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THE LONGITUDINAL VIBRATIONS OF A LIQUID
CONTAINED IN A TUBE WITH ELASTIC WALLS

Bv T. H. GRowwAr. r,

ABSTRACT

This paper investigates the most general longitudinal vibrations of an elastic
tube partly filled with liquid. From the rather complicated exact solution of the
problem, a simple approximate formula is derived for the reduction of the velocity of
sound in the liquid due to the vibrations of the wall of the tube.

1. INTRODUCTION
' 'N AN experimental investigation of the velocitv of sound in liquids now'. being made by Mr. L. G. Pooler, the following arrangement is used: A
vertical steel tube has its upper end free, and its lower end is threaded into
a brass holder. The lower end of the tube is closed by a thin steel diaphragm,
the edge of which is clamped into the holder, and the lower face of the dia-
phragm is in contact with an air chamber in which suAicient pressure is
maintained to iust balance the static pressure of the column of liquid in the
tube. The tube stands on the bottom of a tank which may be filled with oil
nearly to the top of the tube and the temperature may be held constant by
thermostatic control. The diaphragm is now excitedelectromagnetically
to a known frequency, and the tube gradually filled with the liquid to be
investigated, and the height of the liquid noted at which resonance occurs.
This height is found to vary almost linearly with the reciprocal of the fre-
quency used throughout a wide range. The final readings are taken at the
frequency of the free vibrations of the clamped diaphragm.

The velocity of sound c calculated directly from these measurements is

appreciably smaller than the velocity co in an unlimited body of the liquid,
and it has been already pointed out by Helmholtz' that this is due to the
elastic vibrations of the tube.

In the present paper, the relation between c and co is obtained from the
general equations of elasticity; as is to be expected, it is extremely complicated
and takes the form of an infinite determinant set equal to zero. However, the
introduction of suitable approximations reduces this equation to a very
simple form, the final result being

co/c = I+y+ 3y'+ (12—n'/3) y'+ (55—3m') y'+
where the small quantity y is given by

p, C2 b2+a2
0 ~

b2 g2

here a and b are the interior and exterior radii of the tube, Z and 0, Young's
modulus and Poisson's ratio for the tube, and pI the density of the liquid.

' Helmholtz, Gesammelte Abhandlungen, v. 2, p. 246.



This problem has been investigated by Lamb and others' with the
important restrictions that the liquid fills the tube completely, and that the
series expansions of the displacements and stresses are limited to a single
term; in this manner, Lamb obtains a result which leads to the following
expansion

co/c =1+y+3y'/2+Sy'/2+35y4/8+

This formula leads to smaller values of co than the one given above, the
difference being one-tenth of one percent or more, and therefore not negli-
gible.

2. THE LONGITUDINAL VIBRATIONS OF THE TUBE

Let a be the interior, b the exterior radius, and l the length of the tube. Using
cylindrical coordinates r, 0, z, the z-axis being directed vertically upwards
along the axis of the tube, and the origin situated at its lower end, the
longitudinal vibrations of the tube are obtained by setting the displacement
ng equal to zero and assuming the displacements I,„=u and u, =m to be in-

dependent of 0. Kriting
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and denoting the density of the tube by p, the equations of vibration are

O Q Om

p—= (X+2p) —+2p—r
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8'w aa 2u 8(rm)
p—= () +2@)———
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The stress components are4

(2)

rr =Xh+2p(8u/8r),
88 =Xh+ 2 /pru,

re=0,
ez=0,

rr, =p(au/ar, +8w/8r),

ss =),2, +2@(8w/8s) .

Since the lower end of the tube is fixed, and the upper end free, we have the
boundary conditions

m =0 at z=0,

zz=0)
e

rz=0 at z=l.
On the cylindrical boundaries, the shear rz must vanish:

rz=0 at r=a and r=b.
H. Lamb, Memoirs and Proceedings of the Manchester Literary and Philosophical

Society, vol. 42 (1898), no. 9, where further references are given. See also H. G. Green, Phil.
Mag 45' 9o& (&923) who, apparently unaware of Lamb's work, obtains a result which is
substantially identical with his.

~ A. E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 3rd ed. (Cambridge,
1920), p, 29i.

