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A THEORY OF THE ELECTRIC DISCHARGE THROUGH GASES

BY PHILIP M, MORsE

ABSTRACT

Three general differential equations are set up which determine the average be-
havior of a discharge of electricity through a gas. Approximate solutions, giving the
electric held E and the concentration of electrons and positive ions, n& and n2, at any
distance x from the cathode, are found for several ranges of value of E.

When E is large, the solution corresponds to the conditions in the cathode and
anode fall spaces in a glow discharge. Equations are obtained for the potential drop V
across the fall space; the current density at the electrode divided by the square of the
gas pressure, j/p'; and the thickness of the fall space times the pressure, pd.

These equations indicate that for the cathode fall space there is a certain mini-
mum value of V, called V; and for j/P', called j„/P'; and a corresponding maximum
value of pd, pd, beyond which values the discharge ceases. These stationary values
are shown to be constants, dependent only on the nature of the gas used and of the
cathode material, and correspond to the normal cathode fall space. The equation
determining V„ is shown to be of the right form by comparison with the experimentally
determined values. From these values of V„, values ofj /p' and of pd are calculated
for four gases and four cathode materials, and the calculated values check with the
experimental data. The corresponding equations for the anode fall space show why
there is no corresponding normal anode fall.

A consideration of the discharge when E is large throughout the distance between
electrodes indicates that there is another stationary value of the cathode fall space
when the current density at the cathode reaches its maximum possible value. The U
in this case is much smaller than the U for the glow discharge, and the form of the
equations indicate that they describe the conditions in an electric arc,

Another approximate equation is obtained when E is constant, which is the case in
the positive column of a glow discharge. This solution indicates that within certain
limits of pressure and current density, small sinusoidal variations about the average
value E„, are possible in E. These correspond to the s!nations sometimes observed in
the positive column. The equations determining E~ and those determining the
distance between striations check with the known empirical laws relating these
amounts to the pressure, the radius of the discharge tube and the critical potentials
of the gas used. A general discussion is given of the Faraday dark space and reasons are
given why it should be near the cathode rather than the anode.

w HEN electricity passes through a gas from one plane electrode to
another parallel to it, the phenomena taking place are many and

complicated. A certain number of positive ions falling on the cathode per
second wi11, by some undetermined mechanism set free an electron which
will travel to the anode, ionizing and exciting the gas molecules in its path.
In order to maintain the discharge in a steady state, this electron must set
free just enough ions in a second to cause another electron to be e„'ected from
the cathode; or else, if any excess over this requisite number is created,
this excess must disappear by recombination before striking the cathode.

It seems probable that this ratio between the number of positive ions
striking the cathode per second and the number of electrons ejected per
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second (i.e. , the ratio between the positive ion current to the cathode and
the electron current from it) is dependent on the nature of the gas in the
tube, on the material of the cathode, and on the velocity of the positive
ions striking the cathode. This, of course is not true if the cathode is emitting
photo- or thermo-electrons independent of any positive ion bombardment,
as in the electric arc or with a heated cathode.

At any point in the body of the discharge, ions are being produced by elec-
tron impact, are disappearing by recombination, are diffusing away, and
are being carried away by the electric field. This whole set of reactions is
limited by Poisson's relation between the concentration of ions and the varia-
tion of the electric field.

The complete solution of this phenomenon is, of course, impossible,
primarily because the gas is a discontinuous material, and we have no means
of determining the exact velocity of any ion at any place under any field.
However, average values for this velocity have been developed which have
considerable accuracy, and likewise statistical relations between the average
number of ions caused by an electron and the electric field are known.

If we assume that these relations for mobility and for ionization account
for all these actual random motions, we can consider that the gas is a con-
tinuous Huid, and that each ion has a definite terminal velocity at any point
in the tube, and the problem becomes much simpler. This statistical method
of solution is probably quite accurate, if the smallest lengths considered are
of a larger order than the length of a mean free path, and if the concentration
of ions be fairly large. The shortest distance we shall find necessary to
consider is of the order of 50 to 100 mean free path lengths, and the smallest
concentration of ions is about 10, so the statistical method is quite justifiable.

