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APPLICATION OF THE FERMI STATISTICS TO THE
DISTRIBUTION OF ELECTRONS UNDER FIELDS IN

METALS AND THE THEORY OF
ELECTROCAPILLARITY'

BY OscAR KNEFLER RIcEs

ABSTRACT

It is assumed that each atom in mercury is ionized into a positive ion and an
electron. Because of the crowded state of the positive ions it is supposed that they
cannot move in an electric field, while, following Sommerfeld and Pauli, the electrons
are assumed to act like a completely degenerate gas following the Fermi statistics.
The distribution of electrons under an electric field due to a charge on the surface
of the metal is discussed, and a relation derived which gives the charge on the surface
in terms of the potential difference between surface and interior. To a first approxima-
tion the charge and potential difference are proportional to each other, as if there were
a condenser of constant capacity at the surface. In order to find the capacity an
estimate must be made of the dielectric constant of the mercurous ions of the mer-
cury. This is done with the aid of measurements of the refractive index of mercurous
ions. The magnitude of the equivalent capacity is such that, when considered in
conjunction with the diffuse layer of ions in the solution, electrocapillary curves
can be explained.

INTRODUCTION

'HE distribution of solute ions under the electric field caused by a charge
on the surface of the solution was first investigated by Chapman. '

He used these considerations in an attempt to explain the shape of the
electrocapillary curve in the region of its maximum, assuming that the
mercury was a perfect conductor so that the charge resided on its surface,
while the ions formed a diffuse atmospheric layer in the solution. But, as
shown by Frumkin, ' Chapman's theory did not explain the experimental
facts.

Recently the present writer' applied Chapman's equations for the dis-
tribution of ions to the ions and electrons in mercury, and by assuming
that there was a diffuse layer on both sides of the solution-mercury boundary
showed that a fair, but still not perfect agreement between electrocapillary
measurements and theory could be obtained. These considerations assumed
that mercury ions and electrons formed perfect solutes in the mercury,
and involved the use of Boltzmann's law for the distribution of ions in the
electric field, thatis the d.ensity of ions (or electrons)at any place in the field
was putproportional toe ~~~r, cbeing theenergyof anion (or electron) at a

Read by title at the meeting of the American Physical Society in Berkeley, Mar. 3, 19 8.
' National Research Fellow in Chemistry.
' Chapman, Phil. Mag. (6) 25, 475 (1913).
4 Frumkin, Phil. Mag. (6) 40, 384 (1920).
' Rice, J. Phys. Chem. 3D, 1501 (1926).
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given place due to the potential of the field, k Boltzmann's constant, and
T the absolute temperature. Since it was found that, in order to fit the
electrocapillary data, we had to assume that only a small proportion of the
mercury atoms were ionized into mercury ions and electrons the assump-
tion of Boltzmann's law appeared to be justified at the time. Indeed, it was to
be supposed that it would hold for the electrons to fairly high concentrations,
and this fact, it may be stated, would have precluded any attempt to account
for the experimental facts by supposing that all the mercury atoms were
ionized, but that due to the crowded condition of the positive ions Boltz-
mann's law could not hold for them.

The writer also showed that the facts could about equally well be ac-
counted for by another theory. In this case it was assumed that the mercury
was a perfect conductor, but that between the mercury and the solution
there was a condenser of constant capacity, due perhaps to the ions not
being able to approach clear to the surface. ' In the solution itself there
was assumed to be the usual diffuse atmospheric layer of ions.

Since the publication of this paper a new proposal has been made in the
theory of metals. Pauli' and Sommerfeld' applied the Fermi' statistics
to "electron gas" in metals and found that it would be completely degen-
erate at ordinary temperatures. The latter showed that, on the basis of this
theory, contact potentials between metals are given by the equation

where h is Planck's constant, ns the mass and e the charge on an electron,
ni the number of free electrons per unit volume in the first metal and n2

in the second, and Q& and $2 the potentials of the two metals. By setting
n& and n& equal to the number of atoms per unit volume of the respective
metals he obtained contact potentials of the right order of magnitude,
though of the wrong sign. ' On the whole, his considerations seem to indi-
cate that, while the theory may not be entirely correct in detail, its general
features have .nuch to recommend them. So we will now reconsider the
case of two diffuse layers, using this theory for the diffuse layer in mercury,
and the usual one for the aqueous diffuse layer.

