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ON DIELECTRIC CONSTANTS AND MAGNETIC SUSCEPTI-
BILITIES IN THE NEW QUANTUM MECHANICS.

PART II—APPLICATION TO DIELECTRIC CONSTANTS
By J. H. VaN VLECK

ABSTRACT

1,2. The proof of the Langevin-Debye formula given in part I with the new quan-
tum mechanics is rather abstract because of its very generality, and so the results
are made more concrete and non-mathematical by discussing some of the models that
are included as special cases. This general derivation shows that the Debye formula
applies to asymmetrical models with three unequal moments of inertia quite as well
as to the symmetrical molecules previously studied by various writers with the aid
of special models. Unlike the old quntum theory, there is no abrupt change of
dielectric constant with pressure or field strength due to the passage from “weak’ to
“strong’’ spacial quantization.

3. Influence of a magnetic field. The mathematical theory of part I shows that
very generally a magnetic field H should be without effect on the dielectric constant
(or, 4, on the refractive index, except for the Faraday and Cotton-Mouton effects)
unless we consider very small terms in H2 Recent spectroscopic data show that
appdrently the only feasible explanation of the absence of a ‘‘magneto-electric directive
effect” in NO is Piccard’sand de Haas’ suggestion of equal numbers of ‘left” and
“right-handed” molecules having mutually opposite senses of electronic rotation
relative to the molecular axis.

4. Refractive index—effect of vibration bands. A general formula is given for
the refractive index which shows that the refractivity per molecule should not vary
with temperature despite ‘‘temperature rotation’ of the nuclei about the center of

. gravity. The experimental confirmation of this fact may be regarded as verifying the
sum-rules’’ characteristic of the new quantum mechanics. The suggestion of Debye
“nd Ebert that the experimental discrepancy between #¢2—1 and 4rNe is due to
infra-red nuclear vibration bands is shown to be untenable in molecules such as HCI.
Here no denotes the extrapolation of th e index of refraction to zero frequency from
visible dispersion curves, and Ne is the pa rt of the static dielectric susceptibility due to
“induced polarization.” Measurements by Bourgin and others of the intensity of
infra-red absorption bands furnish values of the “‘effective charge’’ associated with the
nuclear oscillations and so enable one to calculate the contribution of the vibration
bands to the polarization. In HCI this contribution proves to be about 1/100 of that
necessary to account for the discrepancy mentioned above.

5. Limit of accuracy of the Debye formula. Because a fraction, usually small,
of the molecules have sufficiently large rotational quantum numbers to make their fre-
quencies of rotation comparable with kT /h,the Debye formula holds only asymptotic-
ally at high temperatures in the new quantum mechanics, and at ordinary tempera-
tures the correction for departures from the asymptotic value consists approximately
in adding a very small term — NC/T?to the ordinary Debye expression Na+ Nu?/3kT
for (e—1)/4w. The value of C is calculated for the most general rigid asymmetrical
molecule, and reduces for symmetrical molecules to the value previously obtained for
them by Kronig and Manneback by an entirely different method.

6. General classical derivation of the Langevin-Debye formula. It is shown that
according to classical mechanics in any multiply periodic dynamical system amenable
to statistical theory the susceptibility equals NMZ/3kT, where M is the statistical
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mean square of the vector moment of the molecule; i. e., the average over the phase
space weighted according to Boltzmann factor, which is not to be confused with the
time average for an individual molecule. This formula for the susceptibility is a
generalization of the Langevin-Debye formula, and reduces to the ordinary Debye
expression A+ B/T if the dynamical system consists of a rotating elastic polar
molecule executing small vibrations about an equilibrium configuration.

IN PART I' a very general derivation was given of the Debye formula?
3 e—1
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for the dielectric constant e. This proof was based on the new quantum
mechanics, and assumed only that the molecule has a “permanent” dipole
moment of constant magnitude u and that the precession frequencies of the
moment vector are small compared to 27/k. For a more detailed explanation
of these assumptions, discussion of the conditions under which they are
likely to be fulfilled, etc., the reader is referred to part I. Sections 1-4 of
the present paper are, however, mainly descriptive and do not require any
extensive familiarity with the mathematical analysis in part I. The term
No in (1) arises from the “induced polarization” and was shown in part I
to be associated with “high frequency” matrix elements representing tran-
sitions from normal states to “excited states” whose energies are large com-
pared to k7.

1. AtoMs AND NON-PoLAR MOLECULES

Atoms and non-polar molecules have, of course, as a rule® no permanent
dipole moment, so that the right-hand side of (1) reduces to Na, an ex-
pression which does not vary with temperature except through the number
N of molecules/cc. This is in accord with the fact that the quotient of the
left-hand side of (1) by density is ordinarily found experimentally? to be
independent of the temperature in monatomic and non-polar gases. The
value of a can be calculated exactly for monatomic hydrogen from the
quantum theory of the second order Stark effect,” and yields a dielectric

1 J. H. Van Vleck, Phys. Rev. 29, 727 (1927). Referred to as part I throughout the pre-
sent paper.

2 Eq. (1) of this paper differs from Eq. (1) of part I and from the Egs. of section 6 in having
the well-known Clausius-Mosotti correction for the fact that the ‘‘local field” is not the same
as the large-scale field F. See p. 729 of part I. Without this correction the left side of (1) would
be simply the susceptibility x=(e—1) /4.

3 An exception to the statement that the temperature coefficient of the dielectric constant
of a monatomic gas is zero at constant density occurs in case the states occupied by the atom at
the temperature under consideration consist of a multiple level whose components have a
separation comparable with or less than £7". This is a situation not commonly encountered in
monatomic gases, but a hypothetical example, calculated by the writer (see notes 6 and 31),
is monatomic hydrogen gas at temperatures so high than the electrons are in excited ‘‘fine
structure’’ levels rather than the normal singlet level.

¢ Occasionally, however, due to molecular association or other causes, anomalous tempera-
ture variations are observed in the dielectric constants of non-polar gases. Cf., for instance,
Bramley’s observations on bromine, Journ. Frank. Inst., Feb. 1927.

5 G. Wentzel, Zeits. f. Physik, 38, 527 (1926); I. Waller, 4bid. 38, 635 (1926); P. S. Epstein,
Phys. Rev. 28, 695 (1926).
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constant® 1.000229 at 0°C and atmospheric pressure. This value is, of course,
very hard to check experimentally because of the difficulty of dissociating
hydrogen into the monatomic form, but approximate calculations can be
made of the dielectric constants of other atoms, and even of some non-polar
molecules, by supposing their electronic motions to be nearly hydrogenic.
The effective nucear charge for the equivalent hydrogenic atom can then be
deduced from observed dielectric constants, and compared with estimates
obtained by other methods. This has been done by the writer® for molecular
hydrogen and helium, and by Pauling” for numerous other atoms. Especially
in He and H, the agreement between various estimates of the nuclear charge
is much better with the new than with the old quantum theory.

2. PoLAR MOLECULES

Polar molecules, of course, have in general a permanent electrical moment
different from zero, and hence a dielectric constant which varies with
temperature even at constant density. This is just what is found experi-
mentally, and from observed temperature coefficients of dielectric constants
it is possible to determine the electrical moment u. The results often throw
very interesting light on molecular structure. It is found, for instance, that
CH, and CCl; are non-polar, whereas permanent electrical moments are
observed?® for the intermediate molecules CH;3;Cl, CH,Cl;, CHCIl; in which
the carbon atom is united to two kinds of atoms instead of to four alike.
In the present paper, however, no attempt will be made to discuss the nu-
merical application of the Debye formula to the vast amount of experimental
material on dielectric constants, and to thus form quantitative estimates
of the dipole moments for different molecules. The requisite calculations
are already available in the literature?® for a large number of different sub-
stances, and are, of course, simply trial and error determinations of the values
of the constants & and u in Eq. (1) which yield closest agreement with the
experimental temperature curves. Eq. (1) is identical with the classical
formula, and so, unlike the old quantum theory (cf. p. 728, part I), the new
quantum mechanics gives the same numerical dipole moments as the
classical theory. Itis to be clearly understood that Eq. (1) applies primarily
to gases. Efforts, to be sure, have been made to apply the Debye formula to
liquids, but, as emphasized by Debye® himself, Eq. (1) is in general valid
in the liquid state only in the case of dilute solutions of polar molecules
in non-polar solvents.

Our discussion of Eq. (1) will thus usually center around its general
theoretical basis rather than its numerical application. In order to correlate
the different theoretical derivations of (1) which have previously been given

6 J. H. Van Vleck, Proc. Nat. Acad. 12, 662 (1926).

7 L. Pauling, Proc. Roy. Soc., 1144, 181.

8 Cf. R. Sanger, Phys. Zeits. 27, 563 (1926). _

9 An excellent summary of the experimental work until 1924 has been given by Debye in
vol. VI of the Handbuch der Radiologie. A comprehensive survey of the more recent experi-
mental data, together with copious references to the literature, is given by O. Bliih, Phys.
Zeits. 27, 226 (1926).
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for special models, we may distinguish between the four following types
of molecules:

(a) non-gyroscopic diatomic molecules,

(b) diatomic molecules which are gyroscopic due to an electronic angular
momentum about the axis of figure,

(¢) symmetrical polyatomic molecules ;i.e., molecules which are composed
of more than two atoms but in which two of the three principal moments
of inertia are equal,'® ’

(d) asymmetrical polyatomic molecules, characterized by three unequal
moments of inertia.

