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THE STRUCTURE OF THE SWAN BANDS

Bv JOHN D. SHEA

ABSTRACT

Frequency of the lines of the Swan spectrum. —Data obtained by Leinen,
Komp, Hindrichs and Johnson have been used in a detailed quantum analysis of the
Swan bands. The very recent data by Johnson have been employed only in the study
of the multiplicity of the lines. Tables of the frequencies of the lines and their com-
bination differences are given for the (0, 0), (0, 1), (1, 0), (1, 1) and (1, 2) bands.

Quantum analysis of the Swan spectrum. —Quantum numbers have been
assigned to all lines of the R and P branches of the above bands. The Q branch is not
observed in these bands. The combination principle is verified in the case of all the
above bands. A new method for obtaining accurate numerical values of the constants
of the rotational energy function, E=Bpm +Dpi''+F0''+Hpm'+ ~ ~ ~, has been
developed, assumi'ng the theoretical relations between rotational and vibrational
constants recently derived by Kratzer, Kemble, and Birge. The so-called method
of zero sums has been re-formulated for rapid use in band spectra computations.

Molecular constants of the carrier. —The moment of inertia of the Swan band
carrier for infinitely small vibration is found to be 15.84X10 4P gm cm' for the initial
state in the emission process, and 17.03)&10 ' gm cm' for the final state, with a
probable error of less than 0.1 percent. The constants of an assumed law of force
of the form P=ki(r —rp)+&2(r —rp)'+k3(r —rp)'+ ~ ~ ~ are evaluated.

Multiplicity of the lines. —For small values of j the R branches consist of triplets,
theP branchesof doublets, the separation decreasing as jincreases. Empirical formulas
for this separation as a function of j are given. The separation for corresponding j
values in the various bands shows interesting numerical relations. The well-known
"staggering" of alternate lines has been investigated quantitatively for the (0, 0) band,
and can be explained by the assumption of a double moment of inertia, either in the
initial or final state, in agreement with Mulliken s prediction of 0-type doubling for
these bands. The necessary difference of the two values of the moment of inertia is
0.012 percent. The molecule C —C is suggested as the probable carrier of the Swan
bands, provided such a doubly charged molecule can exist.

INTRoDUcTIQN

HIS paper' deals with the analysis, on the basis of quantum theory, of
the Swan bands resulting from the vibrational quantum transitions

(0,0) (),5165), (0,1) (X5635), (1,0) (M'/37), (1,1) (X5129) and (1,2) (X5585).
Certain theoretical relations have been tested, and the more important
constants for the carrier have been evaluated with a high degree of accuracy.

The so-called Swan bands were first observed by Wollaston' in 1802, but
the bands were not described until Swan' investigated them in 1857. The
bands, which are quite complex, occur in the visible portion of the spectrum.

' Preliminary results of this investigation have been reported to the American Physical
Society in the following abstracts: Phys. Rev. 25, 716 (1925) Abstract 9; Phys. Rev. 27, 245
(1926) Abstract 14.

' Kollaston, Trans. .Roy. Soc. London, 11, 365 (1802).
' Swan, Trans. Roy. Soc. Edinburgh, 21, III, 411 (1857).
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Although the existence of these bands has been known for more than a
century, the molecule to which they are due is still in doubt. ' "The molecule
undoubtedly contains at least two carbon atoms. Whether or not one or
more hydrogen atoms are also present has not been decided. These bands
are observed in the Bunsen flame, in stars of spectral types R and X, in
comets, ' in the carbon arc, in vacuum tubes with carbon electrodes contain-
ing an inert gas at low pressures, ' and in the furnace spectra of King.

Excellent photographs of these bands have been published by Johnson. '
Cut (b) in the frontispiece of the Bulletin of the National Research Council,
Vol. XI, Part 3, December 1926, entitled "Molecular Spectra in Gases, "
was prepared by the writer from an enlargement made from a plate taken
by Birge with the large concave grating at the University of Wisconsin.
This cut is of the (0,0) and (1,1) bands, the lines of the (0,0) band being
labeled with their correct quantum numbers.

The Swan system consists of five sequences' ' of bands with the head of
the first band of each sequence in the vicinity of the following wave-lengths:
XX6191 (0,2), 5635 (0, 1), 5165 (0,0), 4737 (1,0) and 4381 (2,0). These cor-
respond to the sequences n" —n' = +2, +1, 0, —1 and —2. Thus in the +1
sequence the X5635 band is produced by a transition in emission from the
vibrational state n'=0 to the vibrational state n" =1.

TABLE I
Schensatic representation of the Swan bands.

n" =0

5165
4737
4381

5635
5129
4716
4371

6188
5585
5096
4698
4364

6120
5541

4683

6060
5502

4673

6005 .

5473 5958

Table I contains the vibration quantum number assignments of the
Swan bands. It is the same as that given by Mecke" and Birge." Each band
corresponds in emission to a transition from the vibration state n', given at
the left of the row in which a particular band occurs, to the vibration state
n", given at the top of the column.

4 Watts, Phil. Mag. (6) 28, 117 (1924).
' Kayser, Handbuch der Spectroscopic, Vol. V, 226 (1910) and Vol. VII, 139 (1924).
' Johnson, Trans. Roy. Soc. London A22'7, 157 (1927).
7 Wright, Lick. Obs. Bull. 7, 8 (1912) See also Fig. 171 p. 435 Vol. I, Russell, Dugan and

Stewart, Astronomy, (1926).
' For an introduction to the quantum theory of band spectra see Sommerfeld, Atombau,

4th edition, Chapter 9.
' For a more detailed account see the Report of the National Research Council on Mole-

cular Spectra in Gases, 1926. The nomenclature of this paper is the same as that in the report
of the National Research Council, and reference will be made to it as "Report. "

'0 Mecke, Phys. Zeits. 26, 217 (1925)."Birge, Phys. Rev. 23, 294 (1924).
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The structure of the Swan bands has been investigated by Thiele, "
Leinen, " Heurlinger, ' and others. " The individual lines of the various
bands can be arranged in ten series, such that the second frequency difference
of the lines in each series is approximately a constant. These series can be
conveniently considered as two sets of doublets and two sets of triplets.
The two sets of doublets (and similarly for the triplets) are found by taking
alternate lines of what seems at first to be a single doublet series. The basis
of this division lies in the fact that if it is not made, the second differences
show a systematic irregularity due apparently to a slight mutual displace-
ment of alternate lines. Leinen, Thiele and other early investigators made
the division into ten series. Heurlinger assumed only five series, which he
interpreted on the quantum theory as a doublet I' branch and a triplet R
branch. It has recently become evident that the band series of homopolar
molecules as a rule consist of lines which alternate in intensity, " and the
application of this rule suggests that the true interpretation of the Swan
bands is to assume two I' branches (each composed of doublets), and two R
branches (each composed of triplets). Each I' or R branch consists of
alternate strong and extremely weak lines, and the two I' branches (similarly
the two R branches) interlace in such a fashion that the faint lines of one
almost coincide with the strong lines of the other. In the tables, the lines o.
each band are listed in order, as if there were only one doublet I' and one
triplet R branch, merely for convenience.

