements the device
to be measured is inserted in an acoustic transmission system, and the resulting
changes in the magnitude and phase of the transmitted wave are measured. The
actual observations are made in electrical circuits connected with the terminals of the
acoustic system by loud speakers, The impedance of the acoustic system at the point
of insertion is made an acoustic resistance. For measurements on straight tubes, the
acoustic resistances used are of such a value as to prevent any appreciable reflections
from the ends of the tubes, and as a result, the propagation characteristics of an infinite
tube are o'btained. The results of the measurements on straight tubes indicate that
the Helmholtz-Kirchoff law is valid, while the results of measurements on acoustic
filters are in good agreement with the theoretical results obtained previously.

I. INTRQDUcTIoN

HE transmission of sound waves in straight tubes has received con-
siderable attention from physicists. On the theoretical side, a number of

workers —notably Helmholtz and Kirchhoff, —have determined the effect of
viscosity and heat conduction dissipation on the propagation of a wave in a
tube of infinite length. They have shown that the vector ratios of the
pressures or linear velocities at any two points of an infinite tube can be
expressed as the napierian base e raised to the power nl, where l is the distance
between the two points, and n is a complex number depending on the con-
dition considered.

Attempts to check experimentally the Helmholtz-Kirchhoff law on the
propagation of a sound wave in an infinitely long tube are complicated by
the fact that in practice we must measure the transmission in a tube of finite
length and hence one in which reflection of the wave motion occurs at the
ends. A neglect of these considerations has led many observers to conclude
that the Helmholtz-Kirchhoff law was not valid.

The Helmholtz-Kirchhoff law has two measurable quantities to check,
the attenuation constant of the tube, and the velocity of propagation of
sound in the tube. A number of measurements of the sound velocity' ' have

' W. P. Mason, "A Study of the Regular Combination of Acoustic Elements with Ap-

plications to Recurrent Acoustic Filters, Tapered Acoustic Filters, q,nd Horns, " Bell System
Tech. Journal, April, 1927.

2 The derivation of the Helmholtz-Kirchoff law and the attempts to check this formula
are described by I. B. Crandall, "Theory of Vibrating Systems and Sound, " D. Van Nostrand,
1926, p. 229-241.
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been made, but apparently no measurements of the sound attenuation have
been made in the range in which the formula should hold. 4 The early measure-
ments did not check the Helmholtz-Kirchhoff law, but the later measure-
ments indicate that the form of this equation is correct. E. H. Stevens finds
a variation of velocity with frequency greater than that given by theory,
while E. Groneisen and E. Merkel, find values less than that given by theory.

The laws of reHection and the methods for taking account of them in the
e1ectric line —which is the analogue of an acoustic tube —have been well
understood since Heaviside's work on the propagation of electric waves.
Heaviside found it necessary to introduce another parameter besides the
propagation constant —which is the analogue of the exponent of the e in the
Helmholtz-Kirchhoff law —namely, the characteristic impedance of the line
which may be defined as the ratio of the electromotive force to the current
at the input of an infinitely long line. With these parameters he could
express the relations between the current at any point in the line and the
applied electromotive force for any boundary conditions at the ends of the
line.

The Heaviside impedance method was first applied to the study of
acoustics by Webster. ' In his paper Webster introduces the characteristic
impedance of a dissipationless tube. In a previous paper, the writer has
extended this method to take account of dissipation as well. The present
paper applies these theoretical results to eliminate the effect of reflections in
a finite tube, and measurements have been made which show that the
Helmholtz-Kirchhoff law is entirely valid for propagation of sound waves
in a smooth tube.

In the theoretical paper, ' the combination of straight tubes to form
acoustic filters, was considered. The use of the formulas taking account of
the wave motion removes the assumption introduced by Stewart, ' in his
theory of acoustic filters, that no wave motion need be considered in the
elements. These wave formulas take account of dissipation and in addition
the effects of the terminating conditions have been investigated. An expres-
sion was obtained for the insertion factor, giving the absolute values of the
ratios of pressures or volume velocities in the termination of an acoustic
system with the filter in, to these quantities with the filter out. Hence this
factor represents the effect of inserting the filter in a given acoustic system.
The combination of filters whose conducting tube areas increase in some
regular manner was also investigated, and it was shown that in addition to
the filtering action, a transformer action takes place. Horns are the limiting
cases of tapered acoustic filters, and their equations can be derived from those
of tapered acoustic filters.