DISTRIBUTION OF ELECTRONS AT THE CHARGED SURFACE OF THE

METAL

In the case of electrocapillarity, the electric field in the mercury is pro-
duced by an excess of ions of one sign in the so1ution, which is always bal-
anced by an excess or deficiency of electrons near the surface of the mercury.

' Stern, Zeits. f. Elektrochem. 30, 508 (1924).
~ Pauli, Zeits. f. Physik 41, 81 (1927).
' Sommerfeld, Naturwissenshaften 15, 826 (1927).
9 Fermi, Zeits. f. Physik 36, 902 (1926).
'o Sommerfeld did not take into account the difference of the "thermodynamic environ-

ment" of the electrons in the two metals. We deal with a single metal.
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We will let the excess of positive electricity per unit surface on the solution
side of the boundary be Qo, this is the surface charge for all considerations
concerned with the mercury side of the boundary. The potential at the
surface of the mercury above that of its interior we shall call $0, it will have
the same sign as Qo. From our considerations of the distribution of the
electrons we shall find Qo in terms of $0. The corresponding relation for the
aqueous side of the boundary is known, and the surface tension can be
found in the manner described in our previous work.

Near the surface of the mercury, as noted above, there will be an excess
or deficiency of electrons, and Eq. (1) must hold for the potential difference
between two points near the surface in the same metal, as well as for the
potential difference between the interiors of different metals. From it
follows immediately

(2)

where @ is the potential (the potential far from the surface being taken
as zero) and n, the density of electrons at a given point, and

A = [h'/(2m') ] &C [3/(4x) ]'i'= 1.93X 10 " (3)

Now we shall assume that each mercury atom gives just one electron.
The electrons, being small and freely moving except for the restrictions
of the quantum mechanics as shown by Fermi s calculations, will distribute
themselves according to Eq. (2). The mercury iona, , however, are large
and closely packed, and as a first approximation we may assume that their
density is the same at the surface as in the interior of the metal. This mass
of ions will have a dielectric constant, which we shall designate as K. The
density of the ions, which is the same as the density of electrons far in the
body of the metal, w'e shall denote by n„. The density of electricity at any
point will be given by

p =s(N„-e,)
According to Poisson's equation we have

V'4 = 4xp/E— '

(4)

which reduces in our case (assuming a flat surface, since, as we shall see,
the radius of curvature in any practical case will be great compared to the
thickness of the surface layer) to

d'4/dx' = 4xe(N, e„)/E. —

From Eq. (2), Ad'e~"'/dx' = d'P/dx'.
Combining with Eq. (5) Ad'n "'/dx'=4xe(n, n„)/X—
By multiplying through by 2dn, +'/dx this equation can be put in the form
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Integrating from the surface (x=0) to x= ~, remembering that at x= ~
we have dri„"'/dx. =0 and ii, = m„, and designating quantities at the surface
by a subscript zer.o, we get

8xen„—A = (I ~~' —«"') —— (n„' ' —lo' ')
dx p 5E E

Now no"' —n ' 'i=@ /0A or no't'=n„'"+&0/A. Raising both sides of this
equation to the 5/2 power we get (since, as we shall see, n„'"& ~P,/A ~)

«'"=~-"'+(3/2) ~.(40/A)+ (15/II) ~ "'(0o/A)'+ (5/16) I "'(0o/A)'+

Also (dn "'/dx)p=(1/A)(dg/dx)p= —4irQD/(AX). So we see that Eq. (6)
takes the form

3E~n„'/'y, & 12= 1+— + .
8xi

(7)

Now for mercury n„=4.1&&10"per cc so if Qo is of the order of 0.7 volts
or 7/3000 e.s.u. as in the cases we shall dicusss gati/(An„"') = 0.1, so that for
a first approximation we may neglect the terms after the first in Eq. (7).
This means that to a first approximation the diffuse layer in the mercury acts
like a condenser of constant capacity given by

Q,/y, = (3Ee/SxA) '"e„'"
and this case reduces to the second one discussed in the introduction, that
of a diffuse layer in the aqueous part and a condenser of constant capacity.
If we can determine Z we can compare the capacity of the condenser with
the capacity which best fits the data as found in our previous work.

