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INTERNAL FRICTION IN SOLIDS

BY A. L. KIMBALL AND D. E. LOVELL

ABSTRACT

It is shown from tests on eighteen different solids, including several metals, glass,
celluloid, rubber and maple wood, that the internal friction for strains below the
elastic limit does not obey the liquid viscosity law, as is usually assumed, according
to which the frictional force depends upon the velocity of strain, but that the internal
friction is entirely independent of strain velocity, so far as can be observed. It was
found to depend upon the amplitude of strain during the strain cycles and approxi-
mately to obey the law: Energy loss per cycle per unit volume equals Ef '. In this
expression f is the maximum value of the stress during the stress cycle and ( a
proportionality factor, which may be called the internal friction constant. The
method used was to measure the transverse deflections of the end of a rod, about a
meter long, of the material being studied, which transverse deflections were produced
during rotation of the rod when its end was deflected downwards by suitable loads
on it. The experiments differ from most previous work in that relatively large
masses of material were employed, tending to reduce surface eAects, which are likely
to enter in the case of vibration decrement experiments on wires and on thin strips.
A table of the internal friction constants obtained is given, and also a table of similar
internal friction constants calculated from data of previous investigators. A reason-
able agreement is found,

OUR years ago one of the authors of this paper briefly described how.- internal friction within a revolving shaft supported in bearings produced
a disturbing force which should cause the shaft to whirl or whip at its natural
vibration period, and demonstrated the phenomenon by a small model. '
An attempt was subsequently made to evaluate the coefficient of viscosity
of a nickel steel shaft, in order to obtain quantitative information about this
disturbing force, but it was unexpectedly found that the internal frictional
forces were not like those of a viscous Huid where the forces are greater the
more rapid the deformation, but that the dissipative forces were the same
whatever the speed of deformation. A search of the literature on the subject
revealed the fact that internal friction in solids has been and is at the present
time treated as a viscous friction by the great majority of writers on this
subject. ' There are a few) however, who appreciate that this law does not
hold in the range of ordinary low period vibration frequencies. '

' A. L. Kimball, Phys. Rev. 21, 703 (June 1923).
' See Honda and Konno, Phil. Mag. 42) 115 (1921); Iokibe and Sakai, Phil. Mag. 42,

397 (1921);Lesch, Zeits. angew. Math. und Mech. 4, 124 (1924); C. E. Guye, Jour. d. Physique
620 (1912). See also Ibbetson, Mathematical Theory of Elasticity, p. 175 (Macmillan, 1887);
Prescott, Applied Elasticity) p. 44 (Longmans, 1924).

See, for instance, Hopkinson and Williams, the Elastic Hysteresis of Steel, Roy. Soc. Proc.
A87') pp. 502-511 (1912); F. E. Rowett, Elastic Hysteresis in Steel, Roy. Soc. Proc. A89)
528—543 (1914); K. Bennewitz, Phys. Zeits. 21) 703 (1920); K. Bennewitz, Phys. Zeits. 25)

. 417—431 (1924); H. Jordan, Deutsch. Phys. 18, 423 (1915). See also results Of Lindsay, Phys.
Rev. 3) 397—438 (1914).
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INTERNAL FRICTION IN SOLIDS

In this paper it is shown that over a considerable frequency range and
stress amplitude range for a number of solids of very different physical
properties the frictional loss per cycle of stress at a point in the solid is
independent of the frequency of performance of the stress cycles, like
magnetic hysteresis. In fact, this law has not been found to fail thus far for
any solids tested by the writers of this paper, except for very low frequencies
of the order of one cycle in several minutes, where the frictional loss per cycle
is found to irIcrease.

METHQD oI' ExPERIMENT

The method used was a re6nement of that used by Wohler in studies of
the fatigue strength of metals made by him many years ago. Recently this
method was used by Mason and analyzed by him. ' An article on this subject
by Inglis has also recently appeared. ~ In the experiments described in this
paper, however, the internal friction during stress cycles below the elastic
limit only was studied.

Figs. 1 and 2 show a photograph and drawings of the apparatus used.
The materials tested were made into the form of rods, usually 1.27 cm in

-4~ II!

