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THERMOELECTRIC PHENOMENA IN CRYSTALS
AND GENERAL ELECTRICAL CONCEPTS

By P. W. BrRiDGMAN

ABSTRACT

It is shown that when an electric current passes across an interface where the
crystal orientation changes there is a Peltier heat, but no corresponding jump of po-
tential. This demands that we analyze the action of an impressed e.m.f. into two
aspects. The following definitions are suggested: (1) energy per unit time delivered
by the source when current 7 flows =7 X “working” e.m.f.; (2) 7 = (“driving” e.m.f. —AV)
/AR, In ordinary isotropic materials this analysis is not necessary, but it is necessary
in unequally heated materials in which thermal currents are flowing. In an unequally
heated metal the “driving” e.m.f. between two points at a temperature difference dr
is —drfyodr/7, and the “working” e.m.f. between the same two points is odr. It is
shown that these expressions demand that the current convect with it the energy
7 [oodr /7, which must be described as thermal energy. We are able in these terms togive
a thermodynamically consistent account of the energy transformations in all parts of a
thermo-electric circuit. The theoretical significance of a thermal energy which depends
on the direction of current flow is emphasized. The argument may be extended from
crystals to ordinary isotropic substances. A number of questions peculiar to crystals
are discussed. The existence of an internal Peltier heat when the direction of current
flow changes is proved, and the importance of this effect for all theories of conduction
is emphasized. Some fine structure seems demanded in a metal which is not ordinarily
taken into account. Equipartition cannot hold, but the thermal energy of the electrons
is of the same order of magnitude as that given by equipartition. Formulas are derived
for the internal Peltier heat as a function of the direction of current flow, for the
surface heats and for the two latent heats of evaporation of electrons. The possible
existence of a Volta difference of potential between different faces of the same crystal
is recognized. An argument is drawn from the connection with the photo-electric effect
suggesting that this Volta difference may possibly vanish.

N THIS paper I propose to discuss the bearing of various thermo-electric

phenomena in crystals on the problem of understanding thermo-electric
action, and the even broader problem of the electrical behavior of metallic
conductors in general. These phenomena in crystals bear both on our idea
of the underlying mechanism, and on the very concepts in terms of which
such electric phenomena are described.

All the conclusions of this paper can be obtained by the use of simple
thermodynamics, in conjunction with certain exceedingly simple physical
assumptions, and the fundamental experimental fact that the thermo-electric
properties of a single crystal are in general different in different directions.

Imagine a thermocouple, in which one branch is a straight rod cut from
a single crystal in a definite orientation, and the second branch is some
isotropic metal, such for example, as copper, as shown in Fig. 1. When the
junctions are brought to different temperatures this couple functions exactly
as any ordinary couple. A current flows in the circuit; the source of the energy
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which drives this current is heat, which flows into the circuit at the two junc-
tion points as Peltier heat, and into the parts of the circuit where there is a
temperature gradient as Thomson heat. We assume these heats to be
reversible, and thermodynamics to be applicable to the system, as in the
ordinary analysis. Then if for the sake of definiteness we suppose the crystal
rod cut parallel to the axis, we have the relations

Picu=1dEjcy/dr
ocu—0o1=T1d*E|c,/d7?
for the Peltier and the Thomson heats respectively. Ejc, is the total e.m.f.

of the couple, between a fixed lower and a variable upper temperature,
directed from | to Cu at the hot junction. "

a

Fig. 1. Fig. 2.

We may now construct another similar thermocouple, with the rod cut
perpendicular to the axis, and obtain a similar set of formulas. Then by
subtracting one set of formulas from the other, and using the relations
Picu—Prcy=P). etc., which are valid for ordinary thermocouples, and are
also valid here, since they follow immediately from the impossibility of
obtaining work from a complete cycle at constant temperature, we have the
equations:

Pir=7dE./dr (D
oL—a=T1d*EL/d7?, (IT)
which apply to a couple, the two branches of which are cut from the same

crystal, but have different orientations, as shown in Fig. 2. These formulas
are in all respects like the formulas which apply to a couple composed of two
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different isotropic metals. It is furthermore obvious that similar formulas
apply to rods cut from the crystal in any two directions.