If n& and n2 are the concentration of electrons and positive ions at any
point distant x from the cathode, v& and v2 their respective average drift
velocities, and 8 is the field strength at that point, then the following rela-
tions can be set up for a stable discharge in a tube of unit cross section:

dE/dx=4we(n, n,)—
nyv yA R+Dd'n&/—d x' d(n, v ~)/d x=—0

n~v ~a R+D2d'n2/d —x' d(n~ve)/d x =0—

(&)

(2)

(3)

The first equation is that of Poisson with the sign changed since we are
reckoning the direction from cathode to anode as positive. The last twa
equations represent the fact that for equilibrium, the number of ions formed
per second per cc, the number disappearing by recombination, the number
diffusing away, and the number being pulled away by the electric field, must
add up to zero.

The term a in Eqs. (2) and (3) is the number of ions formed per cm path
by an electron travelling under a field B, and with a corresponding velocity v~.

A quite accurate relation between 0. and B has been developed by Townsend, ~

and is that
' Townsend, "Electricity in Gases, " Chapter VIII.
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n= pNe-&~"o'~= pNs

D~ and D2 are the diffusion constants for positive and negative ions, and
are proportional to their mobilities, p& and p2 of the respective ions'
according to

Dg =Dpj ) D2 =DIJ2

At low field strengths D = k rje, but for hjgh fields, D is probably dependent
on the gas in the tube.

R is the number of ions which recombine or disappear in some way from
the discharge per cc. There are a certain number recombining by collision,
but it has been shown' that the greater number of recombinations take
place at the walls of the tube. However as R is small it need only be con-
sidered when dealing with the positive column or the Faraday dark space,
so its discussion will be postponed until then.

The velocities will equal the mobilities times the field strength. Inasmuch
as 2 will in most cases be large, the most accurate value for these mobilities
will be

e~2 1/t 2 zg

Ep(/iI12/g $ 34) I/0 (Ep) //2

e)y aN
pal=0. 815~

~
~Ep(~//// J f34) 1/2 (Ep) 1/2

(6)

In the case of the Faraday dark space, however, as we shall see later, B
is very small. In this case, the most accurate values of the mobilities will be

eX' I'
p2' =0.815 w~ =/////p

(2' FT) '/' p

X~ and X2 are the mean free paths of the electron and of the positive ion at
O'C and 1 mm pressure, and p is the pressure in mm of mercury. The terms
a and u are dependent only on the gas used; u is the constant factor in the
mobility of the electron, which is fairly accurately known; n is the ratio
between the mobility of the electron and of the positive ion. It is not
necessary to know this accurately, since we shall see later that if it is large
enough that @+1or c—1 are practically equal to c, this factor cancels out.

Mak'ing these substitutions, Eqs. (2) and (3) become

//D d'mg d(//, E"')
~Np.~,Z»2-xp»~+ —

' —~
' =0

D d'//, , (ed, 'E')/
&Np&&, Z~~2 —gp~12+ + =0

J.J.Thompson, Conduction of Electricity Through Gases, Second Edition, pp. 42 and 43.
' W. Schottky, Phys. Zeits. 25, pp. 635 (1924).
4 K. T. Compton, Phys. Rev. 22, 333 (1923).
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The two, with Eq. (1), will completely determine n„n2 and Z for any x
and for any boundary conditions.

A complete solution of these equations is impracticable. However, the
three most interesting parts of the glow discharge (the cathode and anode
falls, the Faraday dark space, and the positive column), and the whole of
such discharges as the electric arc, are really spec'ial cases of the general
solution. In the fall spaces in the glow discharge and in the arc, E, is quite
large; in the Faraday dark space 8 is very small; and in the positive column
Z, n& and n2 are comparatively constant.