Several investigators have measured the wave-lengths of the lines in
different portions of the Swan spectrum. Only the measurements giving the
wave-lengths to 0.001A were used in this work. Hindrichs, " about 1904,
measured the lines of the bands in the n" —n'= —1 sequence. These
measurements, although made under fairly high dispersion, do not seem to
be as accurate as those of later investigators. Leinen" measured the lines of
the n"—n'=0 sequence, the measurements being published in 1905. He
used an electric arc as source, and lists but two heads, the (0,0) and (1,1).
Komp, "about 1911,measured the lines of the n" —n'= +1 sequence. Since
the work reported in this paper was completed, a paper by Johnson' has
appeared which gives accurate measurements of the lines of many of the
Swan bands, including several which are not considered in the present paper.
His data were obtained, for the most part, under low temperature conditions,
and give only lines which are relatively near the head. Combining these
measurements with the older ones would produce little if any change in the
results already obtained before Johnson's paper appeared, and accordingly
this has not been done.

"Thiele, Astrophys. J. 8, 1 (1898)."Leinen, Zeits. f. wiss. Phot. 3, 137 (1905).
' Heurlinger, Untersuchungen uber die Struktur der Bandenspektra, Dissertation, Lund

(1918)."Report, Chapter IV, Section Se, p. 200 et seq."Hindrichs, Ueber Messungen und Gesetzmassigkeiten in der Vierten Kohlebande. Bonn
Diss. (1904).

Komp, Zeits. f. wiss. Phot. 10, 117 (1911—12).
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THE COMBINATION PRINCIPLE AND ITS VERIFICATION

The lines of the three possible branches, P, Q, and R of the usual quantum
theory, are defined as follows:

P;=vo+F; ~
—F;

Q;= vo+F —F;"
E. 2'= vo+F 2'+I F )'

(la)

(1b)

(ic)

In these equations F; is the "term" value (i.e. , the energy divided by hc)
expressed as a function of j, the resultant angular momentum of the molecule
in h/2s units, vo is the frequency of the origin. The Q branch is not observed
in the Swan bands. From experimental data it is possible to evaluate only
nz, the angular momentum due to the rotation of the nuclei. Assuming for
the present that m and j are parallel, one may write m=j —e, where j is
assumed to be an integer. However, it is possible that j may be a half-
integer, and in order to distinguish this case, we write m = k —o., where k is an
exact half-integer. " For the sake of convenience, a line will always be
referred to in terms of its j for the final state, as shown by Eqs. (1a)—(ic).

In the particular case of the Swan bands m is known to be approximately
a half-integer, and hence if the resultant angular momentum is integral,
'e is approximately one half. If the resultant angular momentum is half-in-
tegral, then 0. is nearly zero.

From Eqs. (ia) and (1c) it follows that

R;—I';=F;+I'—F; I' ——22$

Z;,—I';+~ ——F;+, —F;, =2M;
(2a)

(2b)

In these equations F;+&—F; & is defined as being equal to 26F,." Eqs. (2a)
and (2b) are the essential equations in a test of the combination principle.
Thus Eq. (2a) indicates that although both R; and P; are functions of the
initial and final states, their difference is a function of the initial state only.
If now the values of 26P are evaluated from the observed lines in two
different bands of an n" progression (i.e. , having the same initial vibration
state) these values should be identical within the limits of experimental
error. This relation should hold whether the lines are perturbed or not.
The same argument applies to the values of 26F;" for the various bands of
an n progression. This identity of the values of 26F; for different bands is
known as the combination principle. In the case of bands in which a Q
branch is observed, additional combinations are possible. In all bands thus
far analyzed, perturbations have been found to occur in pairs, and each pair
of perturbed lines may be explained as due to an irregularity in one energy
level, usually in the initial state. Thus if F; is greater than expected by any

'8 e (or a) is thus interpreted as a measure of the angular momentum due to electronic
motion. The more recent interpretation of the new wave mechanics is not pertinent in the
present investigation.

' By this definition of 2AF;, it follows that 2dF/dj =23,F, to a high degree of approxima-
tion. (Report, Chap. IV, Eq. (78).).
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given amount, the R; 1 and P;+1 lines will both be displaced to the violet
by this same amount. This fact is very useful, as it definitely fixes the
relative values of j for the R and P lines, provided perturbations exist.
Perturbations do exist in the Swan bands, and with these as a basis, the
writer has assigned relative values of j to all the series lines of the (0,0),
(0,1), (1,0), (1,1) and (1,2) bands. Then by the use of Eqs. (2a) and (2b)
the values of 25F and 26F;"have been evaluated. The equalities predicted
by the combination principle were then found to exist, thus proving that
the previous assignment of vibration quantum numbers is correct. The series
and the corresponding values of the combination differences are given in
Tables II to VI. In these tables the measurements for each band are listed

TABLE II
Frequencies of the lines of the (0,0) band, and their combination

differences.

Rc R" pv 2aP'" 2Z P'~ 2d,P"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

19400.88
406.31
411.42
417.22
422. 83
429.03
435.13
441.77
448. 29
455.38
462.41
469.93
477.41
485.25
493.40
501.85
510.28
519.22
528.05
537.52
546.82
556.77
566.51
577.05
587. 18
598.11
608.76
620.23
631.27
634.24
654. 71
667. 13
679.09
691.98
704.39
717.69
730.54
744.43

~ 757.65
772.06
785.64

814.80
830.19
844. 39
860.26
875.09
891.42
906.64
923.44
939.04
956.32
972.43
990.15

20006. 94

19389.05
393.16
397.83
402. 53
407.55
412.80
418.30
424. 01
429.95
436. 15
442. 57
449. 19
456. 13
463.22
470.64
478. 18
486.07
494.08
502.43
S10.92
519.81
528.73
538.07
547.49
557.32
567.22
577.41
587.84
598.72
609.38
620.79

19414.52
419.80
425. 33
431.13
437. 13
443. 50
449 93
456. 89
463.88
471.28
478.70
486. 64
494.64
502.95
511.26
520. 22
528.90
538.42
547.49
557.62
567.22
577.72
587.84
598.87
609.38
620.79
631.85
643.80
655.26
667.72
679.62
692.56
704.88
718.27
731.03
744.90
758.12
772.31
786. 12

814.96
830.19
844. 74
860.75
875.44
891.81
907.01
923.86
939.43
956.71
972.76
990.52

20006.94

19354.61
354.61
355.27
355.85
356.40
357.86

360.93
362.84
364.84
367.41
369.88
372.89
375.62
379.36
382.79
386.80
390.70
395.22
399.56
404. 64
409.43
414.96
420. 20
426. 28
432.00
438.59
444. 78
451.81
458.48
466.06

. 473.19
481.22
488.80

505.68
514.89
522.99
532.68
541.47
551.60
561.01
571.57
581.41
592.54
602.72

19355.27
355.27
355.85
356.40
357.37
358.45
359.94
361.46
363.43
365.44
367.95
370.39
373.40
376.33
379.86
383.28
387.27
391.14
395.67
400.03
405.03
409.86
415.40
420.64
426. 71
432.42
438.99
445. 18
452. 27
458.89
466.47
473.54
481.63
489.20

505, 68
514.89
523.25
532.98
541.76
552.03
561.19
571.95
581.65
592.88
602. 72

100.77
107.80
114.66
121.56
128.85
135.63

149.35
156.38
163.21
1'?0.11
176.94
183.88
190.99
197.69
204.39
211.31
218.06
225.01
231.71
238.60
245.28
252. 17
258.89
265.70
272.39
279. 10
285. 76
292.62
299.17
306.00
312.45