4 Love, l.c., p. 56 and 100.
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Moreover,

u=ub and rr= —p~ at r=b, (6)

where u~ is the radial displacement and pb the pressure of the liquid surround-
ing the tube, and similarly

N=u, and rr= —p„. for r=a and"'O~s~h,

rr=0 for r=u and h~s~l,
where h is the height of the liquid in the tube.

Let v be the frequency of the vibrations, and write u = Ue' '"',
m= 8'e2 '"', where U and 8'are independent of t, and also write

A=e' '"'(A~(r) sin qz+hz(r) cos qz),
(g)

m = e' '"'(m&(r) cos qz —mz(r) sin qz) .
It then follows from (2) that

p(2rrv)'U—= [(X+2@)(dh,/dr) —2pq|z, ] sin qz+ [(X+2p)(diaz/dr) —2pqmz)cos qz,

(9)—p(2pv) z W = [(X+2p) qh& —(2p/r) (d(rmq)/dr) ] cos qz [(X+2p)—qhz —(2'/r)
d(rmz)//dr] sin qz,

and substituting in (1), it is seen that A~ and Az must satisfy the differential
equation

d'6 1 dA p(2z.v) '
~

+ q2 —— 6=0
dr' r dr X+2@

while n& and e2 satisfy the equation

d m 1 Ba 1 p(2zv)'+ +q2 GP =0.
dr' r dr r' p

From the first of (4) and the second of (9), it now follows that

2p d(Y(0y)

(X+2@)qr dr

substituting in (10) and reducing by means of (11), it is readily seen that
m~ ——0, so that D~ ——0. Calculating zz from (3), it follows that in order to
make ~s vanish at s = l, we must have cos q/ = 0 or

Writing

2m+1 ~

2 l
(12)

p(2n v) 'P„'=q„'—
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equations (8) to (11) show that the most general solution of (1) and (2)
satisfying the first two boundary conditions (4) are

n

e '~'"'6= g [A„IO(n„r)+B„Ke(a„r)]cos q„z,
n=o

e "'"'at= —g [C„I~(P„«)+D„K&(P„«)]sin q z,
n~O

e—' '"'p(2zv)'u= g [ —(X+2p)n„[A„Ii(a„r)—B Ki(n„r)]
n~O

(14)

+2pq„[C„I,(p„r)+D„K,(p„r) ] j cos q„z,

e z '"' p(2z'v) zip = g I (X+2p) q„[A„Ie(n„r)+B Ko(a„r) ]
n~0

2ptp—[C,Io(p «) D—Ko(P r)] j»n q.z

From (3) and (14) we obtain

p(2z v)'
e ' '"'

~ rz= g [().+2@)n„q„[A„Ii(a„r)—B„Ki(n„r)]
2p n-0

—p(P„'+q„') [C„I&(P„«)+D„Ki(P„«) ] j cos 'q„z,

and boundary conditions (5) become

(X+2p) n„q„
[A„Ii(n—„a) B„Ki(a„—a) ] C„Ii(P„a) —D,Ki(P„—a) =0,

u(P'+q') (15)
(li+ 2p) a„q„—[A„Ii(a„b) —B„Ki(n„b)]—C„Ii(p„b) D„Ki(p„b—) =0.
p(p'+q-')

From the expression above for rs it is seen that the last boundary condition
(4) is not satisfied except at r=a, r=b; this circumstance is a familiar
one in all problems where one or both ends of a cylinder are free, and cannot
be avoided.

Using equations (15) to simplify the expression for u in (14) at r =a and
r =b, we 6nd

"="'A+2y 0,„
e ' '"'u= g —— —[A„I,(n„r) —B„Ki(a„r)]cos q„z,

0 P P'n +gn
r=u or r=b,

(fbi)

and treating the expression for rr obtained from (3) and (14) in the same
manner,

n=oo

e '"' p(2z v) ' rr = g [ p(1 +2p) (P„'+q„—') [A„Ie(n„r)+B„Ke(a„r)]
n~0

(X+2p) a„ Ii(a„r) Ki(a„r)
-2p(2~v)' A B-

P 2+q 2 r

+4p'P„q„[C„IO(P„«) D„Ke(P„«)]j cos q—„z,
r=a or r=b.