CAsE I. When E is large Eq. (8) becomes d(ri&E'")/dx=lVPse&E'", or

rI&E'"= —ce& J'"*=—ce3', since z is practically unity for large values of E.
From Eq. (9) e E'~'=ace&~ . From these two equations and from Eq. (1)

jV = g'~»»/3+ c

This would be the form of the field distribution at the anode. By turning
the tube around, solving, and then returning to our original coordinates,
with x =0 at the cathode, after solving we obtain,

~~~~—»Xx/3+ ~
I

as the form of the field distribution near the cathode. This same form of
distribution has been obtained by other methods by Compton and Morse. '
They obtained as the exponential factor kpXx, where k was about 0.6. The
two methods thus check each other.

THE CATHODE FALL

Observations have shown that the greatest fall in potential across the
discharge occurs close to the cathode. At the end of this fall the electric
field comes to its minimum value, and the gas becomes luminous. Up to
certain currents this space assumes an equilibrium state; i.e. , the potential
drop across the space is a constant independent of the pressure-, its thickness
is inversely proportional to the pressure, and the current densi ty at the
cathode is proportional to the square of the pressure, the current concen-
trating on a patch of this density. This state is called the normuL cathode
aLL.

As the total potential across the tube is increased, the patch of cathode
receiving current increases, but otherwise conditions across the fall remain
the same, until the patch has covered the whole cathode. A further increase
in applied potential increases the current density, increases the drop in
potential across the space, and decreases its thickness slightly. This state
is called the abnormaL cathode fall.

If V is the normal fall in potential across the space, V, the abnormal, j„
and j, the normal and abnormal current densities, and d„and d, the respective
thicknesses of the space, then:

' K. T. Compton and P. M. Morse, Phys. Rev. 30, 305 |',1927).
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U„=constant; U,)U„

j„/p'=constant; j,)j„
pd„=constant; d (d„

(12)

(13)

(14)

where these constants are determined by the gas and the cathode material.
These empirical relations will serve to check the solution.

If we assume values for ni, n2 and Z from Eq. (11), and substitute these
in some modification of Eqs. (8) and (9), values of the constants c should be
obtained which will hold approximately throughout the cathode fall.
Assume that ei=A —(A. —ei')e '~ * ', ed=A+a(A —ei')e '"~' ' where ni' is
the electron density just outside the cathode. From Poisson's equation
[Eq. (1)], and from these two

dE—= —4sc(a+1)(g —gi~)g»»&3
dx

Thus our assumption fits the requirements of Eq. (11), and also fits the
conditions required at the cathode. Substituting these in the equation
formed by subtracting Eq. (9) from Eq. (8), it is found tha, t

4 Dp'E'A=-
9ir e(a+ I)

Therefore if we can determine the value of D, N and a and n&' the ion
concentrations and held can be determined at any point in the cathode fall.
The electron concentration at the cathode n&', is naturally of the same
dimensions as A, so we can let it equal Ac where e'is some constant repre-
senting the electron emission of the cathode, and probably dependent only
on the cathode material. Then the three equations become:

~, =g [1—(1 c);»»&3]—
I,=A [1+a(1 —c)e ' &~*"]
E= (8/3)DPX(1 c) [~ »~'"+E,]—

(16)

(17)

(18)

where E, is a constant of integration to be determined later.
The current density of electrons from the cathode will be ed~En~,

evaluated at the cathode.

8 «~
j,—=—— D"'N' 'NP'c(1 —c) '"(1+8,) '"= BP'c(1 c) '"(1—+E,) '" (19)

9x 3

where 8 depends only on the nature of the gas. Similarly:

j,+=8P '(1 —c)"'(1+E,) ' ~' (20)

The ratio between j and j, is the number of positive ions required to
strike the cathode for each electron emitted. This probably is a constant
dependent on the cathode material and on the velocity of the positive ions
striking the cathode. This velocity is
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n [8DN(1 r)/—3 I'I'(1+E )"'
a constant independent of the pressure and dependent on B,and the gas and
cathode material. The ratio, from Eqs. (19) and (20), is (1—c)/c. The
reciprocal of this, which is the "fraction" of an electron ejected for each
positive ion striking the cathode, is therefore independent of the pressure,
and will probably increase as the positive ion velocity increases. That is,

c/(1 —c) =2H(1 c)'"(—1+E )' '/9 or 1—c=1 H(1+—E,)'" (21)

where H is very small. This relation is not accurately true, but in any case
1 —c will decrease slightly as Z, increases.

The total current to the cathode is

(22)