There is, then, a Peltier heat when current flows across the surface sepa-
rating two parts of the same crystal turned so as to have different orienta-
tions. As we have drawn it, the surface at which Peltier heat is absorbed is
perpendicular to the direction of current flow, but there is no necessity in
this restriction, for it is obvious in Fig. 1 that the surface of separation of the
crystal from the copper might have been inclined at any angle to the direction
of current flow, as shown by the dotted line, with no change in the total heat
absorbed, because of the thermodynamic fact that no rearrangements of the
parts of the circuit at constant temperature can have any net effect. The
Peltier heat at the surface of a crystal depends, therefore, on the direction of
flow of the current with respect to the crystal as it crosses the surface, and
not on the orientation of the surface itself with respect to the crystal.

What physical account shall we now give of the nature of the action at
the surface where this absorption of heat takes place? In the case of the
ordinary thermocouple between isotropic metals there is more or less common
consent as to the method of picturing the phenomenon. We recognize that
there are two entirely different sorts of action at the surface. One of these is
connected with the Volta difference of potential. This Volta difference, which
as given by experiment is a difference between points outside the metals, may
be divided in various ways between three surfaces, two separating the metals
from surrounding empty space, and one separating the two metals from each
other. There is not yet any agreement as to how this division should be
made. But:entirely:'apart from the Volta phenomenon, and of an order of
magnitude”:only one®one-hundredth as large, there are the surface effects
responsible for the Peltier heat. We think of the surface of separation of the
two metals as the seat of an impressed e.m.f., which functions in the two
distinctly different ways that all ordinary e.m.f.’s do. The first function of
the impressed e.m.f. is to deliver energy to the current as it flows across the
junction in amount precisely equal to the Peltier heat. The second function
is to tend to produce a motion of electricity, that is, to produce a current,
precisely like an ordinary electric force. But now Ohm’s law applies in the
surface of separation, so that unless there is a finite resistance in an infini-
tesimal thickness at the surface, the impressed e.m.f. acting in this way
would give an infinite current. This can be avoided only by supposing the
development of a precisely equal opposing jump of electrostatic potential.
But a jump of potential demands, by the ordinary laws of electrostatics, a
double layer at the surface. The strength of this double layer must be equiva-
lent to the Peltier heat. The electrostatic potential with which we are
concerned here is the ordinary electrostatic potential of elementary macro-
scopic theory; it is a smooth point function, to be calculated by the law of the
inverse first power from the position of distant electric charges. It is also
to be noticed that we are restricting ourselves to steady systems.

The impressed e.m.f. which the conventional mode of representation
employs to picture the action at a junction where there is a Peltier heat is
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exactly similar in its properties to the ordinary body forces of electrostatics,
differing from such body forces only in the unknown nature of its origin.
This impressed e.m.{. delivers energy when a current moves with it in amount
equal to the product of current and e.m.f., and of itself tends to produce a
current. The expression of Ohm’s law in a substance where there is such
action is: 4= (e.m.f. —AV)/AR, where the e.m.f. of the equation is the total
e.m.f. acting between two points whose difference of electrostatic potential
is AV, and AR is the resistance between the same two points. This view of
the nature of an impressed e.m.f. will be found explicitly stated, for example,
in Abraham'’s treatment of the field equations.

Although this picture of an impressed e.m.f. functioning in these two
ways (delivering energy and entering Ohm’s law) is the usual one, it is by no
means necessary, and in fact cases are already known in which this account
of the nature of the action on a current in not broad enough to correspond
to the physical phenomena. In particular, in an electron gas, in which there
is an ordinary gas pressure, the conventional account of the situation fails.
I have already discussed this matter at some length,! and from the fact that
the ordinary account is demonstrably inadequate in an electron gas have
drawn the conclusion that in general in a metal we must keep distinct these
two possible aspects of the action on electricity. 1 insisted, in particular,
that at a junction we could not equate Peltier heat, impressed e.m.f., and
potential jump. I gave formulas in which these three things were explicitly
recognized as different, but at the time was not able to go further in definitely
splitting the action into its different aspects. One of the chief points of this
paper is that phenomena in crystals give us a method of taking the next step,
and of definitely specifying the relation between these different aspects of
the action.

