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THE DIFFUSION PROBLEM FOR A SOLID
IN CONTACT WITH A STIRRED LIQUID

BY H. W. MARcH AND WARREN WEAvER

ABSTRACT

A cylindrical solid of length a in a direction x and arbitrary cross section normal
to x is in contact on its plane face x =a with a well stirred liquid. The face x =0 of the
solid and the lateral surface are impervious to heat. The liquid extends from x =a to
x =a+b, there being no loss of heat across the face x =a+b. The initial temperature
of the solid and liquid being given, a Volterra integral equation of the second kind
with discontinuous kernel is obtained for the temperature of the liquid as a function of
the time, The solution of this integral equation is obtained in terms of the roots of a
transcendental equation and the roots of an infinite system of linear equations. By
means of the theory of singular integral equations, it is shown that the differential
equation and boundary conditions possess but one solution of required type, which

solution is obtained from the integral equation. The connection of this problem with

a case of material diffusion is shown, and a numerical illustration is given. The theory
suggests a new method of determining directly and accurately the thermal conduc-
tivity of solids.

1. STATEMENT OF THE PROBLEM.

'HE problem here considered is that of the one-dimensional flow of
heat which occurs when a solid, of length a in a direction x, is in contact,

on the plane face x =a, with a well stirred liquid, the other face x =0 being
impervious to heat. In order that the flow of heat be one dimensional, it
is necessar'y, as in all similar problems, either that the solid and the liquid
be each infinite in extent in directions normal to x, or that they' be cylin-
drical bodies of the same cross-section whose lateral surfaces are impervious
to heat. Let the liquid extend from x=a to x=a+b, there being no loss of
heat, by radiation or conduction, across the face x=a+b. Let u(x, t) repre-
sent the temperature in the solid at any point x and time t, and let v(t) repre-
sent the temperature of the liquid at any time t The funct. ion v(t) must be
continuous for all values of t. Then

n'B'e/Bx'=Be/Bt, t) 0,

where a', the diffusivity of the solid, is the quotient of its thermal con-
ductivity k by the product of its density p and specific heat c.
Also,

and

Be/Bx=0, x=0, t)0,
lim e(x, t) =uo(x), 0&x+a,
t ='0

C2)

(3)

where uo(x) is the initial temperature of the solid. The thermal contact
of the solid and the liquid at x =a gives the condition,

e(a, t) = v(t), t)0.

1072

(4)
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If the initial temperature of the liquid be vo, then its temperature at time t is
given by

where X is the heat capacity of a prism of the liquid of unit cross section
and length b. From this equation one obtains, by differentiation, thecon-
dition

KBs/Bt = —k(8u/8 x),=..

The question of the existence and uniqueness of the solution of Eqs.
(1) to (5) will be considered in Section 3.

In an experiment in colloidal chemistry, a mass 3f of a material is uni-
formly distributed, at time zero, in a jelly of depth a. This jelly is covered
with a depth b of water which is kept stirred. The material diffuses through
the jelly and into the water, where its concentration is determined as a
function of time by analyzing samples. It is desired to determine the co-
efficient of diffusion of this material in the jelly from the experimental time—
concentration curve of the liquid. . If one assumes this problem to be entirely
analogous to the thermal problem stated above, the solution of the con-
centration —diffusion problem can be obtained at once from the solution
of the heat problem. For by comparison of the fundamental thermal equa-
tion

h(temperature) = A(heat)/cp V,

where p is density, t/' volume, and c specific heat; and the equation

h(concentration) =A(mass)/V

it is seen that one need only replace pc by 1 to pass from one problem to
the other. Thus when u and v are interpreted to mean concentrations, 0.' is
to be replaced by k, and Z is to be replaced by b.

It is not proposed to discuss here the legitimacy of the identification of
the two problems. It is, however, clear that Eq. (4) is the doubtful one.
If it is found that, when a steady state has been finally reached, the con-
centration of the diffusing material'is the same in the jelly and in the liquid,
then this experimental fact furnishes reasonably convincing evidence for
this assumption. For it indicates that there is indeed equilibrium when the
concentrations are equal in the liquid and in the jelly; and sufficiently thin
layers of the jelly and liquid, adjacent to the plane of contact, may be
assumed to be in continuous equilibrium as the diffusion proceeds. Actual
stirring of the liquid cannot, of course, assure at all moments a uniform
concentration in the liquid down to the surface of the jelly, but the diffusion
proceeds slowly, in an actual case, so that the assumed conditions are closely
approximated.