which corresponds to the requirements of the first part of Eq. (14).
So far we have been dealing with conditions near the cathode, where

8 is large, and z is practically unity. If we wish to investigate the conditions
near the end of the cathode fall, just before the equations of Case I break
down, we must consider s more carefully. Taking the value of s from Eq. (4),
expanding, and then integrating, it is found that, approximately

which is very small, as we shall see later. Therefore our approximation that
/'sdx equals x is legitimate as long as the quantity which contains it is large
throughout the fall space. This means that Eqs. (16) and (17) hold fairly
well to the end of the fall space. However, Z becomes small at the end, so we
must include this second term to determine just where Z becomes zero, if
it does. E becomes

8 PXvpxE=—Dp N(1 —c) e '""*"— +E. =
3 48D(1 —c)

(23)

The integral of E, the potential V, is large at the end of the space, and so
this second term can be omitted, giving

V =4D(1—c) 4D(1 c)s '"~'—I'+8D—N(1 c)E,Px/—3 (24)

It is rather difficult to determine exactly where these equations break
down entirely, that is, where the cathode fall ends. A reasonable assumption
would be that it ends (i.e. , x =d) when E =8DPN(1 c)E,/3—

A more probable assumption would be to And the number of positive ions
formed per second through a distance x from the cathode, and set x equal to d
when this integral equals j, . That is we consider the positive ion current
to the cathode as being entirely due to those positive ions formed within the
fall space, and that those formed outside, a much smaller number, are lost
through recombination. This seems plausible, inasmuch as E becomes



ELECTRIC DISCHARGE THROUGH GASES 1009

very small at the end of the fall space, so small that very few of the ions
formed in the positive column can get across to the cathode.

However, when the integration is carried out, and the integral set equal
to j,+, we find that when x = d, Z must equal 8DpX(1 —c)Z./3. So the original
assumption was correct.

But when this is so

3 48D(1 —c)e'"~e i' = s.PXd, /48D(1 c)—or EPd, =—log
2 vpSPd,

(25)

This shows that pd, is a constant, and therefore, by Eq. (24), V at d, e e.
V„must be a constant, and therefore the first parts of the empirical equations
(12) and (14) are satisfied.

Thus for a given pressure, gas, cathode, and E, the three measurable
quantities j./p, pd, and V, are definite and determinable. The only constant
which is not determined by these physical conditions, but which can be
given any value, is 8,. Let us see what happens when it is increased. By
Eq. (21) c/(1 —c) increases, or 1 —c decreases slightly. By Eq. (22)j.increases,
by Eq. (24) V, increases, and by Eqs. (21) and (25), pd, decreases slightly.

Thus any change in either of the three quantities, say in j., produces a
definite change in the other two. This must correspond to the conditions
of the abnormal fall. Let us see if we can obtain a condition similar to the
normal cathode fall.

THE NORMAL CATHODE FALL.

As E. is allowed to vary, we see that its minimum allowable value is
zero. For if 8, were a minus quantity, the number of ions formed per
second within the fall space will be less than j, and the discharge wi11 cease.

Then j„has a definite minimum value

j„=I3p'(1 c)'"—
and V has a definite minimum value, given approximately by

V„=4D(1 —c)

(26)

and pd. has a definite maximum value given by Eq. (25) when (1—c) has
its maximum value.

These stationary values are obviously those of the normal cathode drop.
If all the constants, N, vo, D, u and c were known for any particular cathode
and gas, it would be possible to calculate V„, Pd„and j„/P' from them
directly. However, the values of D and c are not known.

But since we have shown that V„ is a constant, though its value cannot
be calculated with the data available, and since both D and c occur in the
expression for V„, we can use the experimentally determined values of V
to determine the related values of pd„and j„//p'. Thus

3 12 V„
pd =—log

2Ã Spd„vo
(28)
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and, approximately:

j 4 8 1/2 V 3/2 I 1/2

= g7. 74)& &0
—&

p2 9m 3 M
(29)

or less, depending on the particular value of zs taken. X and Vo are the con-
stants in Townsend's equation, and are determined for a number of gases.
Uo is approximately, though not exactly, equal to the ionizing potential
of the gas. L is the mean free path of the positive ion, which is known to
be approximately equal to the mean free path of the molecule or' somewhat
larger, so if I. were considered as the mean free path of the molecule the