LONGITUDINAL VIBRATIONS OF A LIQUID

3. The longitudinal vibrations of the liquid outside the tube L. et p be the
excess of the pressure of the liquid over the hydrostatic pressure, then the
density p' of the liquid is given by

p'=po[1+(p/e )1 (18)

where po is the hydrostatic density and Kp the cubical elasticity of the liquid.
The hydrodynamical equations are'

ap/—ar =p'(6'u/as' )

8p/Bs—=p'(6'w/Bt'),

and the equation of continuity

(19)

—rp' —+ —p' —=0 (20)

Since p/so is small, we may replace p' by po in (19) and in the last two terms
jn (20) ~ wrjtjng p —P(r) e2+iv t+&&z u U( )r2e+ iv t+Q fz ~ Jip (r) e2wiv/+q is jt js
seen from (19) that

po(2~v)'U = dP/dr,

and (20) becomes

po(2irv)'W =qiP (21)

(22)

The boundary conditions are (6) and

+ =0 at @=0,

p finite as f—+talc;

p=0 at s=t,
(23)

conditions (23) are satisfied by giving q the values q„defined by (12), and
making

where

e ' '"'p= QF„Kp(y„r) cos q„s

y„'= q„'—po(2s.v) '/ep.

(24)

(25)

From (24) it follows that

e ~~*"'p (02 vs)' u= —g y„F„Kz(y„r) cos q„s
n-0

and using (16) and (17), the boundary conditions (6) become

) +2y Of„
y„F„Kg(y b) =

p o(2n—v) — —[A „Ig(a b) —21„Ei(a„b)],
p, P„'+q„'

p(2+v)~F„Ee(y„b) = —u(X+2u)(P„~+q„~) [A„IO(a„b)+S„EO(n„b)l
See Lamb's Hydrodynamics, 4th ed. , chapter I.

(26)
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(X+2p)n Ig(a b)—2p(2prv) P —A„8—
P„'+q„' b

+4p'P„q„[C„Io(P.b) D—Ao(P„'b) j

Er(a„b)

b

Eliminating F„between the last two equations we obtain

pp(2prv) 'd Kp(y„b) d—.„I.( „b)+ ———Ig(a„b) A„
2p y„K&(p„b) b

d. po(2vrv)'d„Kp(y„b)+ c„—Kp(n„b)+ —— — K,(a„b) 8„
b 2p y„Kr(n„b)

+f Io(P b)C f Ko—(P b)D =0

with the following notations

(27)

c„=p(7+ 2p) (q„'+P„'),
(X+2p)n„

d„=2p(2prv)'
q„'+P„'

f =4p'q. P-,

(X+2p)q„a„

p(q '+P')
On account of the smallness of the ratio (2prv)'/y, the terms in (27) containing
y„may be neglected. '

From (27), (28) and (15), it is seen that A„, 8„, —C„and D„are p—ro-
portional to the minors of the erst row of either of the following determinants

d—c Ip(a s) ——Ir(a s), c Ko(a &)+ Kr(ancp) 'f Io(paa) f Kp(P a)'
dn—c„Io(n„b)——Iz(n b), —c Ko(a b)+ —Ky(n b), —f Io(P b), f Ko(P b)

p(q-'+P-')

(X+2p)a„

r„I,(n.s)

r„I,( .b)

Ii(n.s),

—r„K,(a.s),
—r„Kr(n b),

—Kg(n„a),

h(P-s), Ki(P-s)

Ir(P b) Kr(P b)

~a—c.Ip(a.b) ——"Ir(n.b), c.Eo(n.b)+— K~(n.b) i
—f~Io(P.b) ~ fA—o(P.b)'

r„I,( „s),
r„Ir(a„b),

—r„Kg(a,Op),

—r„Kg(a b),

Ii(P &) %(P &)

I~(P-b), Kr(P-b)
l

(29)

Writing G„ for the proportionality factor, it follows from (16), (17) and (29)
that fox r =u

' Making n=0, the largest value of Zo(y„b)/by Z1(7 b) occurring in the experimental
work is about 12, and the largest value of po(2'~)'/2y is 1.5)&10 4.
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e '~'"'p(2irv)' rr= g G„g„sos q„z,

e ' '"'u= g G„f„cosq„z.
n-0

(30)

4. The longitudinal oibrrttions of the liquid inside the tube Re.placing po

and K0 by the corresponding values pl and Kl for the liquid inside the tube,
denoting by h the height of the liquid at which resonance occurs, and observ-
ing that when this is the case, no force is transmitted from the diaphragm to
the liquid, it is seen that the boundary conditions at the ends of the liquid
column are

P=0 at s=0 and s= h.