THE DETERMINATION OF K AND COMPARISON OF THE

THEQRETIcAL AND OBsERvED CAPAcITIEs

The medium in which the electrons are dispersed may be considered to
more or less resemble a mass of mercurous ions. Accordingly we shall deter-
mine K from the mole refraction" of mercurous ions. The mole refractjon,
R, is defined by the following equation

E= V(r' —1)/(r'+2)

where V is the volume occupied by one mole of the substance considered

"Pauling, Proc. Roy. Soc., A 114, 181 t', 1927). See especially Eq. (20) of Pauling's article.
That the dielectric constant which we calculate is the right one can be seen as follows. If
the ions and electrons were point charges in vacuum we would simply have a distribution of
electrons and ions in a medium of dielectric constant 1. Actually, however, the ions are
polarized in an electric field, and it does not matter whether the electric field is applied from
within, as in this case, or from without, as in the case of light going through a crystal. The
electrons do not contribute to the dielectric constant, since we are considering a definite
distribution of them (i.e., the equilibrium distribution); they are taken account of explicitly
in our equations, as is the net charge on the ions. Only the polarizability of the latter, which is
the polarizability of mercurous ions, is included in the dielectric constant.
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and r is its index of refraction. In a mixture of substances the mole refrac-
tions are additive. If the substance is non-magnetic

r2=E

According to Groth" the index of refraction of mercurous chloride varies in
different directions from 1.95 to 2.60. We take 2.27 as a rough average.
Hylleraas" finds the density to be 7.21. We then calculate the mole re-
fraction'4 to be 19.00. According to Pauling" the mole refraction for chloride
ion in crystals lies between 8.04 and 8.48. Taking 8.26 as the approximate
value we find the mole refraction of mercurous ions to be 19.00 —8.26 or
10.74. From the known density of mercury we then calculate r' or X for
the assumed mercurous ions in the metal to be 8.9. Using Eq (8) we find the
capacity of the equivalent condenser to be 3.0 P 10 e.s.u. , which is equivalent
to a plate condenser in vacuum whose plates are of unit area and 2.65)&10 '
cm apart. In our previous work we found that the condenser which best
fits the data would have its plates at a distance of 2.3&10 ~ cm apart,
giving it a capacity of 3.5)&10' e.s.u.

This quantitative correspondence leads one to believe that the existence
of a condenser (for which the evidence is very strong") is probably due to
the distribution of electrons in the mercury rather than to other causes, such
as the ions in the solution being unable to approach clear to the surface.
I t may be stated that if the presence of the condenser were due to the latter
cause, and we supposed the medium surrounding the ions determined the
dielectric constant of the condens'er, we find from the dielectric constant of
water that the actual distance between the plates of the condenser would
have to be about 2 &(10 'cm—much too large to be reasonable. This may not,
however, be a conclusive argument against this supposition, since it is so
hard to form a picture of the actual conditions at the surface. We may state,
however, that if it is proper to apply Fermi statistics to electrons in metals
that some phenomenon such as we have described must occur, and our object
is to show that the idealized picture we have presen ted does give resul ts
which agree quantitatively with available data. The various possibilities
have not, of course, been exhaustively considered.

In order to get further comparison with experimental data we may
perhaps examine the region of the electrocapillary curve where the potential
difference is somewhat greater than that considered in our previous paper.
It is sometimes unsatisfactory to apply theoretical considerations to the
high voltage region of the curve because of the tendency of ions to pile up

"Groth, "Chemische, Krystallographie, " Wilhelm Engelmann (1906), v. I, p. 215. The
values given are for the red lithium line but will not be very different for infinite wave-length."Hylleraas, Zeits. f. Physik 30, 861 (1926}.