Probable examples of the four cases (a)—(d) are respectively HCI,
NO, NHj;, and CH;Cl,. The order of the list (¢) —(d) is that of increasing
difficulty for calculation with special models. The general derivation of the
Debye formula given in part I, however, is applicable to all four cases, for
the condition imposed in part I that the molecule have a permanent moment
vector whose precession frequencies are small compared to k7/h is satisfied
in most of the normal states. This is true since in the first place molecules
are usually rigid enough to fulfill fairly closely the demand of permanency
of moment (see especially in this connection the paragraph at the end of
section 6), and in the second place practically all molecules have large enough
moments of inertia so that the frequencies of rotation of the nuclei about
the center of gravity are small compared to k7/h except in states with ab-
normally large rotational quantum numbers for the given temperature.
These “nuclear” or “temperature” rotation frequencies'! can, to be sure,
be made as large as we please relative to £7'/k by assigning sufficiently large
values to the rotational quantum numbers, but states with such large quan-
tum numbers have a large energy W, and hence a small Boltzmann prob-
ability factor e~W/*T g0 that it is fairly apparent that their contribution
may be neglected without sensible error (cf. note 26, part I). This is also
demonstrated mathematically in section 5, where the error due to neglecting
higher powers of hv/kT is calculated explicitly.

(a) Instead of thus establishing the applicability of the general proof
given in part I, one can also derive the Debye formula for the case (a) of

10 It is often stated in the literature than the essential criterion for case (¢) is an axis of
symmetry, but this is incorrect if the term axis of symmetry is construed in the usual crystallo-
graphic sense of meaning that a rotation of 180° about this axis brings the system back to a
configuration indistinguishable from the initial one, for this condition by no means implies two
equal moments of inertia. Instead (¢) seems usually to result from a grouping of identical
atoms about the axis at corners of a regular polygon (e. g. in NHj; the N atom is probably at
the apex of a pyramid whose base is an equilateral triangle with H atoms at the corners).

11 In dealing with dielectric constants we do not ordinarily need to consider the precessions
due to internal spins of the electrons, for with very few exceptions (notably NO) the normal
states of most molecules are non-magnetic. Diatomic molecules with spin moments are con-
sidered in case (b) below, while even polyatomic molecules with spin moments (e. g. ClOy)
are included in the general proof of the Debye formula given in part I, certainly provided the
frequencies with which the spin axis precesses are small compared to 2T/k, and as a matter of
fact even if this condition is not met the proof may still apply, for the precessions of the spin
moment probably often do not carry with them the heavy nuclear framework containing the
permanent dipole moment, except for small nutations (cf. note 20).
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non-gyroscopic diatomic molecules, by making the calculation directly with
the amplitude matrices for the rotating dipole given by Mensing,!? Oppen-
heimer,'® Fues,'? or Dennison.!* Such calculations were made independently
and practically simultaneously by Mensing and Pauli,’® Kronig,®* and the
writer.!” A variant of the computations using the wave rather than matrix
method has been given by Manneback.!® We shall give only a brief summary
of case (a) because details are already in the literature.!5:16:17:18 An interesting
result found in (a) but not in (b—c—d) nor in the old quantum theory, is
that the contribution of the permanent moment to the dielectric constant;
i.e., the second right-hand term of Eq. (1) or of Eq. (2) below, arises entirely
from molecules in the lowest rotational state j=0. This is a beautiful quan-
tum analog of the fact that classically in models of type (@) the corresponding
“temperature” term ensues entirely!? from the sluggish molecules having
energies less than uF. The quantum mechanics show that in case (a) the
dielectric constant is given by the simple expression
' 3 e—1 872 u2Ny

e w(er 2

47 e+2 3h:N
where N, is the number of molecules in the lowest rotational state. By
evaluation of the ratio No/N, formula (2) is readily shown to merge into (1)
at high temperatures. Eq. (2), however, has the added advantage of holding
even at temperatures so low that av/kT is comparable with unity. Eq. (1),
nevertheless, is an adequate approximation at ordinary temperatures. From
(2) it is seen that the susceptibility remains finite even at T'=0, where
No/N=1. In the classical theory, on the other hand, there is complete
saturation at the absolute zero, and the susceptibility increases without limit
for given F when T approaches zero.

(b) In models of type (b) a component of electronic angular momentum
along the axis of figure makes the diatomic molecule behave like a gyroscope,
and hence an approximate model? is furnished by the “symmetrical top”

2 .. Mensing, Zeits. . Physik, 36, 814 (1926).

13 J. R. Oppenheimer, Proc. Cambr. Phil. Soc. 23, 327 (1926); E. Fues, Ann. der Phys. 81,
281, (1926).

14 D, M. Dennison, Phys. Rev. 28, 318 (1926).

15 [.. Mensing and W. Pauli, Jr., Phys. Zeits. 27, 509 (1926).

16 R. d. L. Kronig, Proc. Nat. Acad. 12, 488 (1926).

17 J. H. Van Vleck, Nature, 118, 226 (1926).

18 C, Manneback, Phys. Zeits. 27, 563 (1926). .

19 W. Alexandrow Phys. Zeits. 22, 258 (1921); W. Pauli, Jr., Zeits. {. Physik, 6, 319 (1921).

20 The symmetrical top model for molecules of type (b) has frequently been used in band
spectra (cf., for instance E. C. Kemble, ‘“Molecular Spectra in Gases,” Bull. Nat. Research
Council No. 57, p. 313). We disregard the component of electronic angular momentum normal
to the axis of figure, whose presence would make the top asymmetrical. We can do this because
at least in NO (see part III), the normal component of electronic angular momentum (unlike
the stationary normal component in the well-known Kratzer-Kramers-Pauli model for gyro-
scopic molecules) precesses so rapidly compared to the temperature rotation that its main
effect is only to superpose a small nutation on the temperature rotation, and hence the sym-
metrical top is a fair approximation to the motion. A mathematical basis for regarding mole-
cules of type (b) as symmetrical tops has recently been given by Landau, Zeits. f. Physik,
40, 621 (1926), who is led essentially to the Dennison amplitude matrices by treating the inter-
action of nuclear rotation and electronic motions as a problem in perturbation theory.
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which has been analysed in the matrix dynamics by Dennison'* and Landau,?®
and in the wave mechanics by Reiche and Rademacher,?! Kronig and Rabi,*
and Debye and Manneback.?3

(¢) Case (c) is much more frequent than (b), as NO is about the only
common example of a molecule normally of type (6). The polyatomic mole-
cules characteristic of type (c) have two equal moments of inertia, and con-
sequently are likewise represented by the symmetrical top model, but the
angular momentum about the axis of figure is now due to nuclear rotations
rather than to purely electronic motions as in (b). There is also the important
distinction that in (¢) there may be a large number of different possible values
for the quantum number o specifying the angular momentum about the
axis of figure, whereas in (b) the axial component of electronic angular mo-
mentum has only one or at most a few possible values in the normal states.
The Debye formula has been deduced for case (¢) by Kronig? and by
Manneback.?? These writers appear to overlook the close resemblance of
their calculations for (¢) to the computations for case (b) which the writer
previously reported, though rather sketchily, at the close of his note to
Nature.1”25 In (), to be sure, we do not sum over all values of the quantum
number ¢ mentioned above, but, as noted to the writer by Dr. Pauling,
since the Debye expression is obtained in (b) and does not involve o, it must
hold for a gas such as that of type (¢) which can be regarded as a mixture
of molecules with different values of ¢.%

(d) The general polyatomic molecule is so unsymmetrical that it would
be very laborious to work out the numerical values of amplitude matrices
with a concrete model,?” and so in this case (d) the general proof given in

2L F, Reiche, Zeits. f. Physik, 39, 444 (1926); H. Rademacher and F. Reiche, ¢bid. 41, 453
(1927).

22 R. d. L. Kronig and I. I. Rabi, Phys. Rev. 29, 262 (1927).

2 P, Debye and C. Manneback, Nature, 119, 83 (1927); also especially C. Manneback,
Phys. Zets. 28, 72 (1927).

24 R. d. L. Kronig, Proc. Nat. Acad. 12, 608 (1926)

% In his preliminary letter!” to Nature the writer promised to publish later the details of
his calculations of the dielectric constant in cases (¢) and (b), which he made originally by the
Dennison® amplitude matrices. However, the simultaneous publication by Mensing and Pauli
of their computations for case (¢) and by Kronig for (e¢) and later (¢) makes this unnecessary
as their calculations are identical in character with those reported by the writer, except for
Kronig’s addition of summing over ¢ and calculating the small correction terms in 72 Also
all four cases (a)-(d) are covered by the general proof in part I, which the writer developed
subsequently to his work with the Dennison model.

26 As a corollary to calculating the dielectric constant with special models for cases (a),
(8), and () a formula for the Stark effect to terms in F2is obtained which is the analog in the new
mechanics of formulas obtained in the old quantum theory by Hettner for case (a) (Zeits. f.
Physik, 2, 349, 1920) and by Lessheim for case (c) or (b) (sbid. 35, 831, 1926). The new formula
for case (c) has been given by Debye and Manneback.? This formula was also obtained by the
writer in connection with his unpublished calculations for case (b) (as well as qualitatively by
Landau??). Unlike (a), cases (b—¢) involve linear Stark effects. Manneback? computes the
Stark effect to terms in F2in the old quantum theory for case (¢) (or equally well b) not knowing
that the calculation had already been made by Lessheim.