Moreover, P must be finite at r =0. It is then seen, exactly as at the beginning
of paragraph 3, that p is given by

where

e ' I"'p= Q H, IO(b, r) sin (zmsz/h),
s=1

(32)

K1
(33)

and m =1 for the fundamental vibration (corresponding to the smallest
value of h for which resonance occurs), while m =2, 3, , for the successive
higher harmonics. From (32) and the first of (19), it now follows that

e '~'"' p&(2irv)'u= g H, b,Ii(b,r) sin (zrnsz/h). (34)

There now remain to be satisfied only the boundary conditions (7). Since
the functions (2/l)'t' cos q„z are orthogonal and normalized with respect to
the interval 0&z &l, it follows from the first of (30) that for r =a

G„P„=2/l p(2irv)' e '~'"' rr cos q„z dz,
0

and since rr= —P, for 0&z&h, but rr=0 for h&z&t by (7), we obtain by
making r=a in (32)

h

G P„=—2/l' p(2irv)z g H, IO(b, o) sin (irntsz/h) cos q„z dz.
0 s~l

Writing

o„,= . sin (zrnsz/h) cos q„z dz,
0

(33)
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the preceding equation becomes

G„4„=—2/t p(2m. v)' Q H, IO(h, a)a„,
6~1

Since the functions sin 7rmse/h are orthogonal in the interval 0&s&h, it is
seen from (34) that

ph
H.b,Ig(6,a) =2/h p, (2xv)' e '~'"'u, sin (xmss/h) Ck,

0

and according to (7), u, is to be replaced by the second expression (30); with
the aid of (35) this gives, upon replacing the summation subscript n by n&,

H,I,I&(b,a) =2/h p~(2xv)' g G„,f„,a„,
ng ——0

(37)

Solving (37) for H„substituting in (36) and writing G„4„=x we obtain the
following infinite system of linear equations in x„xl, x2,

where

x„+ g c„„,x„,=o
nl=0

(u=0, 1,2, ) (38)

s—oo

c„„,= (4/ht) ' pp&(2vrv) 4(|P„,/Q„,) g a„,' a„„ID(8,a)/I, I&(h,a) .
8—1

(39)

Since all G„do not vanish, (38) must have a solution where all x„do not
vanish, and consequently the infinite determinant of the system must vanish,
or

C20 ) C21 p

1+C00 i C01 q

C10 q 1+Cll p

C02 )

C12 )

~+C22)
(40)

and this is the desired equation connecting v and h in the case of resonance.
We shall now introduce successively such approximations as will reduce (40)
to a numerically manageable form.

5. Approximate expressions for the quotient lp /p„. First assume n„a, p„a,
u„b, P„b to be small, and replace the Bessel functions by the principal parts
of their power series expansions it then follows from (29) that the principal
part of @„is

I
—c„--',d„o.„)
—C —-d 0!1

2 ft 7L )

2 Facto!~Q )

gF„a„b

—d„/a2 „,
d„/b'n„, —

—r./an„,
—I'„/bn„

f-—
f

2P„u,

—,'p„b,

fn log nba

f lognb

~/aP.

&/hP„

80.
' G. N. Watson, A Treatise on the Theory of Bessel's Functions, Cambridge 1922, pp. 77-
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(1 1i (r„f„~„d„a„i- d„r 1 1& r„f„P„b-
=abi —,——,II

-"""-'-- "-"-
I

—"-I —,——,I+ """»g-
q a' b'& q J9„2 p 20.„t,a' b'& 2u„a

Referring to (28) and observing that for n small, the quotient 2pq„'/p(2sv)'
is small for the values of l and v used in the experiments, it is seen that the
second term in the square bracket above is negligible in comparison to the-
first. %e may therefore write, approximately,

( 1 1 l ' d„(F„f„u„d„n„l
+ = bl —,——

I
—"-i~ """-'-

I(a' b') 2o,„& P„2 )
and treating f„in the same manner,

( 1 1 & X+2@ I'„f„n„(a' l d„a„-&--bi —,——,I-, ;
"""-"+

i —,-1I ""-
Ea' b'p 2p(q„'+P„') P„Lb' & 2

Using (28), and introducing Young's modulus Z and Poisson's ratio a by
the equations