'4 We have arbitrarily used the formula HgCI instead of Hg2CI&. This makes no difference
in the final value of the dielectric constant."Ref. 11, p. 196. We neglect any polarization of the ions with respect to other ions due to
movement of the ions as a whole, simply subtracting the value for chloride ion given by Pau ling
from the value of the mole refraction of mercurous chloride."At least the diffuse aqueous layer alone cannot explain the facts.
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at the surface of the solution. However, according to the present theory, a
large part of the potential drop takes place in the mercury. In fact, when
the total potential drop between the solution and the mercury is 0.74 volts
(fairly high for our considerations) there is only a voltage drop of O. O7 in a
solution of 1 N uni-univalent electrolyte. In such a case the concentration
of ions of one sign or the other becomes theoretically 16.4 N at the surface.
When the total potential drop is 0.46 volts the concentration at the surface
becomes 7.4 N. These concentrations are perhaps rather large, but at least
the solution is not nearly 611ed with ions a.t such concentrations. Besides,
most of the lowering of surface tension is due to the mercury side of the
boundary where such disturbances do not occur (as may be seen from our
previous estimate of Po/(An„"') or (Io"'—n„"')/n„"'); and the determina-
tion of the surface tension involves an integration with respect to potential,
including therefore regions where these disturbances do not occur and so
somewhat lowering their eA'ect. It is, in fact, my belief, that the capacity
of the equivalent condenser determined from the electrocapillary curve in
this way is more accurate than that cited from our previous paper.

Kriiger and Krumreich" decided that of all substances KNO3 showed the
fewest anomalies in its electrocapillary curve. Such anomalies would in-
validate the considerations of our previous article in which the calculation
of the surface tension due to the combination of the condenser with the
diffuse aqueous layer is considered, and since they have only to do with the
aqueous side we wish naturally to avoid them for our present purposes.
Kriiger and Krumreich found with a 1 N solution of KNO3 an almost
perfectly parabolic electrocapillary curve, corresponding to a capacity of 27
microfarads, or 2.4&10' e.s.u. We have made calculations, as in our former
paper, from 0.0 to 0.741 volts, assuming the equivalent condenser in the
mercury to have a capacity as found above of 3.0 && 10' e.s.u. Since most of the
potential drop takes place in this condenser we might expect the curve to be
nearly parabolic, in spite of the aqueous layer, and it is, within limits of
error. When the aqueous layer is included the equivalent capacity of the
whole comes out to be 2.7 g 10' e.s.u. The agreement is about as good as we
found before. The discrepancy is in the opposite direction. Altogether, the
coincidence of the calculated and experimental values is remarkable.

NQN-AQvEoUs SQI,UTIQNs, ETc.

Frumkin" Finds that for nitrates in methyl and ethyl alcohols and acetone
the ascending branch of the curve is parabolic, indicating about the same
capacity as in the case of water. This is what is expected, since we believe
the electrocapillary curve to be chieHy determined by the mercury. But the
descending branch is also parabolic with a shape corresponding to a lower
capacity. It thus appears that the thickness of the condenser is greater on
the descending than on the ascending branch. It may be that this is to be
explained by the presence of an impenetrable monomolecufar 61m of solvent

"Kriiger and Krumreich, Zeits. f. Elektrochem. 19, 620 (1913).
Frumkin, Zeits. f. Phys. Chem. 103, 43 (1922).
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which occurs in the descending branch when the mercury is negatively
charged, but not when it is positively charged. With aqueous solutions such
a film would have to be rather thick to cause an appreciable effect because
of the high dielectric constant of water; organic liquids, however, have
much lower dielectric constants. Thus there is c priori more reason for such
an effect to show up in the case of organic liquids than in the case of water.
Furthermore, organic liquids wet mercury better than water, "which probably
means that such a film would be more easily formed. The existence of such
a film is supported by Frumkin's data for lithium chloride in different
strengths of alcohol. " It seems to appear only when the mercury is negatively
charged, which may be evidence in favor of the supposition that the more
positive portions of the molecules of solvent are attracted to the surface.

Turning to an entirely different case, a curve obtained by von Hevesy and
Lorenz" with molten lead and molten potassium chloride seems to show a
much lower capacity than can be readily accounted for. But such curves have
not been exhaustively studied and diffculties and peculiarities would be
likely to arise. For example, the capillary electrometer is insensitive and
depolarization is great.

Lastly, we may make a remark about the effect of temperature on the
ordinary electrocapillary curves. " It is small, as would be expected from the
fact that Eq. (8), which chiefly determines the effect, according to our
theory, has no temperature coefficient.