27 Even in the absence of external fields the energy (not to mention amplitude matrices)
can be obtained for asymmetrical molecules apparently only as a laborious series development.
See E. E. Witmer, Proc. Nat. Acad. 13, 60 (1927).
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part I furnishes much the easiest derivation of the Debye formula with quan-
tum mechanics, in fact the only derivation yet given. In the classical theory
the Debye formula can be obtained fairly directly for rigid molecules even
of type (d) by proper choice of the variables of integration, and the writer
is informed that such classical derivations for the general asymmetrical
molecule are contained in unpublished work of Debye’ and of Born. An
alternative classical proof is also furnished by the methods given in section 6
of the present paper. Gaseous molecules of this complex type (d) are fairly
common. Any non-colinear triatomic molecule, for instance, ordinarily
belongs to this catagory, as in general it will have three unequal moments of
inertia. A common example is HyO. It is to be clearly understood that in
asymmetrical molecules the expression p in Eq. (1) is the scalar magnitude
(2102 +u0?) 2 of the permanent vector electrical moment, which is
in general obliquely inclined relative to the three principal axes of inertia
u, v, W.

Invariance of field strength, pressure, efc. It was shown in part I that the
dielectric susceptibility (e—1)/4w is invariant of the direction of the axis
of quantization. Hence the dielectric constant has the same value with
random orientation, in which all directions for the atom or molecule are
supposed equally probable, as with spacial quantization. Hence there is no
possibility of the dielectric constant varying with the field strength due to
the passage from “weak” to “strong”?® spacial quantization, one of the bug-
bears of the old quantum theory. Also the spectroscopic stability relations
given in section 4, part I, show that in a degenerate dynamical system the
susceptibility is invariant of the manner in which the degeneracy is removed,*
and so there is no change in dielectric constant with field due to a different
type of quantization in weak and strong fields.? Thus the dielectric constant
has the same value in weak fields, where spherical coordinates are used to
handle the relativity and spin corrections, as in fields strong enough to pro-
duce a linear Stark effect, where parabolic coordinates must be employed.3!

28 For explanation of the terms “weak’’ and “‘strong” spacial quantization, and references
to the original literature on this subject, see the writer’s “Quantum Principles and Line Spec-
tra,” p. 165 (Bull. Nat. Research Council, No. 54.).

29 The discussion in part I emphasized primarily the invariance of thespacialquantization,
but the mathematics in part I, especially Eq. (25), establish equally well the invariance of the
sums entering in the susceptibility formula under any transformation used in treating a per-
turbed degenerate system.

30 The possibility of a change with field strength due to this cause has been suggested in the
old quantum theory b yP. Debye, Phys. Zeits. 27, 70 (1926).

31 We may here correct an error in the writer’s calculation of the dielectric constant of
excited hydrogen atoms (Proc. Nat. Acad. 12, 665, 1926). This error is not found in his com-
putation for normal hydrogen atoms, given in the same paper, which is the case of greatest
interest, but it was incorrectly stated that in excited states that the ‘‘temperature term”
resulting from the Boltzmann distribution factor is important only if the field is strong enough
to produce a linear Stark effect. This statement is false as the writer overlooked the contribution
from terms of the form given on the 2nd line of Eq. (7), part I. Instead the spectroscopic sta-
bility relations mentioned above show that, even for excited states, the dielectric constant has
the same value for weak and strong fields. This means that in the formula for e—1 given on
p. 665 of the writer’s Nat. Acad. paper, the factor f(F) is unity regardless of the field strength.
This is gratifying, as we can now use under all conditions this numerical formula for the
dielectric constant of excited states which we previously supposed valid only for strong fields.
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There, of course, still remains the change in susceptibility with field strength
when the field F is strong enough to produce an appreciable tendency towards
saturation. This saturation effect first enters®? when we consider terms in the
susceptibility of the order F2, and so is detectable only in very large fields.3?
The susceptibility per molecule should not change with pressure except in so
far as molecular association, inter-molecular fields, etc. are involved, as they
often are to a great extent in liquids. As noted by Ebert,3* molecular sus-
ceptibilities should be approximately the same in dilute solutions, at least
with non-polar solvents, as in the gaseous state. This accords with experi-
ment, whereas in the old quantum theory we might expect strong spacial
quantization in gases at low pressures and weak in gases at high pressures
and in solutions.

3. INFLUENCE OF A MAGNETIC FIELD oN THE DIELECTRIC CONSTANT

There has been, first and last, a great deal of speculation as to whether a
magnetic field should influence the dielectric constant. The calculation given
in part I shows that, unless the fields are so exceedingly large as to necessitate
a study of higher order terms® than those ordinarily considered, a magnetic
field should according to the new quantum mechanics be without effect on
the dielectric constant. This follows since in the derivation of the Langevin-
Debye formula given in part I we admitted the possibility of the molecule
being in external fields even when the electric field F is zero. Thus Eq. (1) is
unaltered when there are other fields, in particular a magnetic field, present
in addition to F.

This result is not atall surprising. Using the amplitude matrices for the
simple rotating dipole Kronig!® and especially Pauling?® have already shown
that a magnetic field should not influence the dielectric constant of a non-
gyroscopic diatomic molecule (type @, section 2). By analogy we might expect
that a magnetic field would have no effect in the more complicated cases
(b—c—d) and part I establishes mathematically that this is indeed so. The
reason why the new quantum mechanics gives a null effect as generally as
does the classical theory is, of course, the high degree of spectroscopic stability

32 For greater detail on this saturation effect (especially from the classical viewpoint)
see Debye, Handbuch der Radiologie, vol. VI, p. 777 ff. Debye shows that there are two terms in
the susceptibility of the order F2, one of which is the ordinary effect due to alignment of per-
manent dipoles and the other of which is due to the torque on the atom or molecule arising from
the induced polarization. This second term has the opposite sign from the first (i. e. is positive)
and is closely related to the Kerr effect.

3 S, Ratnowsky, Verhandl. d. D. phys. Ges. 15, 497 (1913): J. Herweg, Zeits. {. Physik,
3,36 (1920); J. Herweg and W. Pétzsch, ¢bid. 8, 1 (1922). Very interesting indirect evidence for
saturation is furnished by the decrease of the dielectric constants of liquids on dissolving strong
electrolytes. The ions of the dissolved electrolyte saturate the surrounding molecules of the
liquid and hence lower the susceptibility. See, for instance, H. Sack, Phys. Zeits. 28, 199 (1927).

% L. Ebert, die Naturwissenschaften, 14, 919 (1926).

3 As noted to the writer by Prof. Debye, a magnetic field H might influence the dielectric
constant if H were so large as to necessitate the consideration of terms in the susceptibility
of the order H2, Such an effect would be analogous to a saturation effect, and so only observable
in enormously large fields.

36 I, Pauling, Phys. Rev. 29, 145 (1927).
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characteristic of the new dynamics (section 4, part I). This is in marked
contrast to the old quantum theory, in which Pauling? shows a magnetic
field would cataclysmically change the sign of the temperature coefficient
of the dielectric constant, at least in case (a). Also the magnitude of the
induced polarization, i.e., the first right-hand term of (1) would probably
depend on the type of spacial quantization in the old quantum theory, where-
as part I shows it is invariant in the new mechanics.

The predicted null effect of magnetic fields of ordinary magnitude on
the dielectric constants of gases is well confirmed experimentally. Weatherby
and Wolf?” show that a field of 8000 gauss does not change the dielectric
susceptibility of He, O, or air within the limits of experimental error3?
(109% in He and .49, in O, and air), while Mott-Smith and Daily?® show with
about equal accuracy®® (89, in NO and 19, in HCI) that the dielectric sus-
ceptibilities of the polar gases NO and HCI are unaffected by a field of 4800
gauss. It must not, however, be inferred that the dielectric constants of all
substances are not influenced by magnetic fields. For instance, the experi-
ments of Friedel, Jezewski, and especially Kast show that the dielectric
constants of certain “mesomorphic” substances (anisotropic liquids) are
somewhat altered by magnetic fields, as recently emphasized by Bauer.!
This, nevertheless, must not be regarded as disproving the theory for, as
noted by Ornstein,?? liquid crystals are likely built out of large complexes
(“elementary crystals”) rather than out of ordinary free molecules such as
were assumed in part I. :

The magneto-electric directive effect (“Richteffekt”). There is one exception
to the statement made above that according to the theory given in part I
a magnetic field should be without effect upon the dielectric constant. That

37 B. B. Weatherby and A. Wolf, Phys. Rev. 27, 769 (1926). Their experiments were under-
taken partly to see whether it was possibie to determine whether or not the helium atom has a
magnetic moment, for Breit and Ruark suggested that in the old quantum theory the dielectric
constants of atoms with a magnetic moment would because of spacial quantization be influenced
by a magnetic field to an appreciable degree (Phil. Mag. 49, 504, 1925). In the new mechanics,
however, we have seen that the dielectric constant is, as suspected by Heisenberg (Zeits. f.
Physik, 31, 617, 1925), invariant of a magnetic field regardless of whether or not the atom
possesses a magnetic moment.

3 We give the percentage error in the dielectric susceptibility rather than in the dielectric
constant. The error in the susceptibility is the more significant because the dielectric constants
of gases are nearly unity. Consequently a high precision in measuring the dielectric constant
(1 part in 500,000 for He, O 3; 1 in 100,000 for NO, HCI) is necessary to determine the suscep-
tibilities as accurately as mentioned above.