&=p(3&+2p)/(&+p),

the preceding expressions for p„and P give

a.=X/2(X+ p),

1 a b a &b u)—p(2s v)'—= —~ -- —+ —+ i
———

IE b a u b ia
u b

+20

or neglecting the last term in the bracket, which is small compared to the
others,

a ('b'+u'—p(2~v)' —= —
i +E Eb' —a'

For larger values of n, we calculate „adanP„ from (13) by the binomial
theorem and retain the first two terms only:

n„=q„—[p(2s v) ']/ [2q„(X+2p) ],
P-=q. [p(2 )']/—2q-p

We then expand Io(n„a)by Taylor's theorem to two terms, so that since
Ip'(x) =I,(x),

p(2~v) 'a
Ip(a„a) =ID(q„a) — — I,(q„a),

2q„(X+2p)

and proceed similarly for the other Bessel functions. Expanding also the
constants in (28) in the same manner, introducing all expansions in (29)
and discarding terms containing higher powers of 1/q„ than the first, a some-
what lengthy but not otherwise difficult calculation gives
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2(1—(r2) u—p(2xv)' —= — ——— (42)

where

4.= [Q(q-s) —Q(q.&) ] [R(q-s) —R(qJ)1—[I'(q-s) I'(q.—&) ]',
P„=Q(q„b) I&(q„s) '+28(q„b) I&(q„a)E&(q„a)+R(q„b)E&(q„s)' —1,

and the functions P, Q, and R are defined by

Z(x) = x' [I,(x)Z,(x)+I,(x)E,(x) ]+2(l.—)I (x)& (x),
Q(x) = x [Itp(x) K (x) ] 2(1 v')Eg(x)'

R(x) = x'[Io(x)' —Ir(x)'] —2(1—~)I (x)'

so that
P(x) ' —Q(x) R(x) = x'+2(1 —~) .

(43)

(45)

Substituting the leading terms in the power series expansions of the Bessel
functions in (43) and (44), it is readily seen that (42) reduces to (41). But
it is also found by numerical calculation that the expression (42) varies
slowly as m increases; for n =0, (42) differs from (41) in the seventh signifi-
cant figure only, while for n=5 and n=10, the difference is about a unit
in the fourth and third significant figures, respectively. Finally, for n very
large, we substitute the asymptotic expansions of the Bessel functions' either
in (44), (43) and (42) or directly in the determinants (29), and obtain

p(27rv)'f„/y—„=2(1 a')/Eq„. — (46)

When the tube is thin (the ratio (b —a)/a being less than 0.15) and n is
small, the expression (41) for li„/Q„ is inaccurate. A good approximation is
however obtained by expanding the second and fourth rows in the determinant
(29) in powers of b —a, and limiting the expansion to two terms. After some
simple transformations, either determinant reduces to the product of two
second order determinants, from which the Bessel functions disappear in
consequence of the relation Io(x)Xg(x)+Iy(x)E0(x) =1/x, an'd we obtain

(b —s) ' X+2@ 4 X+@
-p'(2xv) ' —(3K+2p) q„' — p(2xv) '

s2 (q 2+P 2)2 s2

) iy )+2p,-4s.'e(2 ")' +- -~'(' )')
p p

b —a X+2@, X+@, ) +2p—p(2xv)' 4q„' — —p(2xv)'
(qa+Pn) p p

or retaining only the first term in each bracket,

1 (1 & a'—p(2 )'—= —
]
——1 [E E20 ) b —u

~ %watson, l.e., pp. 202-203.

