DOUBLET SEPARATION AND FINE STRUCTURE OF THE BALMER LINES OF HYDROGEN ${ }^{1}$

By Norton A. Kent, Lucien B. Taylor and Hazel Pearson

Abstract

Using two optical trains, (1) two crossed Lummer plates, the larger of resolving power of about 670,000 , and (2) an echelon of resolving power of about 660,000 , the writers have determined the wave-length difference between the two well known components λ^{\prime} and $\lambda^{\prime \prime}\left(\lambda^{\prime}>\lambda^{\prime \prime}\right)$ of $\mathrm{H} \alpha, \mathrm{H} \beta$ and $\mathrm{H} \gamma$ as $0.1370,0.0791$ and 0.0666 A respectively. These values are in good agreement with those obtained by Houston with an interferometer, which latter are in our estimation the most reliable thus far obtained.

Further, microphotometer curves of enlargements of the original Lummer plate negatives reveal another component in λ^{\prime} unresolved but unquestionably present, in $\mathrm{H} \alpha, \mathrm{H} \beta$ and $\mathrm{H} \gamma$. Hansen noticed assymmetries here in $\mathrm{H} \alpha$ and $\mathrm{H} \beta$. There are also indications of other components in $\lambda^{\prime \prime}$. The magnitudes of these components agree well with the theoretical magnitudes given by the new quantum mechanics with the spinning electron.

Object of the Investigation

THE object of this study was two-fold: (I) to measure the doublet separation of $\mathrm{H} \alpha, \mathrm{H} \beta$ and $\mathrm{H} \gamma$, and (II) to search for further structure, using large instruments, the dispersion of the large Lummer plate and the resolving powers of this plate and the echelon being in general about twice that of instruments used by others.

The importance of the investigation lies in its bearing upon the various theories of atomic structure. It was undertaken in an attempt to verify the old quantum theory, the new quantum mechanics, with the spinning electron of Goudsmit and Uhlenbeck ${ }^{2}$ not having been advanced at that time.

Historical Survey

Critical analyses of the errors which may enter into the determination of the difference in wave-length of closely adjacent lines, particularly the Balmer series doublets, with the addition, in some cases, of new data, have been made by Oldenberg, ${ }^{3}$ Lau, ${ }^{4}$ Janicki ${ }^{5}$ and others. There may enter:
(1) An instrumental error-the "shrinking effect," which occurs when the resolving power of the spectroscope is just sufficient to separate the lines. The curves then overlap and the intensity maxima approach each other.
${ }^{1}$ Preliminary reports of this work have appeared in Nature 119, 163 (1927) and Phys. Rev. 29, 748 (1927).
${ }^{2}$ S. Goudsmit and G. E. Uhlenbeck, Physica 6, 273 (1926).
${ }^{3}$ Oldenberg, Ann. d. Physik. 67, 253 (1922).
${ }^{4}$ Lau, Phys. Zeits. 25, 60 (1924).
${ }^{5}$ Janicki, Ann. d. Physik. 76, 561 (1925).
(2) A visual error, due to the fact that the eye locates the most intense blackening near the edge of the image which possesses the steepest intensity gradient.
(3) A photographic error-the maximum blackening of the plate appearing on the outer edges of narrow doublets, that is where the developer possesses the greater concentration.

Janicki measured by machine the published reproductions of the photographic plates taken by Schrum, ${ }^{6}$ with a Lummer plate, and thus eliminated the visual error. Smaller values of $\Delta \lambda$ thus resulted. The two other errors (1) and (3) are least in the lower orders of a Lummer plate pattern as the images here are of less intensity and lie further apart.

Van Cittert ${ }^{7}$ discusses mathematically the determination of $\Delta \lambda$ with a Lummer plate, criticizes this instrument severely and, while citing other sources of error, such as (a) the mist of diffused light and (b) the continuous background (these of course being possible with other instruments as well) emphasizes especially: (a) The effect of changes in the coefficient of reflection within the plate at its surface, as one passes from the central region of the pattern. $\Delta \lambda$ is thus decreased but even in the lowest orders the error is small. (b) A change in the image which is formed because the Lummer plate modifies the intensity distribution and produces in the lower and weaker orders an approach of the components of a doublet.