8 L. M. Mott-Smith and C. R. Daily, Phys. Rev. 28, 976 (1926) The HCI molecules
molecules studied by Mott-Smith and Daily would have no magnetic moment if their nuclei
were at rest, but the ‘“temperature rotation’ gives the molecules a magnetic polarity, leading
to spacial quantization, etc. (cf. Pauling®). This magnetic moment due to nuclear rotation has
been directly verified experimentally for H;O in the molecular ray experiments of Knauer and
Stern, Zeits. f. Physik, 39, 780 (1926).

40 E. Friedel, Comptes Rendus, 180, 269 (1925); Jezewski, Journ. de Phys. 5, 59 (1924);
W. Kast, Ann. der Physik, 73, 145 (1924).

41 E. Bauer, Comptes Rendus, 182, 1541 (1926).

2 1. S. Ornstein, Zeits. f, Physik, 35, 394 (1926); Ann. der Physik, 74, 445 (1924).
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exception is in case there is what may be called a “magneto-electric directive
effect.” By this term is meant a state of electric polarization produced by
application of a magnetic field, or vica versa. The electric polarization in
the magneto-electric effect is caused by alignment of molecules in the mag-
netic field, and if present would exist even when there is no applied electric
field F. Mathematically stated, the directive effect exists if the first line of
Eq. (5), part I, does not vanish when it is assumed that a magnetic field is
already present in the electrically unperturbed state F=0. The effect is
possible only if the molecule has non-vanishing and non-perpendicular mag-
netic and electric moments, for in the perpendicular case there is no necessary
coordination between the directions of electric and magnetic polarizations.
In a certain sense even the magneto-electric directive effect does not change
the dielectric constant, as the mathematics in section 3, part I, shows that it
does not affect the change in polarization P — P, produced by the electric
field, but only introduces a residual polarization P, present when F=0.
Thus the dielectric constant is unaltered if it is defined as 1447w (P — P,)/F,
but becomes infinite at F=0 if defined as 1+47P/F.4

Actually experiments endeavoring to detect a magneto-electric effect
yield a null result,** even in liquids and solids. The only important gas in
which such an effect might be expected is NO, for nitric oxide is the only
common polar paramagnetic gas.®* Henece NO has been studied experiment-
ally with special care by Huber,* and has also been discussed theoretically
by Debye and Huber.*” The only way to explain the null result obtained
experimentally for NO even when liquefied, is probably to assume that
electronic rotations may be either clockwise or counter-clockwise with refer-
ence to the molecular axis, which we may imagine drawn from the N atom
towards the O atom in order to endow this axis with sense as well as direction.

43 Theoretically if there is a magneto-electric effect a magnetic field might slightly alter the
dielectric constant defined even as 144w (P —Po)/F, for the denominator of the first line of
Eq. (5), part I, involves the electric field F through the exponents in the exponential factors.
Hence the first line, multiplied by F to give the polarization, changes on application of F, and
makes a contribution to P—P,. This contribution, however, is insignificant (of the same order
as the effect mentioned in note 35) since the alteration in energy caused by application of F
is small compared to k7, and since even with a magneto-electric effect the numerator of the
first line of Eq. (5), part I is only of the order H2. Instead (P —P,)/F results almost entirely
from the second and third lines of Eq. (5), part I, which are independent of a magnetic field.

4 Perrier and Borel, Archives des Sciences, 7, 289 and 375 (1925); Szivessy, Zeits. f.
Physik, 34, 474 (1925); Huber, Phys. Zeits. 27, 619 (1926).

4% Although NO is the only important paramagnetic polar molecule, a non-paramagnetic
polar molecule (e. g., HCI) acquires some magnetic moment due to nuclear rotation (cf. note 39).
One at first thought wonders whether this might not cause a magneto-electric directive effect.
This effect, however, would obviously be very small, although the smallness of the magnetic
moment might be partially offset by the electrical moment being large compared to that in NO.
Furthermore in non-gyroscopic diatomic moleculesthe magnetic moment due to nuclear rotation
is perpendicular to the electrical moment, making the effect vanish entirely. In polyatomic
molecules there might not be this perpendicularity, but as there are both left and right-handed
directions for nuclear rotation there should be on the average no necessary coordination between
the directions of electric and magnetic polarizations.

4% A. Huber, Phys. Zeits. 27, 619 (1926).

47 Debye and Huber, Physica, 5, 377 (1925); Debye, Zeits. f. Physik, 36, 300 (1926).
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This suggestion was made by de Haas in a letter to Debye,*® and also prev-
iously, though in connection with solids rather than NO, in a brief note by
Piccard.*® There should then be two kinds of NO molecules, one in which
the component of magnetic moment along the axis of figure has the same sense
as the electrical moment, and one in which this component has the opposite
sense. These two kinds of molecules differ only in being what one might term
“left-handed” and “right-handed,” and, since their energies are virtually
identical, statistical mechanics requires that they be present in equal
amounts. There is thus on the average no correlation between the directions
of electric and magnetic moments, and hence no magneto-electric effect.
This idea of left and right-handed molecules does not appear unreasonable
to the author, who reached independently the same conclusions as de Haas.
Critical molecular ray experiments have been proposed by de Haas*® to
test directly the existence of two kinds of NO molecules. Our knowledge of
the structure of the NO molecule is now too precise to permit adoption of
the suggestion of Bauer*! or Weigle®® that the null effect is due to the mag-
netic and electric moments being at right angles; for band spectrum data of
Jenkins, Barton, and Mulliken® indicate pretty definitely a component of
electronic angular momentum along the axis of figure, as does also the nu-
merical analysis of the paramagnetism of NO to be given in part IIIL.52

4, REFRACTIVE INDEX—EFFECT OF VIBRATION BANDS

Hitherto we have been dealing with the dielectric constant for constant
fields. Itis, however, easy to develop the analogous theory for the refraction
of light, as it is not difficult to carry through the mathematical analysis of
part I with the modification that the impressed field is assumed periodic in
the time instead of constant. The basic formula for the perturbation pro-
duced in an individual atom or molecule by an impressed periodic wave,
has been given by Born, Heisenberg, and Jordan,*® and by Schroedinger.5
This formula is, of course, essentially the Kramers dispersion formula, and is
the generalization of Eq. (3), part I, which applied only to constant fields.
The mathematical work corresponding to that of part I consists in getting
the total polarization from the totality of molecules distributed statistically
among the component levels constituting the normal states. There is a note-
worthy simplification compared to the calculation with a constant field;

4 Cf. Huber, Phys. Zeits. 27, 625-626 (1926).

49 Piccard, Archives des Sciences, 6, 404 (1924).

50 J. J. Weigle, Phys. Rev. 29, 362 (1927).

% Jenkins, Barton, and Mulliken, Nature, 119, 118 (1927).

8 We may note parenthetically that a possible explanation of the absence of the magneto-
electric effect in some substances is that the magnetic moment arises entirely from internal spins
of the electrons. The alignment of the spin axes in a magnetic field then might not involve
orientation of the molecular framework carrying the electric moment. This suggestion is
feasible only when the normal states of the atoms or molecules are S-terms, but the gyro-
magnetic effect seems to indicate that this is quite often the case in solids. The suggestion is
inapplicable to NO, as its normal levels are P-terms.

% Born, Heisenberg, and Jordan, Zeits. f. Physik, 35, 572 (1926).

% E. Schroedinger, Ann. der Physik, 81, 109 (1926).
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viz., if the impressed frequency v, is large compared to kT/k, a condition
practically always met at ordinary wave-lengths, we can disregard entirely
the contribution of the “low frequency elements” in the terminology of
part 1,% and so the mathematics consist only in averaging over the different
spacial orientations with the aid of the spectroscopic stability formulas given
in section 4, part I, and in showing by the “sum-rule” that the various
component levels constituting the normal states give equal high frequency
contributions. We omit details of the analysis, because they can readily be
supplied by readers who understand the calculation in part I. The formula
for the index of refraction # is found to be ‘
3 n?—1 vin; w') | M(n;n') |

s 3)
4r n242 Y ke vol—v(n ; n')? ’

as the right-hand side of this equation is readily shown to be the proper, as
well as very obvious, generalization of Eq. (17), part I to a periodic rather
than constant field. The notation in (3) is the same as in Eq. (17), part I,
and thus the expressions »(n; n’), being absorption frequencies, are all
negative. The important thing about Eq. (3) is that it does not contain the
temperature except through N, in agreement with the well-known experi-
mental fact® that the refractivity per molecule for visible light usually does
not vary with temperature, unlike the dielectric susceptibility of polar gases
at infinite wave-lengths. The invariance of the molecular refractivity of the
temperature in non-monatomic gases appears usually to be considered as
something axiomatic not requiring theoretical proof’” despite the “temper-
ature rotation” of the nuclei, etc., but in reality it may be regarded as an
interesting experimental check on the sum-rules and spectroscopic stability.