Fig. 1. Photograph of apparatus.

diameter and about 1 meter long. The rod was supported in two ball bearings
8& and 82, and revolved by means of an electric motor through the pulley
I' which was supported in the bearings marked 8, the torque being trans-
mitted to the rod by means of a small universal coupling C. The bearing 82
was located so that more than half of the rod overhung. On the projecting
end of the rod was another ball bearing 83, on which was hung the frame U,
which carried a weight 8' on the pan at its bottom. The rod was thus
deAected downwards, as shown in the photograph of Fig. 1, and at the same
time it was free to revolve. The frame U carries four plungers which dip into

4 See article on this subject by Mason, Engineering 15, 698—9 (1923).
N. P. Inglis, Hysteresis and Fatigue of the Wohler Rotating Cantilever Specimen, The

Metallurgist, Feb. 1927.
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four rigidly supported cups containing a suitable damping fluid. This proved
an effective means of steadying the end of the rod during revolution, so that
the amount of its deflection could be observed.

Fig. 3 shows how the end of the rod was deflected in these experiments.
The deflection was not exactly downwards but was displaced by an angle Q
from the vertical, because of the internal friction in the revolving rod. As

R
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Fig. 2. Plan and elevations of apparatus.

the rod revolves, the fibers parallel to its axis are carried around its axis,
alternately up on one side and down on the other. As they move up they
stretch, and as they move down they shorten. Any frictional resistance
to the process of lengthening results in tension, and frictional resistance
to the process of shortening results in compression. Consequently, in this
case the upward moving fibers are in frictional tension, TF, and the down-
ward moving ones are in frictional compression, C~. For the direction of
rotation shown in Fig. 3, the left hand fibers are therefore in tension due to
this cause and the right hand ones are in compression. These frictional
stresses are superimposed upon the elastic stresses, T~ and CE, and just as
the elastic stresses by themselves produce an upward reaction, Rz, so the
frictional stresses by themselves produce a transverse reaction. The forces,
R~ and Rp, are components of the force which balances 8" exerted by the
weight on the end of the shaft (Fig. 3). If the weight is removed, Rs and Rr
vanish (neglecting the weight of the rod) so that both the elastic and fric-
tional couples must vanish. If @=0, R~=O, that is, no frictional force is
present. This is true when the rod has the weight on its end, but is not
revolving. It will be shown later that the transverse deflection produced
by Rz gives a means of measuring the amount of internal friction in the
rod, and how the internal friction varies with stress amplitude and frequency.

The sideways displacement of the rod was measured by means of a
cathetometer (X, Fig. 1). On the end of the shaft was fixed a pin point, the
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tip of which was polished and illuminated by means of an arc lamp, giving
a small bright spot suitable for observation. Set screws weie provided in
order to set the point as nearly on the axis of rotation as possible. Observa-
tions were taken as follows: a suitable weight was placed upon the pan 8',
Fig. 2; the speed of revolution of the rod was brought up to some chosen
value, say 1,000 r.p.m. ; and the position of the pointer noted on the scale
of the cathetometer. In most cases oscillations made it impossible to have
the pin point centered for all speeds, so that a small bright circle or ellipse
was seen in the cathetometer. The position of its center was found by taking
settings on its circumference. The direction of rotation of the rod was then
reversed, and another observation of the position of the pin point taken.

sC,
/

Fig. 3. View of weighted end of shaft showing sideways deflection due to internal friction.

In the design of this apparatus great precaution was required to avoid
surface friction effects or reactions of any kind which might produce a false
reading, such as might come from the couplngs or the bearings. Friction in
the bearing journals does not enter as long as all the bearing axes are parallel.
An experiment on an exaggerated case of bearing friction was made and
this conclusion verified. No rings of any sort should be fitted on the test rod,
otherwise surface contact friction may be produced. This point was kept
in mind when using the ball bearings.