326.00

338.71
345.27
352. 10
358.74
365.17
371.84
378.03
384. 75
391.02
397.61
404. 22

100.86
107.95
114.79
121.78
128.70
135.63
142.49
149.46
156.38
163.29
170.12
177.10
183.92
190.89
197.55
204. 56
211.45
218.24
225. 12
231.82
238.77
245.40
252. 32
258.98
265.85
272.46
279.28
285.85
292.63
299.23
305.84
312.58

325.76

339.06
345.86
352. 19
358.83
365.25
371.83
378.24
384.76
391.11
397.64
404. 22

87.16
93.68

100.11
106.56
113.53
119.55

132.47
139.01
145.44
151.81
158.17
164.63
171.20
177.41
183.72
190.25
196.48
202. 89
209.20
215.59
221.84
228. 28
234. 51
240. 85
247.09
253.39
259.61
265. 88
272.06
278.37
284.46
290.84
296.84

309.12
315.30
321.40
327.58
333.62
339.82
345.63
351.87
357.63
363.78
369.71
375.75

87.30
93.92

100.28
106.82
113.27
119.73
126.13
132.62
139.00
145.48
151.86
158.34
164.67
171.16
177.46
183.94
190.14
196.70
203.05
209.35
215.76
221.99
228.40
234.62
241.01
247. 20
253.57
259.70
266.00
272. 14
278.43
284. 58
290.68
296.92

309.28
315.30
321.49
327.77
333.68
339.78
345.82
351.91
357.78
363.83
370.04
375.80
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TABLE I I (cont. )
Frequencies of the lines of the (0,0) band, and their combination differences.

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

R"

20024. 83
041.24
060.45
077.87
096.70
114.33
133.91
152.13
171.95
190.52
210.85
229.55
250.50
269.71
291.09
310.50
332.49
352.17
374.44
394.76
417.36
437.76
460. 79
481.62
505.29
526.27
550.37
571.48
596.15
617.85
642.61
664.65
689.79
712.21
737.74
760.43
786.39
809.27
835.54
858.73
885.25
908.85
935.93
959.61
986.85

21010.84
038.40
062. 63
090.50

Rc

20025. 21
041.97
060.66
077.87
097.07
114.56
134.20
152.13
171.95
190.52
211.11
229.55
250.73

19614.40
624. 99
637.19
648. 22
660.81
672.38
685.58
697.38
711.10
723.62
737.64
750.36
765.35
778.28
793.58
807.33
822. 73
836.51
852.79
866.94
883.75
898.30
915.48
930.51
948.20
963.33
981.74
997.53

20016.13
032.28
051.30
067.79
087.26
104.27
124.15
141.38
161.66
179.30
200. 14
218.02
238.51
257.52
277.71
297.61
319.79
338.74
360.90
380. 15
402. 51
422. 73
445.68
465.56
488.71
509.21
532.37
553.31
576.71
598.06
622. 57
645. 17
667.69

pV

1"614.72
625.24
637.51
648.44
661.25
672.58
685.87
697.70
711.42
723.62
737.64
750.60
765.35
778.28
793.58

2b.F'"

410.43
416.25
423. 26
429.65
435.89
441.95
448. 33
454. 75
460.85
466. 68
473.21
479.19
485. 15
491.43
497.51
503. 17
509.76
515.66
521.65
527.82
533.61
539.46
545. 31
551.11
557.09
562.94
568.63
573.95
580.02
585.57
591.31
596.86
602.53
607.94
613.59
619.05
624. 73
629.97
635.40
640. 71
646.74
651.33
658.22
662.00
667.06
672. 10
677.50
682.48
687.99

410.49
416.73
423. 15
429.43
435.82
441.98
448. 33
454.43
460. 53
466.90
473.47
478.95
485.38

26F ""

381.95
387.64
393.02
399.64
405.49
411.12
416.95
422. 81
428.51
434.31
439.94
445. 50
451.27
456.92
462.38
468.36
473.99
479.70
485.23
490.69
496.46
501.88
507.21
512.59
518.29
523.55
528.74
534.24
539.20
544. 85
550.06
555.35
560.38
565.64
570.83
576.08
581.13
586.25
591.25 .

597.03
601.21
607.54
611.24
616.14
620. 87
625.95
630.69
635.89
639.90
644. 82

381.70
387.70
393.53
399.41
405. 29
411.20
416.86
422. 78
428. 51
434.31
439.92
445. 76
451.27
457. 15

TABLE I II
Frequencies of the lines of the (0,j) band, and their combination differences.

1
2
3
4
5
6
7
8
9

10
11.
12

Rc

17801.65
807.59
813.89
820.45

17787.48
792.30
797.57
803.14
808.93
815.09
821.44

pT 2d F'" 2SF'" 2z F"" 2gF "&
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TABLE
Frequencies of the lines of the (0,1)

III (cont. )
band, and their combination differences.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
'14
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

R"

17848.39
856.57
864.42
873.19
881.49
890.90
900.03
909.60
919.32
929.58
939.30
950.49
961.16
972.54
983.53
995.39

18007.30
019.81
031.95
044. 97
057.66
071.17
084.54
098.33
112.44
127.05
141.22
156.42
171.16
186.94
202. 16

233.89

284. 64
301.14
318.93

354. 74
372.36
391.41
409.45
429.03
447. 68
467.64
486.67
507.14
526. 68
547.90

Rc

17827.30
834.31
841.68
849.33
857.27
865.34
873.83
882.52
891.56
900.56
910.30
920.28
930.12
940.61
951.05

Rv

17828.18
835.16
842.47
849.98
857.87
865.91
874.41
882.97
892.02
901.06
910.73
920.28
930.52
940.61
951.43
961.94
973.23
984.35
996.31

18008.00
020.44
032.64
045.63
058.35
071.91
085.15
099.20
112.92
127.58
141.75
156.94
1'11.61
187.46
202. 63

234.52
251.23
267.56
285. 18
301.64
319.64
336.69
355.29
372.78
391.85
409.90
429.48
448.07
468. 03
487.02
507.62
527.04
548.27
568. 10
590.14
610.20
632. 11
653.09
675.93
697.03
720.34
742.02
765.86
787.41
812.13
834.40
859.34
882.25
907.48
930.72
956.50
980.14

19006.87
030.43
057.35
081.77

17740.70
741.74
742.92
'144.55
746.29
748.45
750.67
753.41
756.17
759.45
'162.78
766.56
770.46
774.89
779.33
784. 32
'/89. 30
794.78
800.35
806.37
812.48
819.19
825. 71
832.95
840.09
847.90
855.47
863.93
872.04
881.02
889.67
899.19
908.45

927.80

960.49
971.12
983.04
994.33

18006.74
018.44
031,44

057.20

17742.40
743.72
745. 19
746.90
749.07
751.28
753.97
756.78
760.05
763.37
767.15
771.07
775.47
779.88
784.84
789.77
795.34
800.84
806.98
812.97
819.62
826.22
833.45
840.52
848.39
855.97
864.42
872.51
881.49
890.14
899.59
908.84