values given for j„would come out somewhat smaller than the true values,
but would indicate approximately what the true value should be. M is the
molecular weight of the gas in the tube.

Thus the constants in Eqs. (28) and (29) are all known more or less ap-
proximately, and the values of pd„and t'„/p' must check the empirical results
without the use of any adjustable constant.

The numerical data available" to check these equh, tions are rather
fragmentary and inaccurate. It is possible, however, to make numerical
checks on all three Eqs. (27), (28) and (29).

From Eq. (27), V„depends on D, which depends only on the gas, and
on 1 —c, which depends mainly on the cathode material used, though some
gases might affect its value. However it is to be expected that the ratio
between the U„'s for the same gas but for two different cathodes will be
approximately equal to the ratio between the V„'s for a different gas and for
the same two cathodes. And similarly for the ratios between the V„'s for
the same cathode and for two different gases.

These ratios for observed V„'s are given in Table I.
TABLE I.

V for
¹

V„ for He

V for A

V„ for H2

V for Fe

V for A1

V„ for Mg

V for Pt

for Fe

1.56

for Fe

.60

for H2

1.21

for H2

.63

A1

1.57

.58

1.14

.83

1.60

Mg

.64

02

1.13

02

.81

Pt

1.50

Pt

He

1.14

He

.78

Ag

1.56

.57

Ne

1.20

Ne

.72

1.50

CU

.57

1.22

.73

This indicates that Eq. (27) is fairly correct, even though we have no
means of determining the actual values of D or 1 —c.

6 R. B. Kennard, Phys. Rev. 31, 423 (1928).
' Bar, Handbuch der Physik (Springer) XIV, pp. 190-210.
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Using the observed values of U„, and the known values of the other con-
stants, we can calculate pd„and j„'&'/p, as given in Table II. In this table

TABLE II. Values of pd and j '/'/p.

Cathode

Gas Calc.

Fe Al

Obs. Calc. Obs. Calc. Obs.

Pt

Calc. Obs.

H2

He

pdj Z/2/p

pdj S/2/p

pdnj I./2/p

0.94
.264

.38

.407

1.82
.091

0.90 0.85
.23

.42 .36
.37

1.66 1.77
.082

0.73
.25

.30

.37

1.32

0.85 0.70
.22

.36
, 35

1.72
.076

1.02
.32

.38

.40

1.82
.091

1.03
.30

~ 10

pdj X/2/p
.338
.26

.35 .31
.22

, 29 .32
.23

.35

. 29 .35

p is in mm Hg; d in cms; j„in milliamperes/cm . These values check within
the limits of accuracy of the measurements, and within the range of variation
of results from different observers. We can therefore conclude that our
approximations have not been too inexact, and that Eqs. (28), (29) and (30)
represent, to sufhcient accuracy, the normal cathode fall space.

It is of interest to note the similarity of these results with those obtained
by disregarding Poisson's equation and considering that the potential fall
distributes itself across the fall space so as to produce the greatest current
possible, ' as in the previous paper by Compton and Morse. The equation
for j„/p in that paper is practically identical with Eq. (30) above, and the
similarity between the exponents has been noted earlier in this paper. The
expression for pd„ is different, but in that paper the distance d„was moie or
less arbitrarily chosen, whereas in the present case pd„ is more or less naturally
dehned. Moreover the formulas in the present case fit the data somewhat
better, and show that U nsnsl be a constant, whereas in the earlier paper this
had to be assumed constant.

However, it is interesting to see that in this case a distribution of potential
so as to give maximum current is equivalent to a distribution of potential
so as to satisfy Poisson's equation.

THE ANODE FALL

By a similar process, the drop in potential at the anode can be calculated.
Since no positive ions are emitted by the anode, n2 at the anode must be
zero. The equations become, if L is the distance from cathode to anode

g~2IN(x —L) /3

8+1
A

[g+g~» &* »&~ ] . —
a+i

(30.5)

where A has the same value as that given in Eq. (15).
If the anode area is equal to the cathode area, and the current is such

that the whole of the cathode is covered with current, i.e. , the cathode space
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is abnormal, then the current densities at the two electrodes must be equal,
and

8 2'(x—L) /3 1
E= DpA—(1—c)(1+E.)+

3 u+ i a+1
This indicates that Z at the anode equals 8 at the cathode.

This must be so, for

(31)

f L L
(dE/dx)dx=47re

~
e&dx — m&dx

0 0 0

=Er, E=04 —exl(t tolano. of electrons) —(total no. of pos. ions)]

But for the tube as a whole to be neutral the total number of electrons must
equal the total number of positive ions, and therefore B at the anode must
equal B at the cathode, as long as the discharge covers the same area at the
anode as at the cathode.