(41a)
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6. Reduction of the infinite determinant (40). Expanding the determinant
by Laplace's formula, we find

n, n1~oo

1+ P c..+ P Cnn ) Cnn)

n, n 1=0

n&n1

Cn, n ) Cn,n,

'n, n1, n2
Cnn ) Cnnt) Cnng

n, nt, n g~0

n&n 1&n2

Cn, n)

Cn, n )

Cntn1) Cntnl + ' ' 0 ~

Cnln, ) Cn2n~

From (39), (41), (42) and (46) it is seen that every c„„,contains the small
factor (2vrv)'/Z. Consequently, the second and following sums above contain
the square, cube, of this factor, and may be neglected in comparison to
the ffrst, so that (40) reduces to

1+ g c„„=0,

or, by (39)
' " 4pg(2vv)' Io(b,a)

1+ Q —Q p(2vv)' —a '=0.
ht b,Ig(b, a) „o 4„

(47)

If we replace —p(2sv)Q„/P„by the expression (41) which is independent of
n, it is seen from (46) that this value is too large when n is large, so that the
sum with respect to n in (47) becomes too large numerically. We may com-
pensate this error, at least in part, by replacing I,(b,a)/5, I&(b,a) by 2/5, 'a
which is too small when b, is large, the asymptotic value of Ip(5 a)/b Iy(b a)
being 1/b, . With these substitutions, (47) becomes

8pr(2+v) 2 1 (b2+ a2 ) '=" 1
1— —~ —

( +a[ g —ga '=0.
hl E (5'—g'

By (35), (2/I)'"a„, (n=0, 1, 2, ) are the Fourier coefficients with respect
to the orthogonal and normalized functions (2/I) '~' cos g„s of a function f(s)
which equals sin (s.mss/h) for 0&s&h, but vanishes for h&s&I; hence
Parseval's theorem gives

n=eo

(2/I) Q a„P= f(s)'ds
n=0 0

sin' m.mss h ds=h 2,
~0

and the preceding equation becomes

2pr(2sv)2 r b'+a' +.
IE E, b' —a'
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To calculate the suni occurring in (48), we observe that the velocity of sound
cp in an unlimited body of the liquid contained in the tube is given by

CP = Kl Pl p

2—

while the uncorrected velocity c is given by the experiment as

c=2vh m.

From (33), (49) and (50) we find

(50)

c

B,p ~, 2xv ), i s' —(c/cp)p

and from the well known formula

it follows that

pr cotxx=1/x+ Q 2x/(x' —s')
s=l

( c l ' cp co C

~

~ ———x cotx-
6s E. 27rv ) 2C C Cp

(51)

We introduce the notation

and write

glc2 ( b2+u2 +. iE i b' —e' (52)

cp
——c/(1 —p);

by means of (51), (52) and (53) it is now seen that (48) becomes

(1—p)'
=y

1+(1—p)x cot prp

Introducing the expa, nsion cot prp=1/prp —prp/3 —,and expanding the
left hand member in the equation above in powers of e, we find

p —2p'+(1+m-P/3) p' —xPp4+ = y

Inverting the power series, it is seen that

p = y+ 2y'+ (7 —x'/3) y'+ (30—7x'/3) y'+

(54)

(55)

and for the correction factor 1/(1 —p), by which the measured velocity of
sound c has to be multiplied according to (53) in order to give the velocity
of sound cp in an unlimited body of the liquid, (55) now gives

1/(1 —p) = 1+y+3y'+ (12—pr'/3) y'+ (55 —3m') y4

+ (1428—455m P/3+ 137x4/15) y'+
(56)

In the case of a thin tube, (b —a)/a(0. 15, the approximation (41) to
p(2prv) Q„/~b„ is not valid for small values of rp, for which it should be replaced
by (41a).



LONGITUDINAL VIBRATIONS OF A LIQUID

For the two thin tubes used in the experimental work, (6—a)/a=0. 148
and 0.067 respectively, and numerical calculation shows that in both cases,
a good approximation to the sum with respect to n in (47) is obtained by
using (41a) for n ~ n~, where n~ is the greatest value of n for which

n=n y

n=0

n=co

n=0

for n)n~, (41) is used as before. It is seen at once that this amounts to
replacing (52) by

p~c' 2 ('b'+a' & 1 r'1 a
y= —'- —

i
— +- i+—

i
—1

E 3 (b' —u' & 3 &2o. b —a
(52a)

equations (55) and (56) of course remain unchanged.
In the paper quoted in the introduction, Lamb limits all expansions such

as (14) to a single term, and his final formula (66) is equivalent to retaining
only the first term, s = 1, in our equation (48). The relation between y and e

then becomes
C g6 =P)

whence

1/(1 —~) = 1/(1 —2y) '"= 1+y+3y'/2+ 5y'/2+ &5y'/8+
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