' E. H. Stevens, Ann. d. Physik '7, 285 (1902)
E. Gruneisen and E. Merkel, Ann. d. Physik 66, 344 (1921).

4 L. F. G. Simmon and F. C. Johansen, Phil. Mag. SO, 53 (Sept. 1925) give measurements
at very low frequencies.

~ A. G. Webster, "Acoustic Impedance, and the Theory of Horns and of the Phonograph, "
Nat. Acad. of Science, 5, 275 (1919).

6 G. W. Stewart, Phys. Rev. 20, 528 (1922); 23, 520 (1924); 25, 90 (1925).
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To obtain an experimental check of the equations for acoustic filters, the
same measuring circuit used to measure the straight tubes was employed,
and a good agreement with theory was found.

II. METHoD QF MEAsUREMENT

The method employed here for measuring the transmission characteristics
of acoustic devices is an adaptation of the ordinary electrical method for
measuring insertion factors and insertion phase angle differences. The
method consists primarily in transmitting energy, in electric or acoustic form,
simultaneously over two parallel branches. One branch contains the structure
under investigation, while the other contains an adjustable comparison
circuit. The current reaching the termination of both can be compared both
in magnitude and phase, by adjustments in the comparison branch and in the
terminating circuit.

The knowledge ordinarily required about all electrical networks is what
change will these networks produce when inserted in a given electrical
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Fig. 1. Diagram of electric transmission measuring circuit.

system. That is, we need to know the ratio of the current in the termination
of the system when the network is inserted to the current in the termination
when the network is not in circuit. The absolute value of this ratio is called
the insertion factor, while the difference in phase angle between the two
currents is called the insertion phase angle difference.

The circuit employed for measuring these quantities is shown on Fig. 1.
It consists in a source of sinusoidal voltage, here a vacuum tube oscillator,
connected to two parallel branches, which in turn are connected to a termi-
nating circuit by means of which the outputs from the two parallel branches
can be compared.

The upper branch contains an input electrical impedance Z„and an out-
put impedance Z~. The terminating impedance Z~ is made up of an impedance
Z~' and a small resistance R. Wires from both sides of this resistance go to a
double-pole double-throw switch, which on one side is connected to a re-
sistance R~, and on the other side to a reversing switch. From the reversing
switch, wires go to one side of a three-winding transformer, with two equal
input windings.
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The lower branch contains an impedance Z, in series with a resistance
attenuator, which in turn is terminated in a resistance Ro. This resistance
is made up to two parts, a resistance Ro' and a small resistance R. Wires
from this resistance go to a double-pole double-throw switch and then to the
other side of the transformer. The output of the transformer is connected
to a second resistance attenuator, whose termination is connected to a
vacuum tube amplifier and a thermocouple.

To measure the insertion factor and phase angle due to the unknown
circuit, the impedance Z, plus Ro is set equal to Z, plus Z~. The resistance
attenuators employed are combinations of resistances which have the pro-
perty that when they are terminated in the resistance Ro, the impedance at
the input terminals of the attenuator is always Ro. By turning the dials of
the attenuator, various known ratios of output to input current can be
obtained. Hence the current into the lower branch will have the value
e/(Z. +Zb). If the unknown network is not inserted in the upper branch and
the impedances Z and Z~ are connected in series, the current in upper and
.ower branches will be identical both in phase and magnitude. The current
in the output of the upper branch with the network inserted will obviously
be the current which exists when the network is inserted between the im-

pedances Z„and Z~ and a source of e.m. f. e is placed in series with Z, . Hence
the ratio of the current in the impedance Z, to the current in the impedance
Zb is the ratio of the current in Zq with the network out of circuit to the current
in Zq with the network in the circuit.

To measure this ratio, the voltage in the upper branch across the small
resistance E is impressed upon the succeeding circuit and by adjusting the
gain of the amplifier a convenient reading is obtained on the meter connected
to the thermocouple. Then throwing the upper branch switch to the resist-
ance R~, which has the same value of impedance as the circuit on the opposite
side of the switch, and throwing the voltage across the resistance R of the
lower branch through the succeeding circuit, a second reading is obtained.
The resistance attenuator No. 1 is then adjusted, until a reading equal to the
first is obtained. Hence the voltages across R for both branches are the same,
and therefore the output currents of the two branches are equal. The value
of the insertion factor can then be read from the resistance attenuator. The
square of the insertion factor gives the insertion power ratio, that is, the
ratio of the powers in the termination of the system when the network is in
the system and out of the system. In all curves given, ten times the logarithm
to the base 10 of the power insertion factor has been plotted so that the
results are shown in the standard unit of attenuation, TU.