We are able to effect this analysis because we are able to show that in a
crystal there can be no jump of potential at a surface where the orientation
changes. Fig. 3 represents two pieces of the same crystal, differently oriented
with the circuit completed by an isotropic metal. The system is at constant
temperature, with no current flowing, and is therefore in equilbrium. Now
describe the path indicated from A to B. There can be no changes of
potential inside the homogenous metal, either crystal or isotropic, so that
the only possibilities of a variation of potential in the path are at the two
surfaces of discontinuity, at C and D. But these two surfaces of discontinuity
are identical, so that if we make the simple and almost unavoidable assump-
tion that any jump of potential at a surface of discontinuity is determined
merely by local conditions at the surface, we see that any change of potential
encountered at the surface C is wiped out at the surface D, which is traversed
in the opposite direction, and therefore there can be no difference of potential
A and B. The same conclusion is forced from an examination of the com-
pound crystal shown in Fig. 4. If there can be no potential change inside the
body of homogeneous metal and if the potential jump at a surface depends

1 P. W. Bridgman, Phys. Rev. 14, 306-347 (1919).
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only on the relative orientation of the abutting parts, then the potential at
B exceeds that at 4 by the same amount that the potential at C exceeds that
at D, and if the potential at B is equal to that at D, and that at 4 is equal
to that at C the potential throughout the entire interior of the compound
system must be the same, and there can be no jump at an interface.

We appear driven, therefore, to the conclusion that at a surface of dis-
continuity of orientation there can be no jump of potential, and therefore
no double layer. The impressed action at an interface is such as to deliver energy
to the current, but it does not enter Ohm’s law, and it does not tend to produce a
current. »

Can we now extend these conclusions to the other parts of the circuit, and
say that the action which we usually describe in terms of a Thomson e.m.f.
involves only a transfer of energy to the current equal in amount to the
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Fig. 3. Fig. 4.

Thomson heat, but that this action involves no tendency toward the pro-
duction of current? Itis evident that we cannot make this extension, because
a current flows in the complete thermo-electric circuit, so that somewhere in
the circuit there must be something tending to set the current in motion.
Furthermore, the net effect around the circuit, or the line integral of the
tendency, must be the same as that given by the conventional analysis,
because the conventional analysis gives the correct total flow. But is this
possible; is it possible to locate in the body of the metal a driving e.m.f. such
as to satisfy the integral condition?

Before we carry this discussion further it will be convenient to invent a
notation that explicitly recognizes the two aspects of impressed action. In
lack of anything better, I shall speak of an impressed “working” e.m.f.,
(e.m.f.)y, and an impressed driving e.m.f., (e.m.f.)4. These two quantities are
defined through the equations:
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1. Energy* per unit time delivered by the source when current 7 flows =.
1 X (e.m.f.), :

2. i=[(e.m.f.)a—AV]/AR (Ohm’s law),
where AR is the resistance between two points whose difference of potential
isAV.

We are now required so to locate a driving e.m.f. in the body of the metal
that there is the proper net effect in the complete thermo-electric circuit.
This may be accomplished by integrating the equations connecting the
Thomson heat with the second derivative of the total e.m.f. We have

Integrating once,

dEL ToL T al
—_—= f —dr— f —dr+const.
dr T o T

In virtue of the condition on the Peltier heat
const. = (dEiL/d7)rer,= (PIL/T)r=r,

Now if we put 70=0° Abs, (Pi./7);—0=0, in virtue of the third law, which
states that there can be no entropy changes at 0° Abs. This gives

dE”L/dT=f ou_dr/r—f oidr/7, (111)
0 0

and integrating again

En_L=f de O'J_dT/T—f drf oidr/7. av)
0 0 0 0

The constant of integration is here zero, because the total e.m.f. of a couple
whose two junctions are at 0° Abs is zero. Now the form of the expression
just obtained for E shows at once that the total e.m.f. may be obtained by
assigning to each element of length reaching from 7 to 7+dr a driving e.m.f.
of amount—dr [, od7/7, driving the current in the direction of increasing
temperature.