In explanation of the method of solution which occurs in the next sec-
tion, it may be remarked that the characteristic functions of (1) under the
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conditions (2) and (5) are not orthogonal; so that the usual method meets
a difficulty in attempting to satisfy (3). It should also be noted that Eqs.
(1), (2), (3), (4), and (5) are satisfied, for the special case zip(x) = ep, a con-
stant, by the values n=ztp, v=mp. If upgvp, it is obvious that the values
just written do not furnish a solution of the physical problem. The mathe-
matical condition which is not met, is the condition that v(t) be a continuous
function for all values of t including t=0. The method of solution must
proceed in such a way as to safeguard this required continuity of s(t).

2. SOLUTION OF THE PROBLEM.

In this section a solution of Eqs. (1) to (5) inclusive will be obtained,
neglecting for the moment certain questions of rigor. These questions will
be raised and answered in the succeeding section.

Let

I=QI+N2,

where ei and e, satisfy (1) and the conditions

Be,/Bx=0, x=0: e,(a, Z)=0, t)0; lim e&(x, Z)=e, (x).
t ='0

Bee/Bx=0, x=0: ez(a, t) =s(Z), Z)0: lim ez(x, t) =0.
t ='0

The function u& is given by the known formula

e, = QA„e-"' cos zi„x

n„=a'zz„z; zz„=(2zz+1)zr/2a; A„= 2a ' l e, (x) coszz„xdx. (10)
p

The Fourier expansion here used which involves only odd multiples of
zr/2a can be readily obtained by writing an ord&nary cosine expansion in
the interval from x=0 to x =Za of a function e(x) defined by e(x) =ez(x),
0&x&a; e(x) = eii(2a —x), a&—x&2a..

If, in particular, ez(x) be a constant, say e„ then

Now let H(x, t) be the temperature wh'ich the solid would have, at a
point x and time t, if it were initially at zero temperature, if its face x=a
were maintained at temperature unity, and if its face x = 0 were impervious
to heat. It is easily seen that the function

4 ( 1)n
H(x, t) = 1 ——g e "' cos zz„x

7r 2e+1
(12)
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satisfies these requirements. The function u2 is now given, in terms of
H(x, t) by Duhamel's theorem, ' as

t t

V(r)—H(Xlt —r)dr = — V(r) H(—X, t r)d—r,
Bt p 87'

Bv=vpH(x, t)+ —H(x, t r) dr-.
p l9T

Let the expressions for ui and u2 be added to form u, and the value of
H(x, t) be inserted from (12). It then follows that

where

BQ E 2 Bv= ——QC..--.'y—
BX, , k p 8 p &97 p

C„=r&[pA„(—1)"(2u+1)x—vp], x=2k/aK

(14)

In obtaining (14) it has been assumed legitimate to perform the differentia-
tion with respect to x under the sign of integration and the sign of summa-
tion. This point will be later considered. In case up(x) =up, a constant,
Eq. (15) reduces to the special form

C„=~(up —vp).

If, now, (14) be substituted in (5) the result is

(15')

where

t

F(t) =f(t) — F(r)K(t r) dr, —
p

f(t) = QC„e ~"' K(t) =~ Qe ~"' F(t) =av/at. (17)

Unless otherwise stated, sums such as (17) are to be understood throughout
the paper to extend from n =0 to n= tx) .

The Volterra integral Eq. (16) can be solved by an immediate extension
of the method developed by Whittaker' for the numerical
solution of an equation whose kernel is expressed as a finite sum of ex-
ponentials. If, in fact, one substitutes in (16) the assumption

F(t)= QB,e '" (18)

the resulting equation will be satisfied if the coefficients of e &" and of e

are, for all i and n, the same on the two sides of the equation. Of the two
conditions so obtained, the first demands that each P; satisfy the equation

1+ Q =0.
p n„—P;

That is, the numbers t'; are the roots of the transcendental equation

=0 (20)

' Carslaw, The Conduction of Heat, 1921, p. 17.
g E. T. Whittaker, On the Numerical Solution of Integral Equations. Proc. Royal Soc.

London 94A, 367-383 (1917).
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The formula

2z 22 2z
tan s= ———+ —+ + ~ ~ ~

(~/2) ' —s' (3s/2) ' —s' (5~/2) '—s'

permits (20) to be rewritten as

where

tan z+) a=0.
y = n'z'/a', X = cx'E/ak = E/apc.

(21)

(22)

It may be noted that ) is the ratio of the heat capacity of the liquid to that
of the solid per unit area normal to x.

In the case of the material-diffusion problem, Eqs. (22) are to be replaced

y = ks'/a', X = b/a

The second condition, referred to above, demands that
00

C„+~ Q ——=0, e=0, 1,2,
;o 0.„—P;

(22')

(23)

Thus (18) is a solution of (16) if the constants P; are determined from (21)
and (22) and the constants 8; then determined from (23).