Hansen, ${ }^{8}$ giving results obtained with several Lummer plates, discusses in an extensive paper the intensity assymmetries of the hydrogen doublets, tabulates corrections to be made for the shrinking effect as a function of the "saddle height" between the maxima of the curves, cites the effect of decrease of the reflection coefficient as one passes from lower to higher orders, this causing a decrease in $\Delta \lambda$; and cites also a decrease in the sharpness of the interference as causing an increase in the relative saddle height. He further discusses the size of the illuminating slit of the registering photometer and the effect of the inequality of the curves traced by the machine, causing an increase in $\Delta \lambda$ as one passes to higher orders. These and other errors we summarize in Table I, together with methods of elimination.

The variations in the values obtained in previous investigations, some of the most recent of which are listed in Table II, are not at all surprising in view of these numerous errors which may enter, especially with the use of the Lummer plate and echelon. The influence of these errors is well illustrated in the values of $\Delta \lambda$ given in Tables IV to VII.

As to fine structure: Considerable attention has been given to the influence of the Stark effect in bringing up components which, on the old quantum theory, were ruled out by the principle of selection. Hansen feels that the presence of another component in λ^{\prime}, the shorter wave-length component of the doublet, has been proven by him by an observed assymmetry; and that $\lambda^{\prime \prime}$ is possibly double is shown by the variation in the relative intensities of the components of the main doublet with a variation of pressure.

[^0]Table I
Errors which may enter into the determination of the difference in wave-lengths of closely adjacent lines.

${ }^{1}$ The decrease of the value of the reflection coefficient with increasing angle of incidence within, and against the surface of, the plate causes (1) a loss of light which decreases as we proceed toward higher orders, and (2) a decrease of the
${ }^{2}$ This error enters strongly in the lowest orders and is especially great in a plate of large dispersion
3 If the interferometer be adjusted properly this error does not exist: the rings are of equal intensity
${ }^{3}$ If the interferometer be adjusted properly this error does not exist: the rings are of equal intensity although the dis${ }_{4}$ Adjust the distance between the mirrors so that, with a doublet such as $\mathrm{H} \alpha$, the successive images of one component lie quite accurately between those of the other.

5 See Van Cittert, Ann. d. Physik 77, 4, Nt. 12.
${ }^{3}$ See Hansen. Ann. d. Physik 78, 6, Nt. 22, Fig. 7 of p. 571.
Table II
Certain recent determinations of $\Delta \lambda$ in Angstroms.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& McLennan and Lowe ${ }^{9}$ 1912 \& $$
\begin{gathered}
\text { Gehrcke } \\
\text { and } \\
\operatorname{Lau}^{10} \\
1922
\end{gathered}
$$ \& Geddes ${ }^{11}$
1922 \& Oldenberg 3
$$
1922
$$ \& Schrum

6

1924 \& $$
\begin{gathered}
\text { Schrum } \\
\text { and } \\
\text { Janicki12 }^{1925} \\
1925
\end{gathered}
$$ \& Hansen ${ }^{8}$

1925 \& $$
\begin{gathered}
\text { Janicki } \\
\text { and } \\
\text { Lau }^{13} \\
1925
\end{gathered}
$$ \& Houston ${ }^{14}$ 1926

\hline H_{α} \& . 154 \& . 126 \& . 146 \& . 140 \& . 141 \& . 130 \& .135-38 \& . 132 \& . 1358

\hline $\mathrm{H} \beta$ \& . 085 \& . 071 \& . 078 \& \& . 085 \& . 076 \& . 075 \& . 072 \& . 0782

\hline $\mathrm{H} \gamma$ \& . 062 \& . 056 \& \& \