The working e.m.f. at various parts of the circuit is given by the con-
ventional description, since this accounts consistently for the energy absorbed
as heat by the system in the local parts of the circuit.

* In the following we do not speak of a current or an electron as having potential energy
of position in the electric field, but when the mutual potential energy of the electron and the
field changes we speak of a transfer of energy to the field by means of the Poynting vector.
The electron or the current is from this point of view entirely neutral, constituting merely an
intermediate link in a chain by which energy is transferred from some other agency to the field
or vice versa. One can, if preferred, speak of the electron itself as having the potential energy,
instead of the field; in this case the energy flow on the Poynting vector plays no part. These
two points of view are really the same, and lead to the same formulas.
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We now recapitulate the results found thus far. At a surface of discon-
tinuity in the orientation there is an absorption of energy equal to the Peltier
heat, and therefore by definition an equal working e.m.f., but there is no
potential jump, no double layer, and no impressed driving e.m.f. In the
body of the metal where there is a temperature gradient, there is an absorp-
tion of energy when current flows up the temperature gradient from 7 to
7-+d7 of odr, that is, a working e.m.f. of ¢d7, and there is furthermore between
the same two points an impressed driving e.m.f. of —dr [, odr/r.

That we have been forced to recognize two different kinds of e.m.f. should
not be disturbing, and in fact is to be expected as soon as we appreciate that
the electronic structure of an electric current makes it in many respects like
a current of an ordinary fluid. Consider, for example, an ordinary hot water
circulating system. The source of the mechanical work used in overcoming
the friction of the water against the pipes is thermal, but the current is drivex

by gravity, which can do no nét work. The physical essence of our point of
" view is the recognition that there are other ways of imparting energy to
electricity than by the action of a body force. This recognition is inevitable
as soon as we discover the possibility of an electron gas which exerts a gas
pressure and is the seat of thermal energy. That we have now been driven
to recognize the existence of a similar situation inside a solid metal must be
most significant for theories of metallic conduction.

Continuing with the argument, it is to be noted that the two e.m.f.’s
which we have found in the body of the metal are, paradoxically, of opposite
signs. It is evident, therefore, that this distribution of e.m.f.”s must involve
a rather different description of the energy transformations in the circuit than
the conventional one.

Before attempting a description of the energy transformations according
to our new point of view, it will be well to have before us the conventional
description of the situation. This description is suggested by Lord Kelvin’s
figurative ascription of a specific heat to the electric current. If we suppose
that the current carries with it energy of amount o7, or more generally
J, odr, then we obviously have given a possible description of the absorption
of Thomson heat. It is perhaps not generally recognized, however, that this
method of associating thermal energy with the current is not consistent with
the conventional views of the impressed e.m.f. We can see this in the follow-
ing way. In an isotropic (non-crystalline) medium, in which a current is
flowing, and in which there is a temperature gradient, consider the conditions
of energy balance within any small closed surface. We can write the condi-
tions of energy balance in two ways. First there is the geometrical condition
on the closed surface, that no net energy cross the surface. Secondly, by
regarding the current of electricity like a current of ordinary fluid, we have
the condition that the energy carried by the current out of the region is
equal to what it carries into the region, plus that acquired within. Suppose
now that unit current convects with it the energy U. The first condition of
energy balance, on the region, is

div (¢U)+div (— % grad 7)+14-grad V=0 V)
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where the first term represents the net energy flowing out of the region
carried by the current, the second term the energy flowing out as heat by
conduction, and the third term the electromagnetic energy flowing out of the
region on the Poynting vector. The second condition of energy balance, on
the current, is

div (iU)=i-o grad r—i-grad V—i%, (VD)

where the first term on the right hand side is the reversible heat absorbed
by the current as Thomson heat, the second term is the energy given by the
current to the field by means of the Poynting vector, and the third term is
the Joulean heat imparted by the current to the matter occupying the
region. If now the impressed action enters Ohm’s law in the conventional
vay, we have also

t= (o grad r—grad V) /p

Multiply this equation by 7p, and substitute back in VI, obtaining
div (¢U) =0. But since div :=0, we must have U= Const, which is not the
conventional expression of Kelvin for the convected energy.