INTERNAL FRICTION INDEPENDENT OF SPEED OF PERFORMANCE
OF STRAIN CYCLE

According to the classical theory of viscosity the transverse deflection of
the rod should be proportional to the speed of rotation. The first experiment
was made on a rod of 3.5 percent nickel steel in order to observe the increase
in the transverse deflection with speed, but no such increase in deflection
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was observed over a speed range of from 2 to 3 up to 200 cycles per second.
A de6nite deflection was present, however, as was found by reversing the
direction of rotation of the rod. The amount of the transverse deAection
could be increased only by increasing the load on the end of the rod, but was
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Fig. 4. Curves of sideways deflection at end of shaft plotted against downward deflection
and maximum stress intensity.

found for every load to be entirely independent of the rotational speed of
the rod. This showed that for nickel steel the forces produced by friction
within the rod are independent of the velocity of strain, and that for a given
amplitude of strain, the f'rictional loss per cycle is independent of the speed
of performance of the strain cycle.
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Fig. 5. Same as Fig. 4 for case of celluloid.

A considerable number of metals, alloys and other solids have been
by the revolving rod method, and every solid thus far examined

exhibits an internal friction which is independent of the speed of performance
of the strain cycles. This characteristic of internal friction in solids thus
appears to be universal.
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Figs. 4 and 5 show typical curves of internal friction for molybdenum,
3.5 percent nickel steel, glass and celluloid for varying loads on the rods;
that is, for varying bending stresses in the rods, the speed in each case being
constant. Figs. 6 and 7 show the same thing but with fixed loads on the rods
and varying speed.

Other materials which exhibit a linear relation between internal friction
and maximum stress are: swaged quarter-inch-diameter tungsten (up to its
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Fig. 6. Curves of sideways deHection at end of shaft plotted against speed of rotation
for several different materials.

breaking point), maple wood, zinc, commercial rolled nickel, and copper
(up to 7,000 lbs. per sq. in. ). In the case of the other materials listed, the
linear relation is only an approximation.

Internal friction is known to be a very variable thing, depending upon the
past thermal and mechanical history of the specimen. The material often
appears to be in an unstable state which is shown by a considerable change
in the internal friction, with the first few cycles. After a few hundred cycles
a so-called "cyclical state" is reached in which the internal friction remains
about constant as long as stress and heat conditions are not changed too
much.
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The materials whose friction coefficients are compared in Table I were
in a cyclical state, and the values of these coefficients afford a fairly good
comparison between the internal friction of these various materials.
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Fig. 7. Same as Fig. 6 for celluloid.
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DEFINITION OF COEFFICIENT OF INTERNAL FRICTION

A question which arises at this point is how the coefficient of internal
friction is best defined. To have a definite meaning the coefficient of internal
friction must be based upon a definite law of internal friction. From a study
of a large number of curves of the revolving rod experiment in connection
with the literature on this subject, the law of internal friction which most
generally fits the facts and which at the same time is a simple one, is

P —(f2

where Ji is the frictional loss per unit volume per cycle at a particular point;
f the amplitude of the stress cycle above and below zero stress at the point
in question; and $ is the internal friction constant, the internal friction loss
per unit volume per cycle per unit stress amplitude.

Table I gives a list of all the materials thus far tested. The internal
friction constant is expressed in ergs per cm' per dyne/cm' stress amplitude.
The materials in this table, with four exceptions, are seen to be metals and
alloys. Even for the others, celluloid, glass, maple wood and rubber, the
frictional loss per stress cycle is independent of frequency, Glass was some-
what erratic, because of the small stresses used and the difhculty of ob-
servation, but there is no doubt as to the frictional loss per cycle being
practically independent of frequency. In the case of rubber a vibration test
was made, using a circular bar of rubber 2.48 cm diameter and 53.3 cm long.
Torsional vibrations were produced using a weight whose moment of inerita
was so varied that a 4 to I variation in frequency was produced. In this case
also, as nearly as could be observed, the frictional loss per cycle was a
constant for a given stress amplitude. Of the metals and alloys tested, tin
and zinc are seen to have much higher coefficients of internal friction than
the others. Monel metal and nickel, though very ductile, have little frictional
loss.
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DISCUSSION OF THE LAW OF INTERNAL FRICTION

It should be clearly understood that the internal friction studied in this
paper is for small stress amplitudes, such as those which arise in a vibrating
body. If the stress range is so large that the elastic limit of the solid is
approached, the internal friction begins to rise rapidly, and the law of
Eq. (1) no longer holds. The plastic yielding characteristic of many solids

TABI.E I
Internal friction constant for various materials.