The method for measuring the phase angle is to compare the absolute
values of the vector sum and vector difference of the currents from the two
branches. This will determine the value of the angle, except that it will not
be known whether it is in the upper or lower quadrants. By starting with a
sufficiently low frequency whose phase angle is known, its location can
readily be determined. To obtain the vector sum, both double-pole double-
throw switches are thrown on the amplifier side, and a reading is obtained
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which corresponds to the vector sum of the two equal currents, since an
equality balance had previously been obtained. Throwing over the reversing
switch, a reading corresponding to the vector difference of the two currents
is obtained. By setting the resistance attenuator for no attenuation for the
smaller of these two readings and varying it until an equal reading for the
vector sum and vector difference is obtained, the ratio of the vector sum to
the vector difference can be measured. The phase angle 0 and this ratio r are
related by the formula

cos 0= (r' —1)/(r'+1)

In applying this method for acoustic measurements, use is made of the
fact that insertion factors and insertion phase angle differences, are respec-
tively multiplicative and additive. That is, the insertion factor for a complete
network, between the impedances Z, and Z&, is equal to the product of the
insertion factor for a portion of the network, measured between the im-
pedances Z, and Zt„and the insertion factor for the remainder of the network,
measured between the impedances at the insertion junction looking toward
and away from the source. Hence, conversely, the insertion factor of the
portion of the network inserted last, measured between the impedances at
the insertion junction, is equal to the ratio of the insertion factor of
the total network to that of the first portion of the network, both measured
between Z, and Z~. A similar result holds for the insertion phase angle
differences except that these are additive rather than multiplicative.

To adapt this circuit for acoustic measurements the complete network
was so constructed that the energy entering it was converted to acoustic
form, traversed an acoustic path, was reconverted and emerged as electric
energy. For this purpose two $555 Western Electric loud speaker units were
utilized. A point in the acoustic path was taken as the junction at which the
portion of the network, here the acoustic device under investigation, was
inserted. The measurements gave the insertion effects of the device between
the acoustic impedances of the path at the point of insertion. One problem
then was to provide the proper acoustic impedances at this point of insertion.
This has been accomplished by means of some acoustic resistances, which
will be described below. The acoustic system used for these measurements
consisted of a loud speaker unit, which was connected to an acoustic re-
sistance, this in turn being connected to an exponential horn. The device to
be measured was then inserted, and the same three units in opposite order
were used to terminate the device and connect back to the electrical circuit.

The measuring process consisted in measuring the insertion factor and
phase angle with the acoustic device in circuit; then taking the acoustic
device out, that is, connecting the horns directly together, and measuring
the insertion factor and phase angle again. In the same manner as in the
electrical case, the ratio of the two measurements represents the insertion
factor, while the difference between the phase angles represents the in-
sertion phase angle difference, both measured between acoustic impedances
looking in each direction at the insertion junction.



In order to determine what these impedances should be in the ideal case,
and how much departure from the ideal may be permitted in practice, we
must examine the relations between the propagation constant and the
insertion ratio as a function of these impedances.

III. DETERMINATION OF THE REFLECTION EFFECTS FOR STRAIGHT

TUBES AND ACOUSTIC FILTERS

In measuring the reduction of volume velocity or the phase change due
to any acoustic structure, we have always a given input and a given output
boundary condition to satisfy. The knowledge of the acoustic structure
generally required is what cha'nge will the structure cause when it is inserted
in a given acoustic system. We define the volume velocity insertion factor
of a given structure in a given system as the ratio of the volume velocity
in the termination of the system when the structure is in the system to the
volume velocity when the structure is out of the system. A similar factor
can be defined for the pressure, but in symmetrical devices such as we are
considering, the same insertion factor holds for both quantities.