The conventional points of view therefore contain an inconsistency. It
is to be noticed that this inconsistency does not react on the equations by
which ¢ is determined experimentally, for on eliminating div (¢U) between
V and VI we get

i-o grad 7= 1% -+div (k grad 7),

which is the usual equation by which ¢ is determined from the distribution
of temperature in an unequally heated bar carrying a current. (See, for
example, Borelius.?)

To what account of the energy transformations are we now driven by
accepting the expression —dr [, odr/7 for the driving e.m.f. in a crystal? We
write down an equation analagous to Equation (VI), but in order to avoid
complications from a resistance which is a function of direction, we apply
the condition to an element of length of a long slender linear conductor cut
from a crystal in a definite direction. Taking the x axis along the length gives

d or  dvV

—((U)=1t6——1——1%
6x( ) dx Oz ’

Ohm’s law becomes

ir (7 o 1%

ip=—— | —dr——
axo‘r dx

Substituting back,

9 . oU _or Ot [T o K To
—@U)=i—=1c—+ z——f —dr = 1—|:'rf ——d-r:|.
dx dx dx  dxJo T dx 0o T

2 G. Borelius, Ann. d. Physik 56, 388 (1918).
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Integration of this equation gives, except for a constant which has no
physical significance, U=7[, dr/7. The condition of energy balance demands,
therefore, that the current convect with it the energy U=t/ odr/7. Since o is a
function of direction, the energy convected is also a function of direction.

What account does our new expression for convected energy give of the
phenomena at surfaces of discontinuity? Assume for the sake of definiteness
that the current flows from || to L. Then on crossing the surface there must
be an absorption of energy equal to the difference of convected energy on the
two sides of the surface, or. :

T[ fg " oydr/r— fo ' a"dT/T].

But this is exactly equal to P,,, as we see at once from equations I and III,
and is as it should be if our picture is consistent.

What shall we suppose is the nature of the convected energy? It is not
difficult to see that we must formally describe the convected energy as thermal
energy. This means that at the junction the current absorbs thermal energy
from its surroundings, and convects this away with it, still in thermal form,
like water in a heating system. This is demanded by the account we have
given of the driving and the working e.m.f.’s at the surface. For if there is
no potential jump, there is no Poynting flow, and hence no conversion of
thermal to electro-magnetic energy, and if there is no driving e.m.f. there
can be nothing corresponding to a non-electrical difference of potential on
the two sides of the surface, such as has been sometimes assumed in postu-
lating a non-electrical potential energy of position of the electron inside the
metal. Furthermore, we are enabled to give a correct description of the
energy transformations in the unequally heated parts of the circuit by de-
scribing the convected energy as thermal. The requirement is that the fraction
dr/7 (equal to d7/79x for unit length) of the thermal energy entering the
region at the higher temperature be converted into non-thermal energy. The
energy converted in unit length is the energy which flows out on the Poynting
vector (20 V/dx) plus the Joulean heat. Ohm’s law already written, gives for
the sum of these 1%0+19 V/dx = —i(d7/9x) [, odr /7. Now this is exactly equal
to (8r/70x) (—ir[;odr/7, where the term in brackets is, to first order terms,
equal to the energy convected into the region as heat by the current at the
higher temperature, so that the thermodynamic requirement is completely
met.