928.54
939.30
949.54
961.16
9'11.57
983.53
994.77

18007.30
018.85
031.95
044.09
057.66
070.44
084.54
097.66
112.44
126.21
141.75
155.81
171.61
186.20
202. 63
217.94
234.52
250.59
268. 16
284. 64
302.34
318.93
337.21
354.74
373.92
391.41
411.19
429.03
449.35
467.96
488.79
507.62
528.99
547.90

107.69
114.83
121.50
128.64
135.20
142.45
149.36
156.19
163.15
170.13
176.52
183.93
190.70
197.65
204.20
211.07
218.00
225.03
231.60
238.60
245.38
251.98
258.83
265.38
272.35
279. 15
285.75
292.49
299.12
305.92
312.49

325.46

358.44

371.70
378.03
384.67
391.01
397.59

410.44

2aF'"

114.87
121.62
128.64
135.62
142.49
149.28
156.33
163.50
170.47
177.24
183.90
190.87
197.76
204.47
211.47
218.23
225. 10
231.80
238.65
245.38
252. 29
258.93
265.75
272.40
279.19
285.78
292.52
299.10
305.97
312.49

325.68

339.02
345.88
352.10
358.48
365.12
371.76
378.01
384.55
391.05
397.53
403.98
410.37
416.58
423.08
429.38
435.83
441.89
448.39
454.39
460.50
466.89
473.30
479.09
485. 82
491.43
497.70
502.77
509.79
515.47
522. 13
527.51
533.56
539.31
545.31
551.11
557.52
562.47
568.56
574. 15

2d F""

105.47
112.02
118.13
124.74
130.82
137.49
143.86
150.15
156.54
163.02
168.84
175.60
181.83
188.22
194.23
200.61
206.95
213.44
219.47
225. 78
231.95
238.22
244. 45
250.43
256.97
263. 12
269, 18
275.40
281.49
287. 75
293.71

306.09

324. 15
330.02
335.89

348.00
353.92
359.97

371.83

26F ""

99.28
105.61
112.08
118.44
142.76
131.24
137.59
143.78
150.25
156.91
162.97
169.54
175.58
182.06
188.39
194.58
200.97
207. 16
213.46
219.67
226.01
232. 13
238.46
244. 63
250. 81
256.95
263.16
269.24
275.45
281.47
287.87
293.79

305.98
311.93
318.02
324.02
330.07
336.11
341.92
347.99
353.93
359.90
365.81
371.82
377.63
383.49
389.36
395.18
400. 83
406.52
412.29
418.53
424. 00
429.48
435. 15
441.41
446.44
452. 18'
457.38
463.52
468.48
474. 92
479.66
485.42
490.84
496.29
501.69
507. 15
512.18
518.08
522. 81
526.36
533.87

successively. For the (1,0) band, Johnson's data have been substituted for
the much poorer data of Hindrich s which were originally used. In this band,
as well as in the (1,2) band, the series assignments have been carried to
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TABLP IV
Frequencies of the lines of the (1,0) band, and their combination dQ'erences.

R" Rc pv 2d F'" 26F'" 23,F "" 2b,F""

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

139.86
144.86
149.13
153.63
158.82
163.71
169.10
174.34
180.09
185.69
191.86
197.77
204.24
210.54
217.47
224. 20
231.49
238.61
246. 24
253.71
261.78
269.62
278. 11
286.49
295.08
303.86
312.44
321.93
330.22
341.35
351.67
360.82
371.25
381.40
393.12
402. 52
413.85
424. 80
436.44

142.55
146.50
150.90
155.38
160.16
165.07
170.22
175.51
181.05
186.72
192.64
198.71
205.04
211.41
218.13
224. 99
232. 11
239.36
246.92
254.42
262.40
270.30
278.75
286.95
295.68
304.35

145.99
149.64
153.63
157.74
162.18
166.83
171.75
176.85
182.25
187.76
193.62
199.54

. 205.89
212.26
218.81
225. 53
232. 73
239.80
247.34
254. 82
262. 82
270.62
279.04
287.23
297.06
304.77
313.50
322. 86
330, 89
341.83
352.32
361.31
371.83
381.77
393.91
403. 10
414. 10
425. 22
437.26

21I35.36 21138.65 21142.55

21104.15
104.72
105.15
106.14
107.00
108.35
109.69
111.45
113.29
115.42
117.80
119.96
122.76
125.48
127.28
131.79
135.71
139.06
143.23
146.91
152.15
155.50
160.69

21104.72
104.72
105.15
105.15
105.87
106.61
107.96
109.19
110.63
112.21
114.05
116.02
118.11
120.49
123.21
126.02
127.65
132.29
136.37
139.33
143.71
147.27

155.96
161.08

126.77
133.89
141.09
147.57
154.78
161.27
168.42
175.04
181.79
188.44
195.64
201.97
207.46
215.87
224. 39
229.03
235.54
242. 34
249.89
255. 61
261.70
269.47
275. 75

113.41
120.27
126.96
134.21
141.05
147.81
154.44
161.11
168.12
174.74
181.63
188.33
195.39
202. 37
207.68
215.81
224. 67
229.02
235.46
242. 44
250.20
255.83

269.26
276. 18

113.32
119.48
126.34
132.47
139.24
145.36
152.09
158.17
164.82
171.07
177.28
183.90
189.68
196.45
202. 94
209.56
215.96
221.76
228. 02
234.49
240. 97
247. 02
253.16
259.93

100.32
106.69
112.98
119.84
126.24
132,75
138.96
145.23
151.77
158.09
164.70
170.93
177.57
183.86
190.29
196.84
203.24
209.54
215.95
222. 25
228. 12
234.50

247. 14
253.02
259.84

TABLL& V
Frequencies of the lines of the (1,1) band, and their combination differences.

Rr Rc pr pv 2d F'" 26F' 2aF "" 2Z F"'

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

589.26
596.50
603.86
611.07
619.09
626.57
635.13
643.24
652.08
660.81
669.97
679.09
688.75
698.34
708.42
718.27
727.59
739.47
751.43

590.41
597.38
604.60
612.02
619.74
627.55
635.75
643.80
652. 69
661.25
670.61
679.62
689.38
698.92
708.96
719.12
728. 12
740.06
751.75

591.26
598.11
605.36
612.41
620. 23
627. 98
636.35
643.80
653.09
661.25
670.93
679.62
689.59
699.20
709.19
719.12
728. 12
740.06
751.75

19582.91 19583.58 19584,57

490.60
491.01
491.96
492. 88
494.08
495.54
497.60
499.65
501.85
504. 18
506.92
509.71
513.12
516.33
519.81
523.90
528.05

491.01
491.60
492. 88
493.40
494.64
496.17
498. 18
500.17
502.43
504. 79
507.49
510.28
513.61
516.92
520.40
524. 43
528.73

19490.04 19491.01 106.46
].13.26
120.06
127.13
133.69
141.05
147.70
154.48
161.16
168.12
174.91
181.83
188.63
195.30
201.94
207. 78
215.57
223.38

106.37
113.59
120.42
126.86
134.15
141.11
147.63
154.51
161.08
168.18
174.83
181.89
188, 64
195.35
202. 20
207.72
215.63
223.02

92.87
98.66

105.49
111.90
118.19
125.01
131.03
137.53
143.59
150.23
156.63
163.05
169.38
175.63
182.01
188.61
194.37
199.54
206. 79

92.57
99.40

105.78
111.72
118.62
125.10
131.38
137.57
143.63
150.26
156.46
163.12
169.34
175.77
182.00
188.56
194.69
199.39
207.08
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TAaLE V (cont. )
F'requencies of the lines of the (1,1) bund, and their combination dQferences.