To obtain this factor for a straight tube, use is made of the equations
derived in the preceding paper. '

p =pi cosh nL (Vi Zr, /5) sin—h nL

V= Vi cosh nL (pi 5/Zr—) sinh aL

where p is the excess pressure at the distance I from the beginning of the
tube, p~ the initial excess pressure at the beginning of the tube, S the cross
sectional area of the tube, V the volume velocity at the distance L from the
beginning of the tube, V& the volume velocity at the beginning of the tube,
n the propagation constant and Z~ the specific characteristic impedance
of the tube, i.e. the vector ratio per sq. cm of the pressure to the volume
velocity for an infinite tube. o. and Z~ for the frequencies of interest here are
given by the formulas

pv'
a= a+ib = + ~+

2CS(2p) '~' C 25 (2a&p) '" (2)

py' p
Zi, =8+iX (Polyp)='~' 1+——— —i

25(2cop)'~ 25(2Qrp)

where I' is the perimeter of the tube, p the density of the medium, co=2~
times the frequency, f, Po the average atmospheric pressure, y the ratio of
the specific heats of the medium, C=(Pop/p)'~' the velocity of sound in a
dissipationless medium, p = p'~'[1+(5/2)'~' (y'i' —y 't') j p the coefficient
of viscosity of the medium.

As shown in standard books, e "~ is the ratio of the volume velocities,
or pressures, at points of a tube of infinite length which are a distance I.
apart. bL, the phase constant, represents the phase rotation (in radians)
between these two points. The velocity of propagation in a tube is C' where
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P '
(4)

Assume now that the tube is terminated in an impedance Zs/S, while at
the input a source of simple harmonic pressure po, is placed whose internal
impedance is Z~/S. Then substituting in equation (I), the values

p/V=Zs/S and pi=po —V~Z~/S

we obtain for V in terms of p&, and the system parameters

pp5 Zg+Z~ 2ZI, 2'V= X ——X X— Xe—~~

Zg +Z~ 2' Zg+Za Zl, +Zg

X (Zz. —Zx) (Zr, —Zsl
] g

—2eL

(Zr, +Z~) (Zr. +Zs)

(5)

Now the volume velocity in the termination of the acoustic system if the
tube were not present is obviously poS/(Zz+Zs). Hence the ratio of the
volume velocities of the system with the tube in and with the tube out will
be the part of equation (5) in brackets. It can be shown that this factor will
result for any structure which can be represented by a characteristic im-
pedance and a propagation constant if these quantities are substituted re-
spectively for Zz, and nl. .

In measuring straight tubes, in ord'er to check the Helmholtz-Kirchhoff
law, we are interested in measuring the term e ~. Hence, all factors except
this must be eliminated or else corrected for. We notice that if Z~ =Z~
or Z~ ——Z~, then the expression reduces to e ~, and hence the insertion
factor reduces to the propagation factor. Now the characteristic impedance
of a tube, given by equation (3) is very nearly a pure resistance, it having in
addition a small amount of negative reactance, which in general is less than
two or three percent of the resistance for the frequencies of interest. Hence,
if Z& or Z& are made pure resistances equal in value to ZJ. , all terms but
e ~ are eliminated. Since it is difficult to make Z& or Z& exactly equal to
ZL, the most accurate results will be obtained by letting Z& = Z~ and making
them both as near ZL, as possible. So, if Z& does not differ from Z& by more
than twenty percent in resistance, and if its reactance is not more than
twenty percent of the absolute value of Zl. , the error caused by the first and
third terms will not be more than 5 percent in power ratio or more than
0.1 radians in phase angle. This is about the accuracy of measurement of the
power ratio, but somewhat less than the accuracy that can be obtained for
the phase angle, which is about 0.02 radians. Hence if the measuring circuit
is such that it gives the ratio of the volume velocities or pressures in the
termination of an acoustic system with the tube in and out, and if im-
pedance terminations are obtained which do not differ by more than 20
percent from Z~, a system is obtained which will measure e ~ accurately.



IV. METHOD FOR OBTAINING AN ACOUSTIC RESISTANCE

Equations (1), (2) and (3) show one method for obtaining an acoustic
resistance, namely by using a long tube. The impedance of an infinitely long
tube is Zl. . The impedance of a finite tube terminated in an impedance
Z, is by equation (1), substituting P = UZz/5 and solving for P&/U& ——Z&/5

Zq Zr, (Zq/5) cosh nL+(Zr/5) sinh OL

5 5 (Zr, /5) cosh nL+(Zd/S) sinh nL
(6)

The impedances Zd for which Z~ will show the greatest variation from Zl.
are zero and infinity. For these values, Z& is respectively

ZJ. tanh nL and Z~ coth nL

If the attenuation constant aL, of the propagation constant nL is made quite
large, Z~ will not depart far from ZI, . If for example the value of aL in
equation (2) is 1.5, then the resistance component cannot vary by more than
10 percent from that of ZL„and the reactance component will not be more
than 10 percent of the resistance component. Hence if a long tube is put
on each end of the acoustic device to be measured, a good termination is
obtained, which satisfies the above requirements. The length of tube re-

quired, however, would be quite great. For example for the largest size tube
measured below, the length of tube required for each end would be 34
meters if we wish to measure down to 200 cycles.