We have thus arrived at a consistent and definite method of describing the
phenomena in a thermocouple consisting of two rods of the same crystal
differently oriented, in which we have assigned definite and unequal values
to working and driving e.m.f. at every point of the circuit, and have also
found a unique value for the energy convected with the current, which we
have had to describe as thermal energy. Can we not now give up the re-
striction that the results apply only to different orientations of the same
crystal, and apply exactly similar expressions to couples composed of any
two isotropic metals? It is at once evident that all the formulas do apply,
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if we are satisfied merely with a possible solution. We might question, how-
ever, whether there might not be other solutions in this case, because our
entire argument rested on the fundamental fact that there can be no jump
of potential across a crystal interface, and there is apparently no correspond-
ing relation at an interface between different isotropic metals. A little
consideration shows, however, that we can make the desired transition from
crystalline to isotropic metals by way of the expression for the convected
energy. For in an isotropic metal, that is, a metal crystallizing in the cubic
system, we must still have for the convected energy 7/ odr/7, and must still
describe this energy as thermal, as we can see by starting with a non-cubic
lattice, in which these results always hold, and continually deforming the
lattice until it becomes cubic. It follows that at an interface between two
isotropic metals all the Peltier heat goes to increasing the thermal energy of
the current, and that there can be no Poynting flow, and therefore no poten-
tial jump, nor any change of non-electrical potential energy of position. It
follows that all our arguments and our explicit formulas for crystals at once
apply to any isotropic metal.

It is significant that we have been driven to ascribe a thermal energy to
the current. This would seem to prove that a theory of metallic conduction
such as Wien’s, which does not allow the motion of the electrons which
constitute the current to be affected by temperature, cannot be correct.
Recognizing, however, that the energy of the current must be thermal in
character, we are confronted with the problem of understanding how this
energy may be negative in some metals, as experiment shows it to be. A
possible explanation is that the electrons, when moving in such a way asto
constitute the current, may have greater or less energy of haphazard agitation
than when they are not so moving, and that what we have called the thermal
energy of the current is merely the difference of these two energies. In any
case it no longer seems possible to suppose that the electrons have equiparti-
tion energy, although doubtless their energy may be of the same order of mag-
nitude as that demanded by equipartition. This question will be referred to
again in connection with the internal Peltier heat.

It is to be carefully noted that our energy considerations give no hold
whatever on any Volta jump at the surface of discontinuity, for all the energy
transformations involved in the Volta jumps are entirely electromagnetic in
character, and thermodynamics has nothing to say about them. In the case
of crystals, the first argument used above does apply, however, and there
can be neither Volta nor Peltier jump at a surface of discontinuity in the
crystal orientation. '

We now turn from these more general matters to consideration of several
questions peculiar to crystals. First we must emphasize a most important
crystalline phenomenon, which I have already mentioned in previous papers.
Consider the two thermocouples shown in Fig. 5 composed of crystal and
isotropic metal. The total e.m.f. of these two couples is the same, because
the only difference between the two systems is in the regions at constant
temperature. Hence the total heat absorbed when unit quantity flows around
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the circuit is the same in the two cases. Since the parts of the systems at
temperature 7o are identical in the two cases, the heats absorbed in this part
of the systems are the same. Hence the heat absorbed in the parts at 7 must
also be the same. Now in Fig. 5a, heat is absorbed at temperature 7 only at
the surface 4. In Fig. 5b, heat is absorbed at 4’, but since the direction of
current flow on leaving the surface 4’ is different from that at thesurface 4,
this heat is not equal to that absorbed at 4. Hence there must be some
compensating absorption of heat somewhere else at temperature 7 in Fig. 5b,
and by the principle of sufficient reason, this can only be at the corner B
where the direction of current flow changes. This I have called the internal
Peltier heat. It is a heat per unit quantity of electricity, or per electron, and
is therefore independent of the velocity with which the electron moves. The
mere existence of this heat is a most significant thing. We have herean absorp-
tion of energy without change of position, and therefore without change of
electrical potential, but merely a change of direction of motion. Since there
is absorption of energy at the corner, we must recognize the existence of an

I

B

a b
Fig. 5.

o

impressed working e.m.f., but since there is no change of potential, there can
be no impressed driving e.m.f., thus again showing the necessity of splitting
our ordinary concept of impressed e.m.f. into these two aspects.