Material

Rubber 90% pure*
Celluloid
Tin, swaged
Maple wood
Zinc, swaged
Glass
Aluminum, cold-rolled
Brass, cold-rolled
Copper, cold-rolled
Tungsten, swaged
Swedish iron, annealed
Phosphor bronze, annealed
Mild steel, cold-rolled
Molybdenum, swaged
Nickel, cold-rolled
Nickel steel, 3-',% swaged
Monel, cold-rolled
Phosphor bronze, cold-rolled to maximum

hardness

* Vibration test.

Tan @
X103

14.4
40.7
6.69
6.30
2.05
1.07
1.54
1.59
5.24
2.50
1.01
1.57
2.19
1.02
0.73
0.454

0.117

Elastic
Modulus

ln
dynes jcm'

X10 n

0.214
3.1
1.3
9.4
6.3
5.8
8.5

10.
38.7
18.9
12.
21.
34.6
21.
2k
17,.8

11.6

Internal Fric-
tion constant
(c.g.s. units)

X10"

19, 000, 000.
21, 000.

402.
172.
20.8
10.2
5, 7
5.6
4.95
4.26
4.16
2.67
2.33
1.95
1.55
1.10
0.79

0.306

above the yield point belongs to a class of internal friction phenomena com-
pletely outside of the range of, and governed by diferent laws from, the
phenomena here studied.

The 6rst column of Table I gives the value of tan P which is a direct
measure of the ratio of the frictional moment which produces the transverse
deflection, to the elastic moment, which balances the weight by its upward
reaction (see Fig. 3). It follows from Eq. (1) that this moment ratio is
equal to

tan Q = $Z/s (2)
from which it is seen that tan P is independent of the rod dimensions.
The derivation of this relation is given in Appendix I. Eq. (2) also shows
that tan @ is independent of the load 8', that is, it requires that the ratio
of transverse deflection to downward deflection be constant so that the
curves of Figs. 4 and 5 are straight lines.

The values of $ obtained from Eq. (1), as given in Table I, give a very
useful means of comparing internal frictions in solids, whereas constants
based on the old idea that the viscosity of a solid is like that of a liquid
are completely misleading.
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It is to be noted that this law gives a constant logarithmic decrement
of vibration amplitudes, because the frictional loss per cycle is proportional
to the square of the amplitude.

The theory presented is established only within the range of the experi-
ments outlined in this paper, but the authors are of the opinion that a law
of the type represented by Eq. (I) will be found to hold over a very wide

TABLE II
Internal friction constants as calculated frogs results of previousinvestigators,

Material

Youngs Rigidity
modulus modulus

Treatment Investi- E&&10 "G)&10 "
gator

Logarithmic Internal friction
decrements constants g 1015

Normal Tangential Normal Tangen-
tial

Bq 4
Tln
Zinc
Aluminum
Steel
Bronze
Nickel
Brass
Copper
Copper
Aluminum
Copper
Copper
Aluminum
Zinc
Zinc
Nickel
60—40 Brass
Copper
Glass
Zinc

Voigt

A

C(

4l

Ct

Thompson
Cl

Annealed Honda
Rolled
Rolled
Rolled
Annealed
Rolled

C&

Guye
CC

Iokibe R
Sakai

Aluminum
Copper
Nicl. el
Iron
Tungsten
.55% C Steel
~ 9% C Steel
1.3% C Steel
Glass Plate glass Quimby
Aluminum Rolled
Copper Hard drawn
Copper Wire Lindsay
Steel CC C&

Phosphor bronze
* From Smithsonian Tables (1920).
t From Iokibe K Sakai.

.3 2
9.4
5.8

21 '
11.8
21.
8.5

10.