The remarks previously made about independence of dieléctric constants
of magnetic fields, pressure, field strength, etc., of course apply equally well
to refractive indices. A possible exception to the statement occurs when the
impressed frequency is close to an absorption frequency of the atom or mole-
cule, for then Eq. (3) fails. Also the refractive index may vary with the
temperature near an absorption band, as alteration of the temperature may
change the concentration of atoms in the particular component state which
resonates closest to the impressed frequency. It is clearly to be understood
that even in the new mechanics there is still the familiar Faraday rotation
of the plane of polarization in a longitudinal magnetic field, and also an
extremely intense magnetic field will produce a slight distortion in the dis-
persion and a double refraction such as is involved in the classical Cotton-

8 The reason why we can disregard the low frequency elements (njm; nj'm’) in an im-
pressed field of high frequency »o is that in such a field the low frequency elements contribute
terms to the polarization of the order (v»(njm; nj'm’)/vo)? times those in the case of a constant
field. :
88 Cf. especially recent experiments by E. W. Cheney, Phys. Rev. 29, 292 (1927).

87 A proof that in the classical theory the optical refraction is independent of the tempera-
ture despite the nuclear rotation of the molecules will be published in the Madison lectures of
Prof. Debye,
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Mouton effect.’® The latter effect, however, is analogous to the Kerr effect,
and hence quadratic in H?, or beyond the scope of the present paper. (cf.
note 35). In the old quantum theory, on the other hand, spacial quantization
in a relatively small magnetic field would cause optical dissymmetry and a
large double refraction not found experimentally.®

Relation of dielectric constant to index of refraction. In a non-magnetic
medium the dielectric constant equals the square of the index of refraction
for infinitely long wave-lengths. However, we have already seen above that
the permanent dipole moment of the molecule, which is responsible for the
“low frequency elements,” makes an appreciable contribution to the polariza-
zation only at very long wave-lengths, and so influences the shape of the
dispersion curve only in the far infra-red. Therefore we should expect the
extrapolation of the dispersion curves made for visible light to infinitely
long wave-lengths or zero frequency to yield a value 7, for the square of the
index of refraction which equals only the part of the dielectric constant due
to “high frequency elements” or “induced polarization.” In other words we
should have 702—1=4wNg, as can also be seen by comparing the extrapo-
lation of (3) with Eq. (17), part I. Here and in the remainder of the present
section we for simplicity neglect the small Clausius-Mossotti correction,
so that we disregard the factor 3/(n242) in (3) and the analogous factor in
(1).

Actually #,2—1 often does not agree with the value of 4 No determined
from measurements of dielectric constants. For instance, in HCl at 0°C
and atmospheric pressure, Zahn®® finds 47w No. =.001040, whereas Cuthbertson
and Cuthbertson® find that #2—1=.000888 for illumination by sodium
D-light, and the extrapolation to infinite wave-lengths by their Sellmeier
dispersion formula gives 7,2 —1=.000871.

The following explanation of discrepancies such as that mentioned in
the preceding paragraph has been tentatively suggested by Debye,’? Ebert,®
and others. Besides the “electronic” absorption frequencies (i.e. “electron
. transitions” in the quantum theory), and besides the pure rotation spectrum,
which is in the far infra-red and corresponds to the polarization due to per-
manent dipoles, we must consider the “vibrational spectrum” arising from
nuclear oscillations. The latter spectrum is usually located in the infra-red,
and is far enough removed from the visible so that it does not introduce any
irregularity in ordinary dispersion curves for visible light. Consequently
extrapolation of these curves to infinite wave lengths does not include the
contribution of the vibrations to the polarization. If the dispersion curve
could be carried through the infra-red, the refractive index should rise to a
maximum at resonance with vibrational frequencies and should then decrease

88 A, Cotton and H. Mouton, Journ. de Phys. 1, 5 (1911); Ann. de Chim. et Phys. 19,
153, 20, 194 (1910); cf. P. Debye, Handbuch der Radiclogie, vol. VI, pp. 754 and 769.

8 Cf. O. Stern, Zeits. f. Physik, 7, 249 (1922); R. Fraser, Phil. Mag. 1, 885 (1926); W.
Schiitz, Zeits. f. Physik, 38, 853 (1926).

80 C, T. Zahn, Phys. Rev. 24, 400 (1924).

61 C, and M. Cuthbertson, Phil. Trans. Roy. Soc. 2134, 1 (1913).

62 P, Debye, Handbuch der Radiologie, vol. VI, p. 620.
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to a value at infinite wave-lengths which is greater than the value 7,2
obtained by extrapolation of smooth curves taken only in the visible region.

A mathematical expression for this vibrational effect is easily obtained
for diatomic molecules. Let m be the effective mass for the vibrations, which
is myms/(m1+ms), where my, mp are the masses of the two nuclei. Let g be
the “effective charge,” which is the factor by which we must multiply the
amplitude of oscillation to get the corresponding change in moment. More
precisely, ¢ is the coefficient of the linear term in the series development
p=p+q(r—re)+ - - - of pin terms of »—r(, where p is the electrical moment
averaged over the rapid, purely electronic periods and where 7 is the nuclear
separation, and ¢ is the equilibrium value of ». Now usually nuclear vibra-
tions are small enough so that they may be represented quite approximately
by a harmonic oscillator of frequency ». The vibrational susceptibility, or
quotient of polarization by field strength, is then

Ng/12m2m 2 —v?) 4

Classically (4) is obtained immediately by making the well-known elementary
calculation of the polarization due to a harmonic oscillator; (4) is, however,
1/3 as great as the usual Drude expression, since the nuclear vibrations are
only along the molecular axis, whose orientation is random, and so represent
one degree of freedom rather than three as in the usual “isotropic” oscillator.
The result (4) can also be obtained with quantum mechanics by making
in (3) the substitution M(n; n’') =q4(0, 1), and also »(n, #') = —v. Here
A(0, 1) denotes the amplitude associated with a transition between the two
lowest states of a one-dimensional oscillator. The theoretical value’® of
]A(O, 1) [2 is h/8w*my, showing that the vibrational term of the right side
of (3) gives (4). The identity of results with the classical and quantum
theories is not surprising, for complete agreement between the two theories
is in general characteristic of the harmonic oscillator.® At visible wave-
lengths, the impressed frequency », is so great compared to » that the
contribution of (4) to the total polarization is negligible compared to what
it is with a constant field. Since such a field corresponds to zero impressed

8 Cf., for instance, M. Born, “Problems of Atomic Dynamics,” p. 84.

% We are apparently overlooking the fact that the axis of nuclear oscillation is continually
rotating rather than stationary. However, we shall see classically in section 6 that the polari-
zation of a harmonic oscillator is, at least in constant fields, unaffected by rotation of the mole-
cule, (cf. also note 57) provided, of course, we neglect the slight distortion due to centrifugal
expansion, and suppose that the nuclear rotation frequencies are negligible compared to those
of vibration. A like result also holds in the quantum theory, as is to be expected since the spec-
troscopic stability relations given in part I show that summing over the discrete succession of
quantized rotational motions gives the factor 1/3 due to spacial orientation quite as generally
as the hypothesis of random orientations in the classical theory. The factor M(n; ') in the
vibrational part of the right-hand side of (3) must, in fact, have very approximately the same
value as for a one-dimensional oscillator vibrating along a fixed axis, for otherwise a weak
rotation would perceptibly change the total vibrational absorption, which is absurd. That a
sufficiently slow rotation does not appreciably affect the validity of (4) in the quantum theory
can also be seen explicitly by substituting the amplitude matrices for the rotating elastic dipole
given by Mensing,? Oppenheimer,’® or Fues,s and then adding the contributions of the “P”
and “R” branches, which we have not resolved.
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frequency, we see by (4) that the nuclear vibrations make a contribution
vy =q*/12m*my? to the constant « in the Debye formula (1) for the static .
dielectric constant. According to the suggestion of Debye or Ebert, we
might expect that 4 Nayp =47 Na— (n2—1).

Measurements of the absolute intensity of infra-red vibrational absorption
bands, which is proportional to the square of the oscillation in moment and
hence to ¢?, furnish estimates of the effective charge ¢, and show that the
vibrational polarization calculated in the above paragraph is far toosmall
to account for the observed discrepancy between the extrapolation of »?
and the induced polarization part of the dielectric constant in HCI. The
most accurate infra-red intensity measurements are probably those of
Bourgin,% who finds that here ¢=.828X1071% e.s.u. Introducing this value
of g, and the values m=1.62X10-2, » =8.82 X 1013 of the effective mass and
vibrational frequency of HCl in the preceding formula for a,3, we find that
4w Nowy is only. 1.5X107%, whereas we have seen that the discrepancy
between 7,?—1 and 4w Na is 1.7 X 107% Values of ¢ have also been calculated
by Dennison® for HBr, CO, CO,, NH;, CH, from various intensity measure-
ments. These values are all less than one-fifth the electronic charge
4.774X1071° and correspondingly 47w Nays is of the order 10~% and hence
negligible, as in HCI. Of course, absolute intensities are hard to measure with
precision,®” and one wonders whether the experimental values of ¢ may not
be in error. However, to account for the discrepancy 1.7 X10~* in HCI the
effective charge would have to be about 8.7 X 10-1%e.s.u. Since the absorption
coefficient varies as ¢?% the measurement of this coefficient would have to
be in error by a factor about 100, which seems clearly out of the question
inasmuch as Bourgin claims an error of only 10 or 20 percent.