This fact, that there is no impressed driving e.m.f. at a bend in a crystal,
I have verified by direct experiment, although protesting all the while that
it was almost an insult to one’s intelligence to make such an experiment. I
made potentiometer measurements of the drop of potential between two
points at opposite sides of a bend in a single crystal of bismuth (the crystal
was cast with the bend in it), and verified that the potential drop is propor-
tional to the current in the range of small currents and potential drops
accessible to a high sensitivity galvanometer.

The physical explanation of the internal Peltier heat seems to demand
the existence of some fine structure of which other phenomena give us little
or no suggestion. There is no reason to think that this fine structure is
confined to non-cubic crystals which have thermo-electric differences in
different directions, but we must recognize its existence in cubic crystals as
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well, that is, in all ordinary metals. In ordinary cubic metals this fine struc-
ture has the same properties in all directions, and therefore does not force
itself on our attention when the direction of current flow changes. It seems
to me that the recognition of this structure or mechanism must revolutionize
our attempts at a theory of metallic conduction. It was my former opinion
that theories of conduction need have little or no regard for thermo-electric
phenomena, since there seemed no simple connection between the two classes
of phenomena, but the discovery of the internal Peltier heat entirely alters
the situation, and demands that the two phenomena be treated inseparably
in any theory.

By the same argument as that used in the first part of this paper, we
must recognize that the energy absorbed by the current as internal Peltier
heat when the direction of flow changes must still be classified as thermal
energy after it has been absorbed by the current. This much restricts any
mechanistic explanation that we can offer of the phenomenon. For instance,
we cannot say that when the electron turns the corner it moves against an
equivalent microscopic potential difference.

There is a possibility of explanation in terms of the same “grooves” that
I have imagined in connection with other phenomena. There are a number
of indications that the electron in a solid metal can move only along certain
grooves; in this case the existence of an internal Peltier heat would demand
that the thermal energy of an electron in a groove would depend on the
direction of the groove. This evidently means that we must give up equipar-
tition, at least in detail. This remark applies to my own theory of metallic
conduction, as well as to others. From the fact that the internal Peltier heat
in bismuth is of the same order of magnitude as the total energy of a degree
of freedom, we may infer that in spite of the failure of equipartition, the
thermal energy of the electrons is of the same order of magnitude as that
demanded by equipartition. The effect may well be some sort of quantum
effect, and depend on the fact that the characteristic frequency of the elec-
trons in the different grooves is different. A physical basis for this variation
of frequency with direction is evidently afforded by the different lattice
spacings in different directions.

It is obvious that there is a simple connection between the internal
Peltier heat when the direction of current flow changes from the angle o, with
the axis to the angle oy, and the difference of ordinary Peltier heat when the
current emerges from the crystal in different directions. If we denote internal
Peltier heat by II, then obviously

Halaz‘_‘Palx—Pa{gz:Palag,

where the subscript x denotes any isotropic metal into which the current
flows at the interface.

We are now in a position to consider certain other effects in crystals.
We must first recognize the possibility of a Volta difference of potential
between faces of different orientations. We have already seen that the jumps
of potential which are involved in this Volta difference are situated entirely
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in the free faces of the crystal; there can be no jump at the interface in the
metal. Of course in the case of ordinary metals there has long been difference
of opinion as to the way in which the Volta difference should be divided
between the two free surfaces and the interface. It is most interesting that
we can here give definite proof that there can be no jump at the interface.
It is tempting to extend this result to all metals, and to say that there can
never be any Volta jump at an interface between two metals, but I can see
no way of passing from the one case to the other. We may, however, draw
the conclusion that the jump of potential at an interface between an isotropic
metal and a crystal is independent of the orientation of the face of the crystal.

There is no experimental evidence of which I know bearing on the
question of a crystalline Volta effect. It would not be easy to find it by
experiments in vacuum, because of the extreme sensitiveness of the effect to
slight variations in the surface conditions. There is one consideration which
gives a certain plausibility to the expectation that the crystalline Volta effect
may be zero. We have the photo-electric equation eVip="hos —vop) for the
two metals 4 and B. This formula applies equally well to two different faces
of the same crystal. Now it is not unreasonable to expect that the character-
istic frequency v will be found to be independent of the orientation of the
face, for the reason that it is known that in isotropic metals »q is independent
of the direction of polarization of the incident light. But until direct experi-
mental proof is given, we must recognize the possible existence of this Volta
effect. This effect means an intense field of force at the corners of a crystal.
At temperatures high enough for the electron emission to be appreciable this
means a different density of the electron atmosphere in equilibrium with the
metal at different faces. This would lead us to expect also a different latent
heat of evaporation at different faces. This difference of latent heats may, in
fact, exist, whether or not there is a Volta difference.