10.
10.
5 9
9.6
9.6

21.
8.66

10.
21.
11.8

*1.6
Q3 9
*3.35
*8.29

*7.82
*3.6
$5.5
t5.5
*3.35

5.5
*2.54
3.0
2.5
5.5
7.2
7.8

13.25
7.65
7.7
7.6

.0129

.00605

.000820

.00239

.001006

.00177

.000674

.000715

.0075

.00177

.00055

.00501

.0017

.00169

.00192

.00169

.00072

.00037

.0110

.00581

.00603

.00193

.000308

.00109

.000310

.000420

.00365

.00670

.001

.00015

.0587

.0055

.00076

.000106

.00128

.00035

.00119

.00086
~ 00089

40.3
6.4
1.41
1.14
0.85
0.84
0.795
.715

7.5
1.77
.93

5.2
1.77

.805
2.2

0.205
0.605
1.08
1.69
.342
.314

69.
14.9
1.80
2.32
0.70
1.39
0.86
0.764
6.63

20.0

1.8
0.59

195.

22.
1.4
0.147
1.64
0.264
1.55
1.1
1 ~ 2

range of frequencies. The only case to the authors' knowledge where measure-
ments have been made for very high frequencies is that of the experiments
of Quimby. ' He uses Stokes liquid-viscosity law in interpreting his results
and obtains constants smaller than those of previous investigators in approx-
imately the same ratio as his frequencies are higher than theirs. On the
basis of the authors' law, however, Quimby's results and those of previous

S. L. Quimby, Phys. Rev. 25, 528—573 (1925).
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investigators give constants of the same order of magnitude, although
Quimby's constants are somewhat smaller. This is perhaps because these
constants were obtained from stress cycles of much smaller amplitude than
used in this investigation.

Table II gives a list of values of $ which have been calculated from the
results of previous investigators, using their logarithmic decrements as a
means to calculate f The. value of $ can be found by the very simple relation

(3)

where 5 is the logarithmic decrement and B Young's modulus. The proof
of Eq. (3) is given in Appendix II.

It must be kept in mind, however, that $ as determined by (1), (2) and
(3) may not always mean the same thing. It depends upon the kind of stress
in the stress cycle. It is known from the theory of elasticity that the stress
at any point in any body, however stressed, may be resolved into a pure
dilatation and a pure shear. In bending vibrations, where normal stresses
are produced, they are combined dilatations and shears, but for torsional
oscillations, the stresses are almost pure shears. When (3) is applied to
torsional vibrations, Z should be replaced by the rigidity modulus. In the
revolving rod experiments, the cyclical stresses are normal in character.
Table II contains values of $ obtained from logarithmic decrements produced
both by normal and by tangential stresses, the former being specified by
$„and the latter by $,.

The complete analysis of internal friction phenomena in solids requires
a separation of that produced by pure dilatation and that produced by pure
shear, and a knowledge of the effect of their combination in various ratios.

Attention should be called to the fact that for frequencies of the order
of those in bells and in bodies which respond with a prolonged ring when
struck, the law of Eq. (1) shows that such a ring is perfectly possible, whereas
on the basis of the old liquid-viscosity law, using the constants of previous
investigators for that law (except Quimby s constants), no ring is possible.
A bell would be aperiodic, as if made of putty. This is mentioned by Quimby
in his paper.

In conclusion we wish again to point out that the law of Eq. (1) is not
to be considered as complete or exact, as regards the loss being proportional
to the stress amplitude squared. There are divergencies from this in the
experiments of others as well as our own. Rowett' finds that for annealed iron
the cube law fits his results best. Bennewitz' uses the square law, however.
The static tests of Rowett show a cube law. Some results of static tests on
armco iron for eccentric stress cycles by G. H. Keulegan of the Bureau of
Standards have recently appeared, ' which the cube law fits. These latter
results were based on stress cycles of quite small amplitude, going up to less
than I/10 the elastic limit of the material.