Eq. (21) is a generalization of the equation

(24)

met in many problems of applied mathematics. The method used by Lord
Rayleigh' to obtain the roots of Eq. (24) can be applied to the more general
Eq. (21). There results, as a formula for the n'th positive root (which is
numerically equal to the n'th negative root) the equation

where

and

Z„=8'„+m„

II'„=-,'(2m+1) s

1 3K+ 1 30K'+ 20K+ 3 1575K'+1575K~+483K+45

3$3gl 3 $5/5+ 5 315X78"„~

(25)

(25')

39,690X4+52)920X3+24)696)2+3 834) +9
2511

2835K'5'„'

In Fig. 1 the first four roots, zo, z&, z2, s., of Eq. (21) are shown, for values
of ) between 1 and 5. The roots beyond the fourth for these values of ),
and any roots for higher values of ), may be calculated very easily from
the equations (25). For smaller values of ) the formula converges very
slowly, and the roots can be found more easily by a combination of a graph-
ical and trial and error method. The discussion of this paper will be limited
to the case) ~1.

' Rayleigh, Theory of Sound. 1896. Vol. I, p. 334.
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Eqs. (23), from which the numbers B; are to be determined, form an
infinite system of linear equations. In Section 3 it will be shown that this
system possesses a unique bounded solution, and in Section 4 a convenient
method is given for the actual computation of the numbers 8;.

2,.0 ',

%a1~~
1

IQg ~
$ 9

aaa ~
%a

Fig. 1. This figure gives the first four roots, zo, zi, z2, z&, of the equation tan z+Xz=o,
for values of X ranging from 1 to 5. For the curve zo the vertical scale reads as shown. For zi, the
values read from the curve should be increased by 3:for z2, add 6: for z&, add 9.

From (18) and (17)

so that

av/at= gB;e-e",

v =Dp g(B;/'p~)e e*'.—
(26)

Now the total heat which a cylinder of the solid of unit cross section
will have lost in cooling from its initial temperature up(x) to a final uniform
steady temperature u„ is

pcs(u u„), —where u=a ' j up(x)dx.
0

The total heat which a similar cylinder of the liquid will have gained is
X(v„—vp), where, moreover, v„=u„. . Thus v„=Dp=(u+&vp)/(1+&).

Consequently
u+) vp 8;

v= —— —— —e i'"
j+x p;

(27)

For t =0, this equation reads, after reduction,

Z(B'f/P') = (u —»)/(1+l ) . (28)

It must be possible to establish this surprisingly simple value for the sum
of the quotients of B; by P; directly from Eqs. (19) and (23). Apart from
its intrinsic interest, Eq. (28) furnishes a very convenient and convincing
check on computed values of B; and P;.
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If (26) be now substituted in (13), the resulting value of u =ui+u2 is
given by

&»t ~ —
4 ~

( ])»
u=u, +v,P+ I QB;e ~" 1 ——P — e "&' ' cos p„x dr

p;=p ~ „p 2e+1

The term obtained, from the integral, when the factor 1 of the square bracket
is used, is v —vp. The remaining portion of the integral may be written

4»' ( 1)» ~ t

e»"' cos p x QB; e&»» &"dr
7l tt —p 26+ 1 t',=p 0

4 "
( —1)" " Be &*' 4

cos p„x g — +-
„p 2m+1; p a„—P;

eo ( 1)» ~ B.
cos p„xe.=p 2~+1;=p ~.—P;

The second of these last written two terms may be simplified. In fact,
using (23) and (17), this second term may be rewritten as

4vo
"

(—1)"—QA„cos p„xe "'+- cos p„xe "'= —u, —v, [H(x, t) —1 j .
n=p 71 n p 2++ 1

Thus,

(—1)" " B;e &*'

COS P„X
„p 2e+1; p n„—P;

(29)

In many problems of applied mathematics, the solution is expressed
as an infinite sum of terms each of which satisfies the differential equation
but not the boundary conditions. In the Ritz" metnod, the solution appears
as a sum of terms each of which satisfies the boundary conditions but not
the differential equation. It is interesting to note that zz is here expressed
as a sum of functions none of which separately satisfies either the differen-
tial equation or the boundary conditions. It may be checked, without
difficulty, that the function u and v given by (29) and (27) do, by virtue of
(19) and (23), satisfy all the conditions (1) to (5).