Thus the absorption measurements apparently show very definitely that
in molecules such as the hydrogen halides the vibrational polarization is
too small to have any bearing on the discrepancy between refractive indices
and dielectric constants. The possibility of electronic bands in the infra-red
as an alternative explanation does not seem at all likely, for HCI is doubtless
stable enough so that its lowest normal electronic absorption frequencies

8 D. G. Bourgin, Phys. Rev., June, 1927. We use essentially Dennison’s rather than
Bourgin’s definition of the effective charge, so that our ¢ is dp/dr rather than p/7 in Bourgin’s
notation. The reader must not confuse our ¢ with the factor £ =u /7o (Bourgin’s go) by which
we must multiply the nuclear separation to get the electrical moment when the molecule is
at rest. It is, however, not unreasonable that ¢ and % should be roughly of the same order of
magnitude, and Bourgin's measurements seem to show that they are very nearly equal.

6 D. M. Dennison, Phil. Mag. 1, 195 (1926). Dennison used the old quantum theory but
fortunately his amplitude for a harmonic oscillator agrees with the new mechanics, as does
also Bourgin’s half-quantum amplitude.

87 As an instance of the error in absolute intensity measurements, the absorption coefficient
calculated by Tolman and Badger (Phys. Rev. 27, 383, 1926) from Czerny's intensity data on
the pure rotation bands of HCI disagrees by a factor about 20 with the much more reliable
theoretical value computed with the aid of the moment 1.03 X108 demanded by the new
quantum mechanics and Zahn's dielectric constant data (cf. Kronig®). The error in measuring
the intensity of vibrational bands is presumably not as great, though we may note that Denni-
son’s® value .33 X 10710 of the effective charge g for HCI deduced from Bahr’s and Burmeister’s
intensity data yields an absorption coefficient only 1/6 that of Bourgin’s.
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arein the ultra-violet. This, however, does not necessarily mean that in other
kinds of molecules than HCI (e.g., perhaps ethyl-ether) there may not be
infra-red vibrational or electronic bands of such large amplitude, high
effective charge or low frequency as to have an important influence on the
correlation of refractive indices and dielectric constants. It may be noted
that in molecules such as HCI, the discrepancy between #,2—1 and 47N«
is only a fraction of 47w N, and that 4w Ne itself is often small compared to
e—1. Therefore a small experimental error in the electrical moment, i.e.,
in the determination of the temperature coefficient of (e—1)/N will suffice
to explain away the discrepancy between 7¢>—1 and 4w Na. Thus in HCI,
if we assume the absolute value of the total dielectric constant to be ap-
proximately correct, an increase ° in the moment from Zahn’s value
1.034 X 1018 to 1.07X107'8 c.g.s.u., which corresponds to an error of 7
percent in the temperature coefficient of (e—1)/N, will increase the contribu-
tion of the permanent dipoles to the right-hand side of (1) enough so that the
remainder 47 Na is decreased to a value .871X 1072 in accord with optical
data. An error of 5 percent in the absolute magnitude of the polarization
would also account for the discrepancy. Inammonia the contribution of
permanent dipoles to the dielectric constants so overshadows the induced
polarization that in increase of only .3 percent in the moment, a change
clearly within the experimental error, will diminish Zahn’s% value .000768
for 4wrNa to a value .000729 in accord with the Cuthbertson®! dispersion
data. In ethyl-ether, on the other hand, the contribution of permanent
dipoles is relatively small,”® and the discrepancy thus much more vital.
Doubtless future experimental refinements will minimize the discrepancy
between optical and dielectric constant data in many instances. Zahn’s
recent work,% for instance, greatly improved the situation in ammonia. Also
we shall see in the next section that the correction for the slight departures
from the Debye formula in the quantum theory helps matters a little in some
cases.

5. LiMmIt oF ACCURACY OF THE DEBYE ForMULA
IN THE QUANTUM MECHANICS

In Part I we assumed that the nuclear rotation frequencies were smal
compared to k1'/k, so that we could develop the polarization as a power
series in the ratio s =hv(njm ;nj'm’) /kT. In fact we disregarded terms beyond
s? in the bracketed part of Eq. (9), part I. We have already mentioned on
p. 34 that s is not small compared to unity forgstates with sufficiently large

68 Against the possibility of an error in the moment of HCl may be mentioned the fact
that Raman and Krishman (Phil. Mag. 3, 713, 1927) deduce by an entirely different method
involving combination of measurements on depolarization of light and the Kerr effect, a
moment 1.04 X 10718 in excellent accord with Zahn’s value 1.03 X 10718, However, Raman and
Krishman also similarly deduce a moment 1.66 X107 for CH3Cl, which does not agree at all
with Sanger’s® value 1.97 X107® deduced from dielectric constants, of which they were not
aware, and this suggests that the error in determining moments by one of the methods has
been underestimated.

69 C, T. Zahn, Phys. Rev. 27, 455 (1926).

70 Cf. Debye, Handbuch der Radiologie, vol. VI, p. 625.
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rotational quantum-numbers. We saw qualitatively in note 26 of part I, that
the resulting error is not large because such states are relatively infrequent,
and we shall now make a quantitative computation of this error by
including two higher powers of s than previously. For explanation of the
rather involved notation the reader is referred to part I. If we disregard
terms beginning with s% instead of with s3 in the bracketed factor of (9),
part I, it is readily seen by using the same reasoning as in deducing Eq.
(11), part I, that we must add to Eq. (1) the correction term

~(B/1285TY) X, v (i 5 mg'm)2 sCim 5 §'m) 'V oP1T— (3)

The expression (5) is readily evaluated at high temperatures by comparison
with the kinetic energy function. Let us assume the most general rigid”
polyatomic molecule, having as a rule three unequal moments of inertia.
There are then three degrees of rotational freedom, and the index j represents
two quantum numbers, the third being denoted by m (cf. p. 733, part I).
Let x;, ¥:, z; be the coordinates of the 7th constituent nucleus referred to a
set of axes fixed in space, and let u;, v;, w; be its coordinates referred to the
principal axes of inertia, which rotate with the molecule. The center of
gravity is, of course, to be chosen as the origin of both coordinate systems,
and the electric field F is assumed to be applied along the z-axis. Since the
molecule is rigid the coordinates u;, v;, w; are constants(“c-numbers”)
whereas x;, ¥, z; are matrices, and a typical element of z; may be denoted”?
by 2:(jm; j’m’). By the rules for matrix multiplication the rotational kinetic
energy of the state =, j, m is

T(njm) = 3 il 2w%ms 3o mv(njm 5 nj'm')? |zi(Gm 5 j'm’) |*} 6
+ similar termsin x and vy, ©)
where the summation over ¢ includes all the nuclei in the molecule, as we
may neglect the contributions of the electrons to the rotational energy.
Now let I¥, I?, I* be unit vectors coinciding with the #, v, w axes respectively,
and let 1,*(jm ;j’m’) denote a matrix element of the z-components of 1%, etc.
Then :
gi(Gm 5 j'm") =uid*(gm ; j'm’)+od(Gm 5 j'm')+wid2(Gm ;5 j'm') ("
If we substitute (7), and the analogous formulas for x and y into (6), a
considerable simplification ensues since “products of inertia” such as
> imsup; vanish. Also Zmiuﬁ is the moment of inertia U with respect to
the plane vw, with corresponding definitions for V and W (this W must
not be confused with an energy element W(njm)). The mean rotational
energy is obtained by averaging over the various states j, m weighted
according to the Boltzmann factor (cf. p. 733, part I). Consequently, using
(7), and averaging, we find
"1 It is to be noted that we are now assuming a rigid molecule, whereas in Part I we made
the perhaps less stringent requirement of a permanent dipole moment. The difference is un-
important here, as we are calculating only a correction term.
72 We for brevity write the arguments of an element of 2;, etc., as (jm,j'm’) rather than
as (njm;nj’'m’) for the rigidity implies that there are no elements in which #’#, making the
index # unnecessary.
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Trean=612BN"1D i it m Ur(njm ; nj'm’)2 |1,4(jm ; j'm’") |'e=7 o 13T (8)
~+ similar terms in v and w,
where B.is defined as in Eq. (6), part I, and where, as on p. 736, we neglect
the difference between W(njm) and W(nj). Instead of adding in the contribu-
tions of the x and ¥ components in (8), we have multiplied by the factor 3,
which is legitimate in view of the spectroscopic stability relations given in
‘section 4, part I. Now the first line of (8) is the part of the mean kinetic
energy resulting from the moment of inertia U with respect to the plane vw.
This energy results partly from rotation about the v axis and partly from
rotation about the w axis. It is, in fact, UT,/B+UT,/C, where T, is the
mean kinetic energy of rotation about the v axis, etc., and where 4, B, C are
the moments of inertia about the axes u, v, w respectively. This result
follows inasmuch as C=U+7V, so that a fraction U/C of T, is due to U,
etc. Here the reader must distinguish carefully between moments of inertia
about axes and planes (denoted respectively by 4, B, C and U, V, W) and
also between the corresponding apportionments of energy. Now at ordinary
temperatures the rotational energy can be calculated fairly accurately in
most gases by the classical theorem of equipartition. This is evidenced by
specific heats, and is due to the asymptotic connection of classical and
quantum statistics for large quantum numbers. According to classical
statistics the total rotational kinetic energy is 3%k7/2, and is apportioned
equally between the three principal axes”™ (though not between the three
principal planes). Therefore TWw=7,=7,=%kT and hence the first line of
(8) equals
irT(U/B+U/C) 9

with analogous results for the » and w parts of (8).