These equations indicate that the concentration of positive ions at the
cathode is a times the concentration of electrons at the anode.

Since there is no emission of positive ions from the anode, and no necessity
for their emission, since they do not create ions, the ratio between bombard-
ment and emission, which fixed the minimum, or normal values of the cathode
drop, is not present at the anode, and so there is no analogous normal drop
here. The field at the anode therefore reduces continuously as the current
is diminished. This means that when the cathode fall is normal, E at the
anode is less than Z at the cathode. This is not contrary to the previous state-
ments, for in the normal case the current does not cover the whole of the
cathode, and we must integrate over a different cross section at the cathode
than at the anode. This makes the ratio of the number of lines of force per
square cm. (i.e., the field) at the cathode to that at the anode equal to the
ratio of the area of the anode to the area of the patch of the cathode carrying
current.

Thus the anode drop is not at all as important as the cathode drop.
The fall in potential across it is much smaller than the cathode fall, and the
concentration of electrons at the anode surface is only 1/(1+a) of the concen-
tration of positive ions at the cathode.

The above analysis gives an approximate solution for the two portions
of the usual glow discharge tube where the held is large, when electrons are
emitted from the cathode by positive ion bombardment.

If electrons are emitted from the cathode by other means, there no longer
exists the constancy of the ratio c/(1 —c), and, except in the case of very
slight electron emission, there is no longer a normal cathode fall space.

For large pressures, and values of Z large enough to make s equal to
unity throughout the whole discharge, the equations become

e~ ——A +—e'~ &*—& &' —A (1—c)e
—'~~*&'
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where c is proportional to the electron current from the cathode. The current
will be J times as great as the normal current density, where, if I is the
actual current density

lj2
I=—— D3~2p2x5~~NJ

9x 3

from Eqs. (27) and (29). Since we know n& at the anode, and the current
density at the anode, we can find the 6eld at the anode: E=(8/3)DpM'
This determines the constant of integration, in the general equation for
E, and U across the whole discharge is

8 4D 8 pEDI.
U =4D(1 c)+ —pNDL J—'+

3 1+a 3 a+1
(32)

In a gas filled tube containing a filament emitting enough electrons so
that positive ion bombardment would not appreciably affect the electron
emission, c wi11 remain constant, and V will increase as J increases, until an
arc is struck.

In the ordinary electric arc, c is dependent on the current density,
represented by J, and mill in general increape rather rapidly as J increases.
This is obvious from consideration of any of the suggested mechanisms of
electron emission from the arc cathode. Therefore as the current is increased
V will decrease, until a certain point is reached where further increase in
current density causes no further increase in c, either because this excess
energy is all radiated away or because the material melts, or for some other
reason. At this point a condition very analogous to the normal cathode
drop will be in e8ect, with a constant current density, and a constant
potential drop across this space, which, of course, will be much smaller than
the normal potential drop for glow discharges. Any further increase in
the total current simply increases the area of the "hot spot. "

This is exactly what happens in striking an electric arc by passing beyond
the condition of a glow discharge. As the current increases from zero, the
voltage drop across the discharge decreases, until a "hot spot" forms. Here
there is a discontinuity in the curve, and after that the voltage drop at the
cathode is independent of the total current. Thus the conditions in the
hot spot of an arc, which represent the maximum possible current density
in a gas discharge, are quite similar to the conditions in the normal cathode
fall in a glow discharge, which represent the minimum possible current
density; and this similarity illustrates the essential identity of the equations
for arc discharge and for glow discharge.

THE PosITIvE CQLUMN

The most of the length of the discharge tube, from the anode out to
near the cathode, is filled with a luminous portion of the discharge, called
the positive colure. Throughout its length the field has a comparatively
constant value E„. Between certain limits of pressure and current the column
is divided into alternate striations of nearly equal distance apart, and having