The analysis of my former paper on the Volta and allied effects applies
at once to many of the effects in crystals. In particular, I showed in that
paper that there is a surface heat involved in charging a surface. In the
crystal this surface heat is a function not only of the orientation of the
surface, but also of the direction of motion of the charge in the crystal as it
is brought up to the face. We must accordingly use a double subscript
notation for this surface heat, one subscript to denote the orientation of the
surface which receives the charge, and a second subscript to denote the
direction of motion of the charge in the crystal. Thus (P;),; means the heat
absorbed when unit charge is added to a surface inclined at the angle  with
the principal axis of the crystal by being brought up to the surface along a
direction inclined at the angle v to the axis. It can now be shown at once,
by carrying a charge around the two paths indicated in Fig. 6, that

(PS)av—(PS)ﬂ'y=Paﬁ7

where P, is the ordinary Peltier heat at a crystalline interface, and is also,
as we have shown, the internal Peltier heat when the direction of current
flow inside the crystal changes from « to .
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We must now recognize that the latent heat of evaporation also depends
on the orientation of the surface, and the direction in which the charge is
brought up to the surface. Carry unit charge around the circuit shown in
Fig. 7. The total heat absorbed in this circuit is zero, because it is described
under equilibrium conditions at constant temperature. If the circuit is
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Fig. 6. Fig. 7.

varied in any way that we please inside the region shown by the dotted circle,
there is no change in the total heat, and therefore the heat absorbed in the
dotted region is constant. First, carry charge across the surface at the angle
8, and secondly, change the direction of motion, and carry across the surface
at the angle a. On equating the heat absorbed in the two cases we obtain

("7;:){37 - (ﬂp)av = Pga,

where 75, denotes the latent heat at constant surface charge. It is this heat
which is usually given directly by experiment, charge being brought up to
the surface as fast as it evaporates.

We have now to distinguish another latent heat, when the electrons are
allowed to evaporate from the insulated metal, leaving behind a charge on
the surface. Itis this latent heat which is given by the usual thermodynamic
analysis, and which enters Clapeyron’s equation. This latent heat I have
called %, without the subscript. There is a connection between the two
latent heats and the surface heat, namely P,+7n=1n,. Now apply this to the
face of the crystal, the surface being inclined at the angle v, and the charge
being carried through the surface, first at the angle a, and then at the
angle 8.

(Ps)av+77a7= (77p>a'y
(Ps)ﬁ'y"]"”lﬁ'r = (15)py-

Subtracting these two equations, and using the relations found above
for 5, and P;, we obtain

Ny = NMBy»

or the latent heat of evaporation at variable charge is independent of the
direction in which the charge is brought to the surface within the metal.
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This is as it should be, because the thermodynamic analysis employed in
deducing Clapeyron’s equation is concerned only with the initial and final
states, and not with the details of the process. .

There are many other interesting questions connected with the thermo-
electric behavior of crystals, which cannot, however, be discussed here.
One of the most important of these concerns the nature of the symmetry
of the Peltier heat. This I regard as a question for experiment to decide.
Experimental examination of this question has been made both by Linder
and myself. The last paper of Linder® takes issue with some of my con-
clusions, and seems to call for some comment from me. I can only say that
at present I am satisfied with neither the measurements of Linder or myself,
and that I am undertaking a fresh experimental examination of the question,
which will, I hope, lead to more satisfactory conclusions.

THE JEFFERSON PHYSICAL LABORATORY,
Harvarp UNiveERrsiTY, CAMBRIDGE, MAsS.

3 E. G. Linder, Phys. Rev. 29, 554 (1927).