Now if the electrical moment vector is “permanent” and rigidly mounted
on the molecules, its components pu, Mo, pw along the %, v, w axes will be
constants (c-numbers in Dirac’s terminology) and u.(jm; 7'm’) will be given
by a formula identical with the right side of (7) except that uu, ps, 4w replace
u;, vi, wi. From this it follows that

Do lwsGm 5 ) 2= Pgiowd Domivmena® [10:Gm 5 j'm) '} (10)

since sums of the form D jrmds*(jm;j'm")2*(jm;j'm’)(* =conjugate)
vanish because 1*and 1? are perpendicular vectors.” By (10) we see that the

78 The proposition that classically the mean kinetic energy associated with each principal
axis is 3£ T is easily established by a simple change of variables in the integrals associated with
the distribution function. In place of the three canonical momenta conjugate to the Eulerian
angles we introduce ‘‘momentoids’ proportional to the instantaneous angular velocities about
the three principal axes. The kinetic energy then becomes the sum of three terms which are
each proportional to the square of a momentoid and which represent respectively the kinetic
energy about the three principal axes. The terms are then of the squared form to which the
equipartition theorem can be applied separately. Cf. Jeans, Dynamical Theory of Gases,
3rd ed., p. 97, and footnote, p. 98.

™ The vanishing of sums of this form is fairly obvious from the fact that it is the quantum
analog of the fact that an expression of the form a,b, vanishes on averaging over random
orientations if a and b are perpendicular vectors. ‘A more rigorous proof can be obtained by
a slight extension of the spectroscopic stability argument given in Part I. A simple symmetry
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contribution of u, to (5) differs from the first line of (8), and hence from (9),
only by a factor — Nu2h2/7272Uk3T*3. Analogous results hold for the v and w
contributions. Adding the correction term (5), thus evaluated, to the right
side of (1), we obtain the revised Debye formula

3 e—1

4r e+2 3kT

] (11)

where the new feature in the correction term

£ >—;@k—ﬁ[ﬂu (5+2)+e (5 + ~)+Mw( )]

Thus in making the hypothesis of “slowness of precession” we simply dis-
regarded higher powers of T in the denominator. If we had retained even
higher powers of s, we would find f(T") contained terms in 72, T3, etc. In
the special case of diatomic molecules (case a or b, section 2), and of sym-
metrical polyatomic molecules (case ¢) we may take pw=p, Mo=pu=0,
A =B, and then (12) becomes f(T") =h%/24w2Ak T, the same valueas previously
obtained by Kronig!® and Manneback?® for cases (a¢) and (¢) respectively
by a quite different method. As noted by various writers, the correction
term is usually small except at very low temperatures. In HCI, for instance,
f(T) is about .016 at ordinary temperatures. The main value of calculating
(12) is to determine the limit of accuracy of the unmodified Debye formula in
the quantum mechanics. In the classical theory, which corresponds to =0,
the correction of the type under consideration disappears completely.

The slight numerical correction due to f(7T') is, however, of some interest
in correlating refractive indices and dielectric sonstants, for we have seen in
section 4 that a slight change in the constants may materially alter the dis-
crepancy between optical and electrostatic data. Experimentally the moment
is approximately determined by the temperature coefficient of (e—1)/N at
a room temperature T, and hence with the correction u? must be increased
by a factor about 1+ 2f(7) to give thiscoefficient thesamevalueas previously.
Thus very roughly the effect of the correction is to increase the contribution
of permanent dipoles to the susceptibility by a factor 1+4f(7,) and hence
to diminish Ne by an amount Nu2f(T9)/3%k7T,. A more careful calculation
shows that Zahn’s data for HCI can now be fitted as well with u=1.06X 10718,
47 N =.00098 as before with his values 1.03X 10718 and .00104 respectively.
Dispersion measurements give #7,®—1=.000871, and thus the correction
removes about one-third of the discrepancy between 7¢2—1 and 4w N« in
HCIl, and decreases correspondingly the estimate made in section 4 of the
experimental error necessary to explain the discrepancy.

argument, however, shows most readily that such sums must vanish, for if they did not, the
susceptibility would contain a term proportional to pupu.; alteration of the sign of u, would then
change the susceptibility which is absurd since in our problem there is no criterion for dis-
tinguishing between the positive and negative # directions.
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‘6. CrassicaL DERIVATION OF THE LANGEVIN-DEBYE ForRMULA

In the present section we shall derive the Langevin or Debye formula by
means of classical theory. Our proof will be roughly the classical analog of
the quantum calculation given in part I, and is likewise more general than
the ordinary demonstrations, though very easy for those understanding the
use of angle and action variables.” Let us suppose that we have a multiply
periodic dynamical system with f degrees of freedom, specified by 2f
canonical variables w.% - - -, w° Ji° - - -, J;% We suppose further that
the w¥”sand J%s are respectively true angle and action variables for the system
in the absence of the field F. When F=0 the w"s are thus linear functions
wy = vit+ € of the time ¢, while then the J%s are constants which incidentally
in the old quantum theory would be equated to integral multiples of .
Instead of being a matrix as in part I, the z-component of electrical moment
will be a multiple Fourier series ‘

M =3 M, Dermitre®), (13)

We use the same notation as in Born’s “Atommechanik” (p. 86, etc.) Thus
(tw") is an abbreviation for the expression 11w+ - - - +7;w,% and the sub-
script 71 7o - - - 77 is abbreviated to 7. The summation is f-fold, and extends
over all positive and negative values of the integers 71 - - - 7;. The complex
amplitudes M.¢? are, of course, functions of the J%s as well as the 7’s, and
M_.(? is the conjugate of M.(?. Classical statistics show that if a field is
applied along the z-direction, the susceptibility is

fo M e~ W) KT JO0q )0
x=
F f f T KT Ty

where we denote by dJ%w® an element of volume dJ,° - - - dJ;%dw:" - - - dw,°
of the “phase space” and the integral sign thus denotes f integrations. The
integration, of course, corresponds classically to summation over a discrete
series of allowed states in quantum mechanics. It is clearly to be understood
that we are keeping the original canonical variables w,%, - - -, w79, - - -, J;°
Since the transformation.from a Cartesian to the w°, J° system is thus
not modified to take account of the field F, the ©%’s and J%’s will cease to
be true angle and action variables; i.e., cease to be respectively linear in
t and constant, after the field F is applied. The %°’s and J°’s will, however,
remain canonically conjugate, and we can apply (14) because it is a fun-
damental theorem in statistical mechanics that the a-priori probability
is proportional to the volume occupied in the phase space, regardless of
what 2f variables we choose as constituting the coordinates of this space

) (14)

7 For further detail on the dynamical technique underlying the use of angle and action
variables, with which we assume some familiarity, see Born’s ‘‘Atommechanik,” or Chap. XI
of the writer’s ““Quantum Principles and Line Spectra.”
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provided only they are canonical.” In (14) W(F) denotes the energy or
Hamiltonian function ¢# the field F, and equals Wy—FM,, where M, is
given by (13), and W, is the energy function for F=0. W, is a function
only of the J%s whereas W(F) involves also the #%s through M,. Now
approximately e W /K =e=WolkI' (1 + FM,/kT+ - --) and hence if we
keep only the part of the susceptibility which is independent of F, Eq. (14)

becomes
foM,%“Wv/de]"dw“

X__.
kT ffe“Wv/"TdJOdw"

Here we have assumed that the polarization vanishes when F=0;i.e., that
the numerator of (14) vanishes when W(F) is replaced by W;. An analogous
assumption was made in supposing the first line of Eq. (5), part I, equaled
zero, and a more detailed justification for the assumption is given on p.735,
part I. Now since the square of two multiple Fourier series is itself such
a series, M2 may be expressed as a multiple Fourier series in the w%s. On
integrating over the w’-part of the phase space the contributions of all
terms in this multiple Fourier development of M .2 vanish except the constant
term (M.2),, for integrals of periodic terms in the w"s taken over a period””
are zero. By the rules for multiplying together Fourier series term by term,
(M.%) equals >, M, ? M_ 2 which is, of course, a function only of the J%s.
Eq. (15) now becomes

(15)

% Another way of saying the same thing is that contact transformations have unit func-
tional determinants, so that the “‘extension in phase’ is invariant of the choice of canonical
coordinates. Cf., for instance, Adams, ‘“The Quantum Theory,” 2nd ed., p. 26 (Bull. Nat.
Research. Coun., No. 39).

7T Limits of integration in (14)—(15). If we integrated over the entire phase space in the
Jow? system the limits of integration for each of the w%s in (14) or (15) would be from — «
to + «, as all of the w"s may increase without limit. However, since the system is cyclic in
each of the w"s with unit period, it is clear that we will obtain the correct statistical average
if we take the limits of integration for each of the %%s as zero and unity. Another way of
saying the same thing is that Cartesian variables are multiple valued in the w?’s, so that the
entire Cartesian phase space corresponds to only one period for the w%s.