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their greatest intensity near the cathode. When this is the case Z„has im-
posed upon it a slight sinusoidal variation about its average value, having
a wave-length l equal to the distance between striations.

While the data on this portion of the discharge are nearly all qualitative,
there are some approximate empirical relationships which have been found.
2„ is directly proportional to the pressure and inversely proportional to r
the radius of the discharge tube, if the tube is approximately cylindrical.
It decreases slightly with increase of total current through the tube. Similarly
t varies inve:sely as p, directly as r, and decreases slightly with increasing
current. The potential drop from one striation to the next is proportional
to some critical potential of the gas. For the noble gases and the monatomic
vapors it apparently equals the first radiating potential, while for molecular
gases it is proportional to the ionizing potential.

Examining Eqs. (8) and (9), we see that for Z to be a constant, n& must,
on the average, equal m2 and this value, call it n„, must also be a constant.
Therefore just as many ions are created per cm according to the first term,
as disappear, according to the second term. That is:

aXPsn E„'"'=EP'"

But for small values of Z, s becomes approximately Z/epEV„where e is the
base of the Naperian logarithms. Then

0
g 3/2 gpss. /a

eV„
(33)

R is the number of ions disappearing per second per cc. This is probably due
principally to recombination of the ions at the walls of the tube. Then the
total current going to the walls per cm length of tube is: 7rr'eR. Call it J,.
Schottky' has found that

xJ —i ~ D i/2

v„

Here i is the total current Rowing along the column, x is a constant, having
values between .4 and .1 for most tubes, and B, is a sort of diffusion constant
proportional to the product of the actual speeds of the electrons and positive
ions, and therefore inversely proportional to the product of their respective
mobilities. r is the radius of the discharge itself, which equals the radius of
the tube, unless the tube is too large; that is, r equals the radius of the tube
until this radius reaches a certain maximum value, after which r is constant,
no matter what greater radius the tube may have.

Obtaining a value for f in terms of n &, and substituting all this in Eq. (33).

E„=2.4e (XU„D,)'"
But Schottky, by other means, obtained
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This means that x=1/er. For tubes usually used in experimental work r
varies from 1 to 4. Therefore x would vary from .37 to .09, which is the range
of variation which has been experimentally determined. D„we have seen
above, is inversely proportional to the square of the mobility, or by Eq. (6)
D, =GpEp, where G is a constant. Substituting this, and so.ving for Ep,
we find

E„=5.76eV,GP/r (34)

V„was defined by Schottky as the ionization potential of the gas, but if
cumulative ionization takes place, especially if metastable atoms are easily
formed, U„may well be the first critical potential, or one near it.

This value of Zp satisfies the empirical conditions for its dependence on
r and p. With increase of current the chances for the same proportion of
this current to reach the walls and recombine is probably less, and therefore
the value of Ep required to replace this lost proportion of current will be
slightly less. This explains why Ep decreases slightly with increase of
current.

While Ep and np must be, on the average, constant, it may be that they
can vary slightly about these as mean values. Set rs&=np —n; n2=np+n,
where n is small compared to n„. Solving Eq. (8) for n, assuming that the
first two terms cancel each other,

(35)

where 8 is small compared to n„, and B„/2D is very small.
This substituted in Poisson's Equation can be integrated to give a

similar expression for the variation of E about Ep. It can be seen that this
Huctuation is only possible between ceitain limits of pressure and current.
Also, due to the exponential term, the fluctuations are greatest near the
cathode, and diminish as the anode is approached.

If it is assumed that the first term under the radical is much larger than
the second, then the distance between striations will be 1= 2r7( D/8sen„)'".
The value np is probably proportional to the ej or n2 at the beginning of the
anode drop. However, the discharge has now spread out to fill the tube,
consequently np is also inversely proportional to the square of r, and from
Eqs. (30.5) and (15)

4kDp'E'
Sp=

9s r'e(a+1)

where k is a constant dependent on the gas, and perhaps on the particular