.1 R" Rc Rv pr pv 2b, F'" 25F "" 25F ""

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
S4
55
56
57
58
59
60
61
62
63
64
65
66
6/
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
98
99

100
101

19761.51 19761.95
773.12 773.59
'/84. 33
797.15
807.93
820.63
832.50
845. 61
857.96
871.65
883.75
898.30
911.43
926.00
939.43
954.48
968.44
983.73
998.50

20014.11
028. 71
044. 98
060.45
077.87
092. 14
109.02
125.35
143.28
159.79
176.40
193.78
212.27
229.55
248. 38
265.27
285, 04
302.47
322.37
339.97
360.90
378.64
394.92
417.36
437. 76
457.25
479.05
497.77
518.98
538.94
S61.25
580.85
603.39
623.21
646.36
666.32
689.79
710.11
734.21
754.35
778.38
799.03
823.49
844. 53
868.96
890.51
915.03
935.93
959.61

1976.1.95
773.95
784.90
797.68
808.48
821.13
832.96
846.21
858.55
872. 14
884.74
898.83
911.91
926.50
939.77
954.99
968.79
984.20
998.58

20015.24
029.06
045.41
060.66
077.87
092.54
109.33
125.63
143.78
159.79
176.78
193.78
212.71
229. 55
248. 38
265.52

19532,98
537.52
541.47
547.49
551.60
558.68
563, 16
569.76
575.58
582.45
588.76
596.11
602, 39
610.40
617.71
626.04
633,54
642. 41
650.32
659, 61
667.72
677, 83
686.58
697.3g
706.18
717.01
'/26. 80
737.48
/47, 71
759, 68
770. j,O
782. 66
792.84
806.03
816.46
830.19
841.35
855.04
866 ' 94
881.35
893.39
908.15
920, 83
935.62
948.20
963.33
977.41
993.60

20006 ' 94

19533.48
538.07
541.76
547. 72
552.03
559.19
563.77
570.20
576.02
582.91
589.26
596.50
602. 72
611.07
618.08
626.57
633.88
642. 83
650.73
660.08
668.43
678.22
686.95
697. '/0

706.53
717.22
726.80
737.64
747.93
759.68
770. 10
782. 66
793.22
806.03
816.82
830.19
841.58
855.35

228. 83
235.60
242. 57
249.66
255, 90
261.95
269.34
275.85
282.38
289.20
294.99
302.19
308.71
315.60
321.72
328.44
334.90
341.32.
348. 18
354.50
360.99
367.15
373.87
380.49
385.96
392.01
398.55
405. 80
412.08
416.72
423.68
429.61
436.71
442. 35
448. 81
454. 85
461.12
467.33
473.03
479.55
485.25
486. 77
496.53
502. 14
509.05
515.72
520.36
525.38
532.00

228. 53
235.52
242. 57
249.96
256.45
261.94
269. 19
276.01
282. 53
289.23
295.48
302.33
309.17
315.43
321.69
328.42
334.91
341.37
347.85
355.16
360.63
367.19
373.71
380.17
386.01
392.11
398.83
406. 14
411.86
417.10
423.68
430.05
436.33
442. 35
448. 70
454. 85
460.89
467.02

213.91
219.75
225. 63
232. 30
238.47
244. 77
250. 19
256.92
263.16
269.20
275. 54
281.36
287.90
2'93. 72
299.96
305.89
312.07
318.12
324. 12
330.78
336.28
342. 13
347.60
354.27
360.86
365.34
371.54
377.64
383.60
389.69
393.74
400. 94
406. 24
413.09
418.19
423.92
430.00
435.53
441.02
446.58
452. 75
457.81
459.30
469.16
474.43
479.84
485.45
490.83

213.68
219.79
225. 87
232.30
238.49
244. '/1
250.93
256.94
263.30
269.29
275. 64
282.02
287. 76
293.83
299.93
305.89
312.16
318.06
324. 12
330. 15
337.02
342, 11
347.71
354. 13
360.65
365.74
371.69
377.70
384. 10
389.69
394. 12
400.56
406. 68
412.73
418.19
423.94
429.69

somewhat larger values of j than given in Tables II to VI but seem too
uncertain to warrant publication.

In all cases the values of 26F" have been obtained by the use of red
component of the P and R branches. The values of 26'", however, have been
obtained from the violet component of the P branch and the central com-
ponent of the R branch, where it exists, otherwise from the violet component.
This has been done because, as is shown later in the paper, the violet com-
ponent of the I' branch corresponds to the central component of the R
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TABLE VI
Frequencies of the lines of the (1,Z) band, and their combination differences.

R" Rc pr 2b.F'" 25F'" 2AF "" 26F ""

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

179/'/. 30
984.35
991.10
998.46

18005.88
013.79
021.68
030.10
038.56
047.56
056.39
065.95
075.31
085.15
095.31
105.77
116.29
127.05
138.32
150.03
161.37
173.59
185.56
198.37
210.75
224. 02
236. 78
250.59
263.86
278.33
292.04
306.91
321.20
336.69
351.34

17978.39
985.18
992.02
999.29

18006.74
014.52
022.49
030.82
039.29
048. 19
057.20
066.49
076.02
085.91
095.96
106.32
117.05

17967.21
973.23
979.47
986.09
992.92

18000.12
007..30
015.24
023.09
031.44
039.83
048.66
057.66
066.94
076.40
086.28
096.27
106.70
117.05
127.58
139.03
150.94
162.05
174.29
186.20
199.06
211.33
224. 70
237.36
251.23
264.36
2/8. 94
292. 71
307.54
321.77
337.21
351.88

17898.57
899.19
899.59
900.56
901.08
903.11
904.60
906.61
908.84
911.38
914.07
917.21
920.28
924.06
927.80
931.97
936.29
940.61
945.89
951.05
956.50
962.52
968.29
974.80
981.04
988.73
994.77

18002.49
009.68
017.87
025. 67
034.48
042. 65

1'/899. 59
900.03
900.56
901.08
902.05
903.76
905.32
907.32
909.60
912.02
914.92
917.78
920.95
924.66
928.54
932.55
936.90
941.44
946.44
951.43
957.05
963.27
968.67
9/5. 34
981.47
988.73
995.39

18002.98
010.13
018.44
026.28
034.97
043.23

92.43
99.27

106.29
113.23
120.60
126.99
133.96
140.95
147.53
154.57
161.24
167.94
175.03
181.71
188.49
195.08
202.03
209.42
215.48
222. 52
229.06
235.83
242. 46
249. 22
255. 74
261.86
269.09
275. 84
282. 36
289.04
295.53
302.21
308.69

92.43
99.26

106.18
113.44
120.44
127.06
133.97
140.87
147.60
154.47
161.10
168.13
175.01
181.66
188.51
195.03
202. 13
209.50
215.61
222. 86
229. 15
235.79
242. 66
249.36
255.89
262.50
268.97
275.96
282. 58
289. 10
295.49
302.24
308.65

78.73
85. 16
91.51
97.90

104.80
110.68
118.08
123.49
129.72
136.18
142.32
148.74
155.03
161.09
167.51
173.80
180.00
186.44
192.43
199.98
204. 87
211.07
217.27
223.57
229. 71
225. 29
242. 01
248. 10
254. 18
260.46
266. 37
272. 43
278.55
284. 10

78.80
85.15
91.46
98.21

104.69
110.76
117.27
123.50
129.69
136.17
142.28
148.71
155.07
161.25
167.42
173.77
180.15
186.14
192.59
199.51
205.00
211.02
217.53
223.72
229.86
235.97
241.97
248. 25
254. 23
260.50
266.43
272. 57
278. 54
283.86

branch. The combination principle is tested by comparing the values of
25F; for all bands having the same initial vibration state, and the values of
2AIi;" for all bands having the same final vibration state. In general the
discrepancies are 'less than about 0.15 cm ' and fall within the limits of
experimen tal error.