The limits of integration for the J%s can usually be taken as 0 and + « by proper choice
of the fundamental periods. (The limits, however, are — « and + « for Js associated with
both left and right-handed rotations, as, for instance, the J° associated with the axial com-
ponent of angular momentum.) The system must, of course, be of the type for which the
Jt-integrals converge; i.e., be of a kind for which classical statistical mechanics have a meaning.
This ordinarily means that the energy ranges from some finite value to + «. This condition
is not met in any actual Rutherford atom based on the inverse square law, for there the energy
ranges from — o to 0, and the writer has already remarked elsewhere (cf. “‘Quantum Principles
-and Line Spectra,” p. 14) that purely classical statistics are meaningless as applied to an actual
atomic system, for they would give an overwhelming probability that the electrons be infinitely
close to the nucleus. The only way of avoiding this difficulty would be to employ a rather
illogical ‘‘semi-classical’’ theory in which we apply classical statistics to the degrees of freedom
for which the Jintegrals converge, but confine the remaining J’s to certain particular (i.e., in
a sense ‘‘quantized’’) values.
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Nf(Mzz)oe"Wu/”dJ" —
NMZ2,

kT

X=

)

kT f Wl KT 0

where M2 denotes the statistical mean square of J, in the absence of the field
F;i.e. the average over the J%space, weighted according to the Boltzmann
factor, of the time average value of M.? for an orbit having given values of
the J”s. Now if there are no external fields present when F=0, or, if as is
usually the case, the other fields are weak enough so that we may neglect
their effect on the spacial distribution, it is clear that all spacial orientations
will be equally probable, and the mean squares of the x, v, and zcompenents of
moment will be equal. We may then replace M2 by one-third the statistical
mean square of the vector moment M of the molecule. Thus we have

x=NM?/3kT, (16)
which is a sort of generalized Langevin or Debye formula.

Our derivation of (16) is considerably shorter than the quantum proof of the Langevin-
Debye formula given in Part I. The reason for this is that we are able to apply classical
statistical theory keeping the same set w?.J° of canonical variables as in the absence of F,
even though these variables undergo perturbations. Since dw’dJ°=dwdJ, Eq. (16) might also
be deduced by starting with a formula identical with (14) except that the variables of integra-
tion are wy, + + -, wy, Ji, - - -, Jy instead of w:°, - - -, w9, J1% + - -, J% Here the w’s and
J’s (in distinction from the w’s and J%s) denote a set of true angle and action variables for
the perturbed system, which are respectively linear in ¢ and constant even when F does not
vanish, and which are deduced from Cartesian variables by a transformation involving F.
Then W(F) is a function only of the J's, viz., W(F) = Wo— F(M.®),, and the effect of in-
tegrating over the w’s is simply to replace the integrand M, by the constant term (3,%),
of its multiple Fourier development in the w’s. Here (M,%), is not the same as the constant
term Mo® of the development (13) in the w"s and perturbation theory shows that

(2)
(MP)g= M@ —2F2 o5 o 24T 3 (|M1 [2) ’ a7
™ BJk (TVO)

where the arguments of M(® and the M+(? are to be taken as the J’s rather than J’s. Eq. (17)
is the classical analog of Eq. (3), Part I. For proof of (17) see, for instance, Born, Zeits. f.
Physik, 26, 385 (1924); Eq. (17) is the extrapolation of Egs. (22) and (24) of his article to
infinitely long impressed wave-lengths.

The proof by the w, J method outlined in the preceding paragraph parallels in a much closer
and more illuminating fashion the quantum calculation given in Part I than does the w?,J°
method. We have nevertheless given the w°,J° method in detail because it is the simpler. If
we use instead the w’s and J’s it is necessary to integrate by parts to get rid of the J-derivatives
in (17). This partial integration corresponds in a general way to the manipulation used in
simplifying Eq. (5) into (11) in Part I.

Eq. (16) does not appear to have previously been given in its full
generality, and is much more comprehensive than the ordinary Eq. (1), since
the statistical mean square moment appearing in (16) must not be confused
with the time average for an individual orbit or atom, and is in general a
function of the temperature. Eq. (16) reduces to (1) only with certain
simplying assumptions.
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Rigid model. If we assume that the molecule has a permanent moment u
independent of the J’s then we may replace M2 by u?in (16). The present
method thus shows that the contribution of the permanent dipoles to the
susceptibility is given by the familiar Langevin expression Nu?/3kT even
in the most asymmetrical rigid molecules, despite the kinetic energy of
rotation. Such a molecule has, of course, three unequal moments of inertia
and three rotational degrees of freedom corresponding to three pairs of
action and angle variables.

Elastic model. In general the molecule is elastic, so that the moment
vector M vibrates about its mean value, and we shall show that this effect
is responsible for the induced polarization, or first right-hand term of Eq.
(1). Let us assume the molecule has p=f—3 vibrational degrees of freedom
associated with oscillations about an equilibrium configuration in addition
to the three rotational degrees of freedom. This model cannot be regarded
as corresponding to physical reality, for in actual Rutherford atoms the
electrons do not have positions of static equilibrium, although the nuclei
do approximately. This objection, however, need not alarm us, for we have
already mentioned in note 77 that classical statistics cannot be applied to a
real atom or molecule, and it is only by picturing the electrons as linear
oscillators that pure classical theory can explain dispersion, etc. Let the
p vibrations have frequencies »;, effective charges ¢:, and effective masses
mi(z=1, - - -, p). We shall suppose the vibrations small enough so that
the restoring forces can be regarded as linear, and neglect the slight distortion
of the vibration frequencies, etc., by centrifugal force caused by rotation
of the molecule as a whole. Then the vector moment M will be the sum of a

constant term M; and p terms M;, M,, - - - which are simple harmonic func-
tions of the time with frequencies vy, »3, - - - respectively, and on the average
M?equals M2+ M2+ M2+ - - - . This separation of M into M, and periodic

terms corresponds roughly to the resolution of the moment matrix into low
and high frequency elements in part I. Furthermore M, differs from the
vector amplitude A; of the corresponding oscillation only by a factor ¢, and
therefore My equals kTq%/4m2miv:?, etc., since the mean of the kinetic
energy 22 *m1 A2 of a harmonic oscillator withone degree of freedom is$£7.
Thus the mean square of the vibrational moment is proportional to 7, and
this cancels the 7" in the denominator of (16), so that the contribution of the
p vibrations to the susceptibility is an expression

Noz = NZi_x, B gﬁ/ermeﬁ
which is independent of the temperature at constant density. In case the
vibrations are due entirely to one isotropic oscillator per molecule, then as
such an oscillator represents three degrees of freedom, we have p=3 and
v, m, q are independent of the index ¢, so that the formula’ for Na reduces

78 Because all three vibrational degrees of freedom have the same frequency the time
average of ‘“‘cross-terms’’ such as M;M; will not vanish for an individual molecule, and so at
first thought it might appear as though we were not justified in assuming above that the
statistical mean of M? is the same as that of M2+ M;2+M;2+ - - - . The “‘cross-terms,”
however, vanish when we integrate over the w® part of the phase space, which is tantamount
to averaging over all possible phase relations between the different degrees of freedom.
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to Ng2/4m?my?. This result could also be obtained in a well known elementary
way if we assumed static equilibrium and simply equated the linear restoring
force to the polarizing force Fg, and our treatment of the polarization of
an isotropic oscillator as a special case of (16) is quite a contrast to the usual
elementary method, but the latter has, of course, the objection that it
does not consider the effect of either rotational or kinetic energy.”®

Correction for centrifugal expansion. In the model used in the preceding
paragraph the magnitude of the constant part M, of the vector moment will
be nearly the same for all molecules, and hence independent of the J%s, so
that very approximately we may take Mg = u?, thus yielding the second
right-hand term of (1). We have, however, already mentioned in part I,
that there is a slight correction for centrifugal expansion. We may now
compute this quantitatively for an actual diatomic molecule in which the
vibrations are due to nuclear oscillations along the axis of the molecule.
The model representing the nuclear motions thus has one degree of vibrational
freedom and is not to be confused with the isotropic oscillator studied at the
end of the preceding paragraph. Let 7,1, and u be respectively the nuclear
separation, moment of inertia, and (scalar) moment when the molecule is
at rest. Then if the molecule rotates with an angular velocity w we find on
equating the centrifugal force mrw? to the restoring force 4w2v2m(r —ro) that
the nuclear separation increases by an amount » —7y=ruw?/4w2w? if r—ry is -
small. The corresponding increase in electrical moment is g(r—7;). Here
the effective mass m, effective charge ¢, and frequency » are defined as on
p. 44. Consequently we have approximately

M= p242uq(r—ro) = u2+pgrow?/2n%?  or M=+ ugrokT/In%?

since the mean rotational kinetic energy 3Iw?is #7. The effect of centrifugal
expansion is thus only a contribution ugre/3m2I»? to the constant a in Eq. (1).
This contribution is, however, usually quite negligible. In HC], for instance,
it accounts for less than one percent of a with Bourgin’s value of g. The
same formula for the correction due to centrifugal expansion can also be
obtained with quantum mechanics, using the amplitude matrices for the
elastic rotating dipole given by Miss Mensing,!? Oppenheimer,!® or Fues.!?
The agreement of quantum and classical methods in this instance is, of course,
simply because rotational frequencies are usually small compared to k7/k.
On the other hand, the correction for non-linearity in the polarization due
to an oscillator would be entirely different calculated by (16) and by quantum
mechanics, for quanta of vibratory energy are usually large compared to k7.

The writer wishes to thank Prof. Debye for the opportunity of discussing
with him the manuscript of the present paper.
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7 Prof. Debye in his Madison lectures also derives Eq. (1) for this model of harmonic
oscillators mounted on a rotating molecule. His method is somewhat different, as he integrates
with momentoids such as were mentioned in note 73 rather than with angle and action variables.
He proves the influence of vibrational kinetic energy inconsequential also in Handbuch der
Radiologie, vol. VI, p. 613.