tube. When this value of n p is substituted in the equation for /, it becomes

2pS 2E
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The potential drop between striations is

tE~= 8.64xeG [(a+1)/2k]&&'V„=EV„ (37)

The coefficient Z is independent of p and r and of current, over a considerable
range of values, and it may quite possibly be unity for the noble gases. For
other gases E assumes other values; while evidently V, is the first critical
potential for monatomic gases, and the ionizing potential for other gases.
This would then correspond to the empirical facts.

Thus Eqs. (34), (36) and (37) show that 2„, f and lZ„ in their dependence
on r, p and V„, satisfy the empirical facts; hence we can assume that these
equations represent approximately the conditions on the positive column.

An explanation of the variation in light can be explained as follows.
For each field, the electron will have an average random motion, and an

average energy of motion. At a point where E, in its fIuctuations abouts„,
increases to such a value that the average energy of the electrons is sufficiently
near to a radiating energy of the gas molecule, the gas becomes luminous,
and some of the excited atoms are ionized. It is not necessary that a great
portion of the excited atoms be ionized, for the current through the tube is

determined by other means. When E reaches such a value that the electron
energy is suAicient to excite another line, this line also appears.

THE FARADAY DARK SPACE

At the end of the cathode fall E is zero, or even slightly negative. In
this case Eq. (8) can be shown to reduce to:

aDd'&r&/d x' = pR'r&&/r = aDb'r&,

for the mobilities used here must be those for a small field as in Eq. (7).
This gives

Sx ~&
—be+ Ãz&b(s-d)

I,= aAe '*+an„e'&*—"& —(a —1)A+ (a —1)(A —I„)x/d

where x is zero at the beginning of the dark space, and is d at its end, where

the positive column begins. If we solve for E in the usual way, and set E
equal to E„whe xnequals d, we find that d=(r/pR') (1+k/p) where k

is dependent on the current density in the positive column. This equa-
tion is only very approximately true, for Z does not equal zero through-

out the dark space, but it serves as an indication of the dependence of d

on r, p and the current going through the tube. It checks qualitatively with

the experimental data on the width of the dark space.

CONCLUSION

Thus Eqs. (1), (8) and (9), when solved, account for all the varied phe-

nomena of electric discharge through a gas under different conditions, and

what little numerical data is available seems to check these solutions. A

set of curves for nj, n2 and Z for a usual glow discharge, as calculated from

the equations given, is shown in Fig. (1).
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If we assume that above a certain field EI the atoms which are struck
by electrons will radiate light, and that above E2, where F2 is greater than
BI, the atoms struck will not radiate, but will be ionized, then we can draw
two parallel lines across this set of curves, and assume that between these
two lines the gas becomes luminous, and above and below them it is not.
In this way we can approximately foretell the luminous portions of the tube.

At both ends of the tube a current of many high speed ions is spread
more or less evenly over the active portion of the electrode, the ions moving
normally to the electrode. As we get further and fuI ther from the electrode,
the current tends to be carried by a few, low speed ions which tend to con-
centrate along the center of the tube.

Far today
9ark 5pea.

Cn thode Df'oP

Positive'

K

i

r

Cathode.

Fig. 1.

The ions required to carry the current to the electrodes are nearly all
formed in their respective falls of potential, quite near the electrode for
which they are destined. The extra ions of opposite sign are pushed away
from each electrode, and travel toward the other electrode. These, the
electrons from the cathode fall, and the positive ions from the anode fall,
must meet and recombine in some part of the tube. In this place of recom-
bination, the values of B, and the two n's will be the smallest of any part
of the discharge. This space must be near the cathode, for even if but few
electrons get through the space, these few can increase their number by
ionization as the field increases, whereas the positive ions getting through
a similar depression near the anode could form no ions, and the discharge
would stop.

It is of interest to note that these solutions would not have been greatly
changed if p had been taken according to Eq. f7), instead of according to
Eq. (6).
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