THE DETERMINATION OF THE CONSTANTS OF THE MOLECULAR CARRIER

Birge" and others have recently developed the quantum theory, with
certain assumptions, to such a point that it is now possible to determine
certain constants for the molecule giving rise to a band spectrum with a
comparatively high degree of accuracy. The first assumption is that the
law of force between the two nuclei of the molecule can be represented by:

F(dynes) = k&(r —ro)+ k2(r —ro) '+ ka(r rp) +— (3)

The second important assumption is that the values of the energy levels can
be represented by an expression of the form". :

"Birge, Nature 116, 783 (1925); Phys. Rev. 27, 245 (1926); Report, Chap. IV.
2' Birge, Report, pp. 173-175,234—237.
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8/bc= (8"+B„)/he=8"hc+B m'+D„m'+F, m" +H m'+ . (4)

where m=j —e=k —n and 8" is the energy due to vibration. Kemble, "
considering only the first three terms on the right of Eq. (4), has obtained
expressions for Bo, B~, Do and Dl, The relations are simplified if the case
of the non-vibrating molecule is considered, i.e. , if n=0. Neglecting the
electronic energy, as is done in Eq. (4), one can write:

E /bc=F =Born'+Dom'+Fons'+How'+

The constants of the molecule referred to above are the values of k~, k~,
and k8 of Eq. (3) and the value of BD of Eq. (3). The moment of inertia
Io of the molecule is determined from Bo, since Bo ——ir/87r'Io.

Expressions for the values of the k~, kq, k3, etc. , which will be called here
the 0; (i taking on the values 1, 2, 3, . ), can be developed for the cases
of a molecule rotating, but having only infinitesimal vibration, and of a
molecule vibrating, but having only infinitesimal rotation. The expressions
for the k; for the first case involve only quantities which can be derived
from rotational data alone. The expressions for the k, for the second case
involve the values of Bo and Bj, which must be determined from rotational
data, in addition to quantities which can be determined from vibrationa. 1

data. "
In the actual determination of the constants it is better in view of the

relative accuracy of the two types of data to eliminate the k; from the ex-
pressions for the k; derived for the two cases considered. The following rela-
tions are then obtained:

Do ———4BP/((o' )
Fo = (2 —Qcu'/6BO')Do'/Bo

Ho = 3FoDO/Bo &Do'/Bo'+—Fo'/Do —8DO'x/3a&'

(6)

(7)

(8)

where co' is the limiting frequency of vibration for infinitesimal amplitude,
a BQ Bi and x = (&o' —&0')/2c0', c0' being the frequency of vibration for
the state ran=1. Eq. (6) is due to Kratzer, " Kemble, " and others, while
Eqs. (7) and (8) are due to Birge." Kemble, using only terms inclusive
of D, in Eq. (4) has derived a theoretical expression for P" in

D„=D,+P"n

This is as far as usable theoretical relations had been developed at the time
the present investigation was carried on.

Since the expression for the frequency of the lines of a band involve the
values of the rotational energy for both the initial and final states, Eqs. (1a)
and (1c), it is inconvenient to make use of these expressions. The combina-
tion differences, however, Eqs. (2a) and (2b), involve only the energy values

"Kemble, J.Optical Soc. Am. 12, 1 (1926)."Birge, Report, p. 235 et. seq.
~4 Kratzer, Zeits, f. Physik 3, 289 (1920).
~ Birge, Report, p. 237; Nature, 116,783 (1925).
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for a single state. Substituting Eq. (5) in either Eq. (2a) or (2b) there
results:

2M =48pm+8Dpnz'+12Epm'+16Ppm + . (10)

Eqs. (6) to (8) are expressions for Do, Fo and IIO in terms of quantities
derivable from vibrational data, but each of these are functions of Bp. As
Bp is not accurately known at first, Eq. (10) can most conveniently be solved
by the method of successive approximations.

In the case of the Swan bands nz is not an exact half-integer, and it is
therefore necessary to determine rL (or s) at the same time that Bo is deter-
mined. In the course of the investigation it was found that 0. itself is a
function of 0 of the form

~=~p+gp~~+Op~4+ ' ' '

with an analogous expression for e. This is not without precedent, as Birge"
found it necessary to use a variable n in the case of the CuH bands. In the
case of the Swan bands it was found necessary to include only the first two
terms of Eq. (11).

The method of calculation actually used will now be briefly outlined.
The quantities which are derivable from vibrational data are assumed to be
accurately known, due to the fact that the percent error in their determina-
tion is very small It is then necessary to express Eq. (10) as a function of
the unknowns, which are Bo, Bi and n (or e). The resultant expression
is unwieldy and the method of successive approximations is used.

Let B, be an assumed value of Bp, i.e., an approximate value of Bp
determined in any suitable manner. With this value of Bp approximate
values of Dp, rip, and IIp are calculated, these being denoted by D„F„and
H, . Approximate values of 2d F; may then be calculated by means of Eq. (10)
using the values of B„D„F,and H, . Residuals are then formed, in the sense
of observed value of 26I"; minus the calculated value. Corrections to the
value of B, are then determined from these residuals in the following manner.
The variation of Eq. (10) with respect to the quantities which are variable is

BDp BFp BFp
82M; =4mbBp+ 8m' 08p+ 12m —6$p+ 12''——68g

BBp BBp BBQ

BBp BHp
+16m'- hap 116m~ 0B&.+

~~p BBj
(12)

B& differs but little from Bp and hence B, may be used as an approximate
value of B~. The variation of 268; is, except for terms of higher order than
the 6rst, the residual found by means of the approximate values of the
constants. If a (or s) is to be determined it may be included in Eq. (12)
and evaluated along with the 6Bp and 8B~. In the actual case of the Swan
bands it was also necessary to include a term due to i o of Eq. (11). Sub-

~6 Birge, Report, pp. 174—175, 236. See also Kemble, Report, p. 346.
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stituting k —n for rn in Eq. (12) and for n its expanded form in Eq. (11),
one has

~+o ~I o 81Io
82M; =a+88 p 4k+8k' —+12k' + 16k~ +ck'