3. ANAI. YTIcAL D ETAILs.

(A) Existence and uni&fueness It will . now be shown that there exists
one and only one solution u(x, t) and v(f) of conditons (1) to (5) for which
v is a continuous function of t and for which u and Bu/&)x are continuous
functions of x and 5 in a region 0 & x & a, 0(g & t & 1, where g is an arbi-
trarily small quantity, and ris as large as one pleases.

We will refer to Eqs. (1) to (5) as Conditions I, and to Eqs. (1), (2),
(3), (16) and equation

k(&lN/Bx), =,= EP(r), t)0— (3o)

as Conditions II. It will be shown that Conditions II permit one and only
one solution of the required type, and that any solution of Conditions I is
also a solution of Conditions II.

4 W. Ritz, Gesammelte Werke, p. 251.
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That this equation holds can be shown without difficult, '
(B) Fxisteuce artd uniqueness of the roots of the iptftnite system of equatiorts

(23). To investigate the convergence of the infinite system of Eqs. (23),
from which the coefficients 8; are to be calculated, it is convenient to re-
write this system in the form

m„(2N+1) '—
D; = [m„—(2u+1)P]C„=—C„', (32)

;=p m; —(2pp+1)'

where D, 4ape2t, /xpa2 m 4apP, /xpcpp 4e P/prp (33)

The system (32) possesses, according to a theorem by von Kochr a
unique bounded solution for the D; provided that, For all n,

I
c„'I &c,

2'Ib-I «, (35)

(34)

i=p

where C is a positive constant, and where the prime on the summation
sign indicates that the term i = n is to be omitted.

It may be shown without difficulty that these conditions are satisfied
by the quantities b„; and C„' defined by (32).

(C) Convergence of double series In obtainin. g (29) and in showing that
the differential Eq. (1) and the bou'tidary conditions (3) and (5) are satisfied,
certain double series were rearranged. Due to the theorem referred to in

' G. C. Evans, The Integral Equation of Volterra of the Second Kind with Discontinuous
Kernel. Trans. Amer. Math. Soc. 11 (1910),393—413.

' Carslaw, Fourier Series and Integrals (1921),p. 156.
' V. Koch, Jahresbericht d. Deut. Math. Ver. 22, 289 (1913).

Since Bu/Bx is to be a continuous function of t, so, also, by (30), is F(t).
The kernel X(t r) —of the integral Eq. (16) is not continuous for t=r I.t
may be readily seen, however, that this equation comes under the theory
developed by EvansP thus (16) permits one and only one continuous solu-
tion F(t), 0 & rt & t ~ T. The function F(t) being uniquely determined by
(16), conditions (1), (2), (3), (30) are then a usual set of conditions for a
thermal problem, and are known to permit one and only one solution u(x, t).

It remains to show that a solution of I is necessarily a solution of II.
That is, it is necessary to show that (16) follows from conditions I. Now
if there is any function F(t) =Bv/&t, then u is expressible uniquely in terms
of ctv/Br and vp by means of Eqs. (1) to (4) as u=u&+up, where ui is given
by (9) and u, by (13). Eq. (16) follows from this formula. and from (5) if
it is permissible, in forming cpu/ctx, to differentiate ui under the sign of
summation, and u2 under the sign of integration and summation. Since the
discussion is restricted to the range 0 (g ~ t ~ T, this question can be
answered affirmatively at once for u&, and also for the first term of u2. It
is thus only necessary to justify the equation

8 'Bv 2 'Bv
H(x, t —r)dr =—— —Q( —1)"+ie ~"t' '& sin tj.„xdr. (31)

Bg p BT 8 p 87
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section 3 (A), it is only necessary to investigate the absolute convergence
of the series for 0(q t and v. (t. Under these simplifying restrictions, the
absolute convergence may be readily established.

4. NUMERICAL EXAMPLE.

To illustrate the computations involved, the solution will now be ob-
tained for the case of diffusion of material, initially uniformily distributed
with a concentration which will be called unity, from a solid of length a into
a liquid region, initially free of the diffusing material, of the same length a.
Then

e(og) = 1 so=0 E=k=a C'=2k/a

For X = 1 the first eight roots of Eq. (21) are,

sp = 2.0288
&

3] = 4.9132
&

g2 = 7.9787
& 33 = 1 1 .0855

s4 = 14.1775, s5 = 17.3364, s6 = 20.4692, s7 = 23.6034.