The thing which we particularly wish to bring out is that for stress cycles
of frequency of two to three a minute, up to fifty a second (that is, within

~ G. H. Keulegan, U. S. Bur. Stds. Tech. paper No. 332, Nov. 1926.
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the range of the experiments) the frictional loss per cycle is strictly in-
dependent of the frequency of performance of the cycles for every solid thus
far tested.

We are unable by the use of the revolving rod method to check results of
certain investigators, whose results do not show this independent frictional
loss per cycle upon frequency, notably some of Voigt's' results and recent
results obtained by Subrahmaniam. ' The discrepancy may lie in the fact that
in the present experiments relatively large masses of material were used
which would tend to minimize surface effects. Further study is required to
settle this point.

RESEARCH LABORATORY'

GENERAL ELECTRIC COMPANY,

SCHENECTADYJ NEW YORK.

APPENDIX I

Proof that in the rotating rod experiments the internal friction constant g=~g/E where

g = tan @, Fig. 3, and E=Young's modulus. In Fig. 3 let the downward elastic deflection at the
end of the rod from the undeflected position of its axis be d. Then using the symbols of Fig. 3,
the potential energy of downward elastic deflection is given by

Ws = (1/2)Rsd;

and the work per cycle due to internal friction by

From (4) and (5)
8'p = 2m.EI;d

Wr/Ws=4+Rr/RE=4rr tan &=4sq

(5)

(6)

& is found by evaluating Wp and TV@ and substituting in (6).
IV&, the frictional dissipation per cycle of rotation of the rod is found as follows: First

the frictional loss AIV~ in a slice of the rod of thickness Ax will be found. From the law of
equation (1)

2' 6

AWp —— $f' r d0 dr hx
0 0

In this expression, f, the maximum stress per cycle, is, according elastic theory, a linear
function of the radial distance r and may, be expressed in terms of I'

„
the maximum stress

per cycle at the edge of this slice, and the radius a as follows:

f =F r/a

Substituting (8) in (7) and integrating,

AWp ——(rr/2) fF 'a'Ax

The total work per cycle Wp is found by integrating (9)along the entire length of the rod l after
expressing F in terms of P~ the maximum stress in the entire rod, from the relation F~/F = l/x

This gives
Wr = (m/6) a'lfF'~. (10)

s W. Voigt, Ann. d. Physik 47', 671—693 (1892).
' G. Subrahmaniam, Phil. Mag. p. 711 (1925);p. 716 (1925);p. 1074 (1926);p. 854 (1927).
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Rg, the total potential energy of elastic deBection of the rod is easily found in terms of the
maximum stress F~ to be

WE ~a2tF——'~/24E

Substituting (10) and (11) in equation (6),

W /«W e=4$E=4m-q; $=~g/E (12)

which is the required relation.
In obtaining (11) the approximate beam theory was used, neglecting shearing stresses

which are relatively small. The expression(10) can also be obtained by assuming some form of
stress-strain hysteresis loop and summing the work done. The result comes out independent of
the form of the hysteresis loop assumed, as of course it must, the only requirement being that
the area of the loop conform to the energy requirement of equation (1).

APPENDIX II
Proof that )=8/E where 8 is the logarithmic decrement and E the elastic modulgs. For any

unit volume in the vibrating body, the potential energy P is given by

~m= 2&~m' (13)

where e is the maximum value of strain at that point. Now dP /dt is equal to the frictional
dissipation per sec. in the unit volume in question. Therefore Ee de /dt= —

&f n where n
is the number of stress cycles per sec. Solving for (, and substituting for f its value Ee,

where y is the vibration amplitude of the body at some convenient point. The above substitu-
tion of y for e follows from the elastic theory, by which strains are proportional to vibration
amplitude for all points in a body vibrating in a given mode. The exponential decrement curve
of vibration amplitude is given by y =yoe from which (dy/dt)/y = —0.. But if T is the vibra-
tion period, the logarithmic decrement

yoe~' & dy
8 = loge —= +n T =a/e = ———/y

yoe &'+ ' n dt
(15)

Substituting {15)in (14) the required relation & =8/E is obtained.

*&Actually the maximum value of P occurs at one instant only in each cycle, but P is here
regarded as a continuous function represented by a curve drawn through the successive maxima.