BBo 88o 88o

BPp BHp
+08j 12k' +16k~ +

BBy BBg

where a = —48pA p+ ' ' and c = —128pjp —24Dpnp+
The most probable values of the unknowns in Eq. (13) are given by the

method of least squares. However, as no rapid method of least squares has
been formulated to cover such a case as this the labor involved is excessive.
After much consideration it was decided to solve Eq. (13) by the method
introduced into modern literature by Norman Campbell under the name of
"Zero Sums. '"~ The method of zero sums consists of dividing the observa-
tional equations up into as many groups as there are unknowns, and then
adding the observational equations of each group. One then has as many
simultaneous equations ("normal" equations) as there are unknowns, and
the solution is made in any convenient way. This method, when applied
to Eq. (13) reduces enormously the amount of work necessary. Let one con-
sider a rational integral function where values of the dependent variable are
given for equidistant values of the independent variable, and make a change
of variable, if need be, so that the independent variable has successive values
which differ by unity, but which are not necessarily integral. The observa-
tional equations of any one of the "Zero Sums" groups may then be repre-
sented by

y, =ao+ar(x, +r)+ar(x, +r)'+a3(x, +r)'+ (14)

in which r is either an integer or a half-integer, depending upon whether there
is an odd or even number of observations in the group, and varies from —n

to +u, where u=(n —1)/2, n being the number of observations in the
group. x, is the central or average value of the independent variable for
the group. If now the average of n consecutive observational equations be
taken, there results, by application of the binomial expansion,

(1/c) g y.= +aoiZai+a:Z, + Z,a+ .

where, if
n' —1 3n' —7

A=——.8= —A;
12 20

3'—18m'+31
C=————A

112

Zo= 1
Z1 xc
Zg =x '+A

Z3 =x,'+3Ax,
Z4 =x,4+6A x '+B
Zg =x 5+10Axc'+5Bxc

Z4 =x,6+15 Ax,4+158x,2+ C
Zg ——x, '+21A x,5+35Bxc'+7Cxc

(16)

~~ Campbell, Phil. Mag. (6) 39, 177 (1920). The writer believes this method to be essen-

tially the same as that given by Tobias Mayer in 1748. See Whittaker and Robinson, Calculus
of Observations, p. 258.
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Eq. (15) is rigorous, but the left hand side in practice contains the algebraic
sum of the errors, divided by m, and will therefore be referred to as a normal
place.

Now Eq. (15) may be applied to both Eq. (10) and Eq. (13) Thus it
is not necessary to calculate the individual residuals, but the algebraic sum
of the residuals may be computed at once by the application of Eq. (15).
The original values of 26P; are divided into as many groups as there are
unknowns, and the sums of the 26F; are found for each group. From this
point until the approximations are finished it is not necessary to deal with
the individual values. In the actual work on the Swan bands an equation,
analogous to Eq. (13),was set up for the vibrational state n = 1. The inclusion
of the data for the vibration state n=1 practically doubled the number of
observational equations, but only increased the number of unknowns from
four to six, the two additional unknowns being the values of a and c of
Eq. (13) for the state n, = 1. In the present investigation about one hundred
and seventy values of 2~I'; were available.

The various constants discussed above were evaluated, with the results
which follow. The constants for the vibration state v=1 are not listed, as
the theoretical basis upon which they were computed is not sufficiently well
founded to warrant their publication.

Initial State
a'=0.0487 —7.36X10 'k'

Bp'=1.7495 cm '
Do =6 8673X10 'cm '
Fp' =0.9068 X10-» cm-'
Hp'= —3.14X10 "cm '

Bp —B1 =0.01730 cm
Io'=15 84X10 P gm cm
ro'=1 ~ 265 X10 8 cm
k1'=10.92X10' dyne Cm '
km'= —3.44X10'4 dyne cm '
k3 =2.75X10"dyne cm

Final State
n" =0.0324 —2.55 X10 ok2

Bp"=1.6260cm '
Do"= —6 5040X10 'cm '
Fo"= 1 2365 X 10 "cm '
Ho"= —1 64X10 ' cm 1

Bp' —B1 =0.01487 cm
Io"= 17.03 X 10 "gm cm'
rp" ——1.311X10 ' cm
k1"=9.28X10' dyne cm '
k2"= —2.68X10' dyne cm '
k3 =2.25 X 10"dyne cm

The above values are obtained from the central component of the R branch
and the violet component of the I' branch. The value of Bo is believed to be
within 0.10 percent of the true value. no is difficult to determine, and the
error in its determination may be as high as ten percent. fo is believed to be
accurate to at least five percent. The value of Io has essentially the same
accuracy as 80. Fig. 1 gives the residuals of 26';. In this figure, in order to
eliminate somewhat the rather large individual errors of the observations,
the residuals are grouped in sets of five, and the average of each set plotted,
except for the first and last points on the curve, where the mean of a smaller
number of residuals is used. If there is a trend present, it is believed to be
so small as not appreciably to affect the constants.

Johnson's published values of Io' and Io" are 16.236X10 ' and 17.410
&&10 ', and while he does not claim for these values an accuracy greater
than 0.5 percent, they differ from the present values by over two percent.
His values of the moment of inertia, as well as the numbering of the lines,
were determined by a graphical method proposed some years ago by Dirge.
His procedure, while very rapid, is rather indeterminate for complex bands
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such as those studied here, and has since been superseded by more definite
and precise methods, "the most accurate of which is that used in the present
investigation. Any one of the new methods indicates that Johnson's number-
ing of j' and j"is too large by one unit. This incorrect numbering accounts

—+02

—+Qf

—+Q2

—+Ql

—-Q1

—-Q2

6D

j vcilu's

Fig. 1. Mean Residuals of 2AF, Upper: 2AJi" (0, 0) band. Lower: 26F', solid line (0,0)
band, dotted line (0, 1) band.

entirely for the above discrepancy. Fig. 2 is a plot of the first differences of
2AF;" for the (0,0) band. The circles are the values determined from Leinen's
data, and the filled in circles are the values given by Johnson. A curve passed
through these points and extrapolated back to m=0 (or j=0.5 approxi-

-6.&
JQHPSOA'5 YAt Uf

—e.0
E

g -56'

40
l

j values

Fig. 2. Values of 2A'F;" for the {0,0) band. Open circles from Leinen's data, solid circles
from Johnson's data. Abscissae are jvalues, ordinates cm '.

mately) gives the value of 4Bo, since from Eq. (10) we obtain, to a high
degree of approximation,

2A'F —48()124Dons'+
~I See Report, pp. 169-175.

(17)
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The theoretical curve resulting from the constants determined by the writer
has been drawn on the figure, as well as the value of 480 given by Johnson.
It is quite apparent that his value is too small. Precisely similar relations
hold for the initial state.

In order to determine the frequencies of the origin of the various bands,
the contribution due to rotation was calculated and then subtracted from
the frequencies of the R and P lines, as indicated in the following equations.

vo-—R;—(F;i,' P;")—
vIi P;—(——P;,' P;")—

(18a)

(18b)

The following values have been calculated for the frequency of the origin:

(0,0) band, 19379.20+0.2 cm '
(0, 1) band, 17761.10+0.2 cm '
(1,1) band, 19513.50+0.4 cm '
(1,0) band, 21131.60+ 0.5 cm '

These values are for the mean of the red and violet components. They differ
slightly from the values of the origin determined by Johnson, whose values
are for the central component. Until a satisfactory explanation of the triplet
separation has been developed any value for the origin is somewhat meaning-
less.