These values are, by (22') to be squared and multiplied by k/a' to
produce the values P;. Now Eqs. (23) for the determination of 8; may be
written, since the constants C„do not depend on n, in the form

where

m„—(2e+1)'—2I = [m„—(2e+1)']
;=p m; —(2e+1)'

2I =4a'8,/e'k

(36)

(37)

The actual computation of the numbers 8; is simplifie by theobservation
that as i increases the constants 8 all approach the value which the right-
hand member of (36) approaches as e increases, namely, 8/Xe2; or, in this
example, 8/7r'. In fact, the coefficient of 8„' in the n'th equation is unity,
while the coefficients off the principal diagonal become more nearly skew
symmetric as n increases. Moreover, the coeAicients rapidly decrease in
absolute value as one goes from the principal diagonal. The value of the left
member therefore arises almost entirely from the principal diagonal term,
the other terms almost cancelling, pair by pair, and being, moreover, very
much smaller even if they did not sensibly cancel. The evalution of the
numbers 8 was thus accomplished by tentatively assuming that all 8;
i)3, were sensibly equal to 8/7r'. The first four equations (36) were then
written

m„—(2e+1)' 8 " m„—(2e+1)'—2I, '= [m„—(2e+ 1)'] ——g — —— (38)
; o m; —(2e+1)' e' '=4 m* —(2e+1)'

The value of the sum on the right can be readily computed to any desired
degree of accuracy by summing, term by term, until the ratio of

1/[m; —(2e+1)'] and 1/m;

is as nearly unity as is desired, and then noting that, for large i, we have
m; = (2i+1)'
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If the 3,i)3, all differ from 8/n' by less than an amount 5, the differ-
ence between the value of the last member of (38) when computed as just
suggested, and its true value is less, in the case of the first equation, than

88 1—l-.-(2-+~) j Z =0.0368.
~2 , (2i+1)'—(2~+1)2

The values of the first four roots 8' as actually calculated from (38)
are 0.545, 0.748, 0.789, 0.799. The last of these differs from 8/ir' by 8 =.012.
The assumed right member of the first Eq. (38) thus differs from its correct
value by less than (0.036) (.012) = 0.0004. Since the right member is approxi-
mately 0.668 a correction of the order just computed would have no eff'ect
on the significant figures retained.

The first four roots of Eqs. (36) were computed, in this way, for values
of X ranging from ) = 1 to ) = 5. These values are shown in Fig. 2. In order

05

O.i

Fig. 2. From the values of e; given on this figure, the values of B (see equation 36)
can be computed from the formulas:

B0
' ———0.099) +0.644 —eo

BI ' ———0.146&+0.894—eI

B2' ———0.157'A+0.946—eg

B3' ———0.159)+0.958—~8

The values of B,where i)3 can all be computed from the formula,
B = —0.162K+0.972 —e8

to represent these values more accurately on a figure of reasonable dlimen-

sions, the values of 8 are not shown directly, but rather the amounts e;
by which the values of 8 differ from a linear dependence on ) .

Eq. (28) may now be used to check these computed values of P; and
8;. In fact, for the special case under consideration, (28) demands that

P(x~21, /'4. ,2) =-', .
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If one uses the values of s; and 8 given above, for i(4, and, for i&4, the
values 4zP/v-'=(Zv'+f)', 8 =8/v', the left member will be found to check
the right member to the fourth decimal place.

Eq. (27), for the concentration in the liquid, now reads

v=$ —I0. 327e '" +0.0766e "'4 +0 030. 6e ""r
+0.0160e "'r+ ] (39)

0.05

DEPARTMENT OF MATHEMATICS)

UNIVERSITY OF WISCONSINv

April 1, 1928.

where 7= ftt/a'.
The diffusion problem, namely, to determine the coefficient of diffusion

k from the experimental time-concentration curve for the liquid, is now
easily solved. The coefFicient fe fortunately enters Eq. (46) only as a mul-
tiplier of t.' Thus, if (39) be plotted and the values of T and t be observed
corresponding to the same value v on the graph of (36) and on the experimen-
tal curve respectively, then k= a'T/t.

In Fig. 3 is shown a graph of (39). The circles are values observed in
the diffusion of urea from a gel into a layer of water. The experimental

research from which these data
V' were taken will be published else-

where. The points are included
here only to show that the theo-
retical result obtained is in close
agreement with the facts.r The particularly simple deter-r mination of the coefficient of dif-
fusion from the concentration-time
curve for the liquid suggests that
a convenient method of deter-

r mining coefficients of thermal dif-
0.10 fusion could be based on such a

Fig. 3. method. The required data,
namely, the temperature of the

stirred liquid as a function of time, could be obtained much more easily than
is the case with the data for many methods for such determinations. The
boundary conditions on the face x=a could, moreover, be met with a high
degree of accuracy, the thermal convection in the liquid aiding materially
in the stirring process in the layer of the liquid next to the solid.

II That this would be the case is obvious from equations (1) and (5).