DrscvssroN

We may now consider some of the points which may be brought against
our theory. In the first place, objection may be brought against the applica-
tion of the Fermi statistics in metals, as being either essentially incorrect or
too great an idealization. These questions unfortunately become confused
when experimental tests are being made. The use of the Fermi statistics
i's of course tentative, but, as stated above, there seems to be reason to believe
that, for certain purposes at any rate, it can serve as a good approximation.
Attempts to develop the theory on more exact lines are likely to lead to
complications which will sooner or later necessitate approximations as
severe.

We should, of course, take into account the effect of the positive ions on
the electrons, but at present it seems probable that at least one elect'on
per atom is comparatively free. If it were necessary to take into account
un-ionized atoms, it might be possible for charged positive ions to replace
uncharged ones, thus leading to complications.

In our calculations we assumed that the electrons were free to move
through the whole space occupied by the mercury. It might be that only a
fraction of the space, say f, could be occupied by the electrons. If now n and
n„retain their meanings as numbers per tota/ volume Eq. (4) would remain

'9 Harkins in Bogue's "Colloidal Behavior, " McGraw-Hill Book Co. (1924), v. I, p. 177.
von Hevesy and Lorenz, Zeits. f. Phys. Chem. 'N, 454 (1910).

~' Vining, Ann. Chim. Phys. , (8) 9, 281 (1906).



i058 OSCAR X. RICE

unchanged since the p to be used in Poisson's equation is the amount of
electricity per unit total volume. But we should have to replace Eq. (2) by
d@ =Ada, "'/f'~'. On carrying through the calculations the right hand side
of Eq. (8) would be multiplied byJU', i.e. it would result in the calculated
capacity being decreased by a factor f",but the elfect would not be expected
to be important.

Had we made the assumption that each mercury atom was ionized into
two electrons and a doubly charged ion our calculations would have been un-

changed, but we should have to substitute double the value for n„and an
appropriate value of E in Eq. (8). The formula is very insensitive to changes
in n„since it appears to the 1/6 power. If, however, we use the value, 3.14,
given by Pauling" for the mole refraction of mercuric ions, we get a con-
siderably different value for E, and the distance of the plates of the equivalent
condenser in vacuum turns out to be 5.2)&10 . This causes us to favor the
assumption that there is only one free electron per mercury atom. 23~

Another objection centers around the application of statistical methods
to an effect which takes place so near the surface. Actually a layer of molecu-
lar thickness is involved. '4 Against this objection may be urged the, fact
that we wish to consider average conditions at the surface, and that the
surface contains many molecules. The method is not an unusual one. We
have, of course, neglected surface perturbations, which might be important
in so thin a layer. Final decision in these matters must perhaps wait, but
the agreement with the electrocapillary experiments is evidence in favor of
our method.

GATES CHEMICAL LABORATORY,

CALIFORNIA INSTITUTE OF TECHNOLOGY)

February 25, 1928,

"Ref. 11, p. 195."The note added in proof makes the choice less de6nite.
'4 The calculation is made as follows. Eq. (8) will hold not only for the surface, but for

any point a distance x from the surface. If Q, includes all the charge between the point x
and the surface added algebraically to the charge on the aqueous side of the surface, then

P /@, = (3' e/87I-A)'~'n„'~'

But Q = —(X/4m)(dp/dx) . So, substituting this value of Q„ integrating from 0 to x, and
taking the exponential of each side we get

4,/4 o exp [—(6e.e/KA——)'~'s„'~'r]

The exponent is —1 if x is 2.4 5&10 cm, which means that all but a fraction 1/e of the potential
drop occurs in this distance from the surface. On the aqueous side of the boundary the drop
of potential will usually occur in a similar distance.
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Note added fn proof, April Z5, 19ZS—Since this paper was submitted for
publication a more detailed account of the new electron theory has appeared
in papers by Sommerfeld and others (Zeits. f. Physik 4'7, 1, 33, 38, 43 (1928)).
In these articles a correction is made which results in a slight change in our
Eq. (1), which now becomes

where G is a weight factor that is given the value 2 to allow for the two spin
quantum numbers of the electron. This would cause the right hand side of
Eq. (8) to be multiplied by 2'~', causing the calculated capacity of the con-
denser in the mercury to become 3.8 X 10' e.s.u. instead of 3.0 X 10' and the
equivalent capacity when the aqueous layer is included to become about
3.25X10 instead of 2.7)&10 . This change is in the opposite direction to
that which would be produced by correcting for the part of the metal the
electrons cannot occupy.