MULTIPLICITY OF THE LINES

The interpretation of the separation of the components of the doublets
and triplets is, to say the least, difficult. Mulliken's interpretation" is prob-
ably correct, but expressions based upon this interpretation for the separa-
tion have not yet been published in sufhcient detail to use. '0 None of the
other theoretical expressions thus far derived seem to apply in the case of
the Swan bands. The R branch consists of triplets for small values of j,
and the triplet separations decrease as j increases. In the vicinity of j=30
the central component approaches so close to the violet component that it
is no longer possible to resolve these two components. In the vicinity of
j=70 the separation between the resulting two components has become so
small that it is no longer possible to resolve them. In the case of the P branch
the lines can be carried back only to j=16 approximately, but even at this
point, with an arc as source, there is no evidence of a triplet structure.
Johnson, using a tube fitted with carbon electrodes and filled with argon at
30 mm pressure, has obtained a triplet P branch. Fig. 3 is a plot of the separa-
tions of the various components of the (0,0) band, Johnson's data being used.
In this figure the lines of the R branch are indicated by the large circles, and
the lines of the P branch by the smaller filled-in circles. The vertical axis
represents the mean position of the red and violet components of the R
branch. The red components of the P branch have been made to coincide,

'9 Mulliken, Phys. Rev. 29, 637 (1927).
"Kemble and Jenkins, Phys. Rev. 29, 607 (1927},Abstract 8; See also Phys. Rev. 30,

&7j. (&927}.
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arbitrarily, with the red components of the 8 branch. It is apparent from
the plot that the violet component of the P branch coincides with the central
component of the R branch, while the central component of the P branch
falls between the red and central components of the R branch. Nhw the
central component is observed by Johnson only when using the vacuum
tube as a source. There is no evidence whatsoever of a central component

I I I I I I I I I

~ +0

~ oO

~ ~ 0

~ ~ 0
~ oO

~ ~ 0
~ ~ 0
~ 4) 0
~ ~ 0

~ 0 0
~ ~ 0
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~ +0 0
~ O ~ 0
~ ~ 0 0

~ 0+ 0
0 ~ 0

~ 0 ~ 0
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-50 -ZO -g0

69 (cm ')

1.0 Z.O 50
I

Fig. 3. Component separations of the R and P branches of the (0, 0) band. Large circles
represent lines of the R branch with the mean position of the red and violet components taken as
the vertical axis. For the P branch the red component is plotted arbitrarily in coincidence with
the red component of the R branch, such points being indicated by filling in the large circles.
The smaller filled-in circles then represent the position of the violet and (in a few cases) central
component of the P branch.

when the arc is used as a source. It is therefore evident that these P lines
do not correspond to the central component of the R branch, and their true
explanation should be a matter of some interest.

Heurlinger' concluded that the separations were a function of m '. That
this is the case is clearly brought out by the fact that the separation of the
red and violet components of the E. branch can be represented within the
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limits of experimental error from about j=10 to j=70 by the very simple
expression R"—R"= c/k, where c is a constant and k =j—0.5. In the region

j=2 to j= 10 the separation may be represented by the addition of a term
of the form Ae "~, where A and d are constants. These expressions are,
of course, empirical, and are not suggested as a basis for an interpretation
of the separation. Any expression which can be made use of theoretically
must involve the j for both the initial and final states of the molecule. The
basis of this statement lies in the following observed relations, which seem
to be true, on the average, except for the R lines for which j=2'.

(R"—R') «, o&
—(R" R') &o,

—
o&

= (R"—R') &&, && ( ) &0, 1&

(19a)= (R"—R") &~, o&
—(R"—R")&o.»

(R"—R")&o, &&
—(R"—R") &o, o&

= (R"—R") &y, &&
—(R' —R") &&, o&

(R" R")«»—)(R" R")«o&—)(R" R') &o, &&
—)(R"—R') &o, o&

(19b)
(19c)

fo r=fo+ofo o' . (fo"+f&").l16+ ' ' ' (2o)

Curves plotted for the staggering of the various branches indicate that in
the vicinity of the origin the stagger is zero for all branches except for the
red component of the R branch, the stagger near the origin for this component
being about 0.2 cm '. This seems to be real. In Fig. 4 the stagger of the
P branch is indicated by the small filled-in circles, while that of the R branch
is indicated by the larger open circles. The dotted curve was plotted from
values of 5=1.96/X10 'j'. If this is interpreted as due to a change in the
moment of inertia of the molecule, a corrective term should be added, due
to the effect of this change in Bo on the value of Dp. The solid curve of Fig. 4
was plotted from values of S= 1.967)& 10 'j' —2.36 X 10 'j', where the
coefficient ofj' is the change in Do produced by a change in Bo of 1.967 X 10 '.
It is made on the assumption that the final state alone is double, although
the assumption that the initial state is double is equally tenable. If the

"See, for example, S. Newcomb's Logarithmic Tables, p. 64, Section 29.

Eq. (19a) is a function of the initial state, and Eq. (19b) is a function of the
final state. The differences involved in Eqs. (19a) and (19b) are all quite
small, of the order of the experimental error, and at the same time are one-
half, or less, the resolving power of the grating used. The necessity of exempt-.
ing the lines Ro, in the above relations, suggests that Johnson may be in
error in his assignment of these particular lines.

In the early portion of this paper a slight mutual displacement of alternate
observed lines was discussed. This will now be taken up quantitatively, and,
for convenience, the amount of the displacement will be denoted by the
term "stagger" and the phenomenon itself as "staggering. " Fig. 4 shows
the amount of staggering, for the (0,0) band, of the violet component of
the P branch and of the central component of the R branch to j=36, and
of the violet component of the R branch from j=37 to j=100. Johnson's
data were used from j= 0 to j=47, and Leinen's from j=48 to j=100. The
amount of staggering was determined by forming a table of differences,
using alternate lines, and then interpolating to halves by means of the
formula" .
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initial state alone is double then the coefficient of j4 would be a triQe less.
Mulliken" has predicted that the staggering in the Swan bands is due to
a so-called rotational doubling (0-type doubling). Such rotational doubling
can be considered as the effect of a double moment of inertia. Thus Mulli-
ken's prediction is verified in the case of' the Swan bands, the two moments
of inertia, if the final state alone is concerned, differing by 0.012 percent.
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Fig. 4. "Staggering" for the (0, 0}band. Open circles refer to the R branch, filled-in circles to
the P branch. Dotted curve, S=b,Bj 2; Solid curve, S=ABj '+ADj 4.

In regard to Johnson's suggestion that the Swan bands may be due to
CH-HC (acetylene), the writer wishes to point out that the Swan bands have
never been produced in absorption in acetylene, nor in any cold gas. Com-
bination bands, having the same vibrational energy changes as the Swan
bands, have not been observed. The writer, from a consideration of these
facts, and from the sources of the Swan bands, believes that the carrier is
either C-C or, if such a compound is possible, C- —C 4". Except for the
fact that it is without precedent, the doubly negatively charged molecule
would be preferable in that it has the same number of electrons as N~, and
the second positive group of nitrogen is known to be quite similar to the
Swan spectrum. On the tetrahedron model of the chemist, with electrons
occurring in pairs in the vicinity of the vertices of the tetrahedron, this
assumption gives a structure which would seem to be stable.

In conclusion I wish to extend thanks to Professor R. T. Dirge, under
whose guidance the present work was done, for his many helpful suggestions,
and to Dr. A. S. King of Mt. Wilson Observatory for his kindness in providing
me with enlargements of furnace spectrograms.
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