This length of tube is rather long for ordinary use, and hence some
work has been done on methods for decreasing this length. One method for
accomplishing this result is to build up the end termination out of smaller
tubes, the sum of whose inside area equals that of the device we wish to
terminate. With the smallest hexagonal tubes available, it was found that
the length required on each end would be reduced to 6 meters in this way
without causing the characteristic impedance to deviate by more than seven
percent from the characteristic impedance of a long tube. This length being
still rather long, two other methods were devised for reducing the tube
length.

The first method employed was to use half of the tubes closed and half
open. Since the tubes are all in parallel in the electrical sense, the total im-

pedance of an open tube and a closed tube will be

Z (Zr/5~) tanh nr) (Zr/5, ) coth ar) Zr,—=—tanh 2aL (8)
S (Zr./5~) tanh nL+ (Zr/5&) coth oL 25~

where S~ is the area of a single tube. Hence an open and closed tube in
parallel are equivalent to an open ended tube of twice the area and twice
the length of either. By employing combinations of open and closed tubes
the length can be decreased to one-half its former value.

The second method employed is to combine tubes which have the same
characteristic impedance, but whose lengths diRer among themselves.
Starting with the shortest, the length from tube to tube is increased by an
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equal amount in each case. To show what sort of an impedance such a
combination will give, equation (6) is written in a different form

(ZL —Zg)
1—— ~

—2aL

ZI ZL (ZL+Zi)

51 SI (ZL Zd)
1+— e '

(ZL+Zd)

ZL 1 —Ee—'"L

S1 1+Ee ' L
L

S S1 1+Ee ' 1+Ee '~( +~) 1+g g
—2n (L+ (n—1)6)

+ + ~ ~ ~ +
Z Z 1 +p—2oLL 1 gg —2a(L+d) +~—2n (L+ (n—1)6)

Expandingthe expression and summing up the series, we obtain the in-
finite series

where X is the volume velocity reHection factor (Zr, —Z~)/(ZL+Zd).
The impedance Z/S of n of these tubes in parallel, when the tube lengths

are increased by a given amount 6, from tube to tube, is given by the
expression

—2n1-la—=—e+2ICe—2~L + +2K'e "~L
Z ZL ~

—2ha

Now the value of (1—e '"~ )/(1 —e '~ ), if no dissipation is assumed,
is shown on Fig. 2, and is equivalent to the expression for the light from
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Fig. 2. Typical plot of equation (1—e +~~)/(1 —e' ). (Solid line gives non-
dissipative case, dotted line shows effect of dissipation)

a diffraction grating between two successive images. It generally is around
the value 1 except near the upper and lower end of the curve. The effect
of dissipation is to smooth out this curve, as shown in Fig. 2, which gives
the case actually used here. This expression is multiplied by t. '"L which
generally is a small number. For the case considered here it has the value
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.25 at 1000 cycles. Hence above this frequency, all terms except the erst
two can be neglected, since they contain powers of e ' ~, and since the
value of (1 —e '"'~~)/(1 —e "~ ) is generally around 1. When the second
term approaches the value 1, it will affect the absolute value of the im-
pedance by less than the factor (e —1)/n and hence if n is large, the total
impedance will be nearly

Z/S=Zr/nS)

The lowest frequency for which this occurs will be when the length 2m' is
one wave-length.

Fig. 3, shows the acoustic resistance actually used for these measure-
ments. It consists of 37 hexagonal brass tubes fitted together into a hexa-
gonal form, leaving no space between the tubes. Thirty of these are grouped
in pairs, one tube of each pair having an open end and the other tube a
closed end. The lengths of these pairs vary from 38.1 cm to 73.6 cm in equal

NO. 555 LOUDSPEAKER UNITS

EXPONENTIAL HORNS

TRAN SFOR ME R ACOUSTIC RES ISTA NC E S

~l
I

TRANSFORMER

Fig. 3. Acoustic section of transmission measuring circuit.

steps. From wall to wall the diameter of these tubes is 0.32 cm. The seven
tubes in the center are somewhat longer than the others, each of these being
78.8 cm, and are connected to the $555 loud speaker. They are used to con-
duct sound into the system, or to take off a small amount of sound at the
receiving end. These tubes are only a small part of the total, and their
length is such that no matter what their termination is, the impedance that
they contribute to the total terminating impedance cannot vary by more than
forty percent. As their area is a small fraction of the total, their effect on
the terminating impedance is small.

The entire acoustic circuit is shown on Fig. 3. As we wish to measure
several sizes of tubes, and it is inconvenient to use more than one size of
acoustic resistance, some logarithmic horns were used to taper down from
the acoustic resistance to the size of tube to be measured. It has been shown
previously, that the characteristic impedance per sq. cm of a logarithmic
horn remains unchanged throughout its length and hence the horn acts as a
transformer. Furthermore, if we are interested in frequencies which are
large compared to its cut-off frequency, the characteristic impedance is
nearly that of a straight tube. The horn used here was one having a cut-off
frequency of 55 cycles. At frequencies above 400 cycles, the irregularities
introduced by the horn were less than 10 percent. Corrections for the horn
distortion have been made on the measurements of the two smallest tubes
up to 400 cycles. All other measurements given are the insertion factor
measurements as made using the above circuit.
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V. XPERIMENTAL
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A plot of the measured phase constant is shown on Fig. 5. What is
plotted is co/b, which is the velocity of propagation. By means of equation
(4) and the known constants of the tube, we can calculate the theoretical
value of the velocity for this tube. The result is shown by the full line of
Fig. 5.

Measurements have been made of the insertion power ratio of two
acoustic filters. The filter used, shown in Fig. 6, consists of a main conducting

INSIDE DIAMETER OF
TUBE= l.702 CM.

INSIDE DIAMETER OF SIDE BRANCH TUBES = I.050 CM.

Fig. 6. A typical acoustic filter.

tube and two side branches at each junction point. By putting on or taking
off caps, the side branches could be either closed or opened on the end. The
first filter, a low-pass type, was obtained by putting all the caps on the side
branches. The second, a high-pass type, was obtained by removing all of
the caps. Since the side branch is small compared with the main conducting
tube, we take the end correction for the side branch to be 0.82 R.' With this
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Fig. 7. Measurements of the insertion losses of two acoustic filters.

correction, the length of the side branch closed is 8.49 cm, and the length
open is 8.79 cm. The distance between successive side branches is 16.7 cm.
The total number of sections employed is three.

' Reference 1, page 263.
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The measurements of these 61ters are shown by the points on Fig. 7.
Calculated values of the insertion power ratio, making use of equations (25)
and (31) of the preceding paper, ' to give the filter parameters to be inserted
in equation (5) of this paper, are given by the solid lines of I'ig. 7. In making
these calculations, the terminating impedances Z~ and Z~ have been taken
as resistances whose values were (Polyp)"' per sq. cm. The degree of agree-
ment is shown by the 6gure.

VI. DIscUssIoN QF REsULTs

The results obtained for the attenuation measurements of straight tubes,
which are little affected by temperature changes, indicate that the sound
energy attenuation obeys closely the Helmholtz-Kirchhoff law. Since no
means were available for preserving a constant temperature during the
experiment, no great accuracy can be claimed for the deviation of velocity
with frequency measurements. The results obtained agree with the Helm-
holtz-Kirchhoff law within the accuracy of measurement. The results ob-
tained for the acoustic 61ter measurements agree well with the theoretical
values and indicate that all assumptions made are valid.

The measuring method and circuit gives results accurate to about
5 percent in power ratio and about .02 radians in phase shift. In order to
utilize the phase accuracy, it would be necessary to maintain a constant
temperature and to have acoustic resistance terminations which do not vary
by more than 5 percent from the characteristic impedances of the tubes.
This last requirement can be met by eliminating the logarithmic horns,
and by using acoustic resistances with longer tubes than were employed here.

In conclusion the writer wishes to express his thanks to Professors Wills
and Webb of Columbia University for their interest in the investigation.

BELL TELEPHONE LABORATORIES, INCORPORATED,

May 26, 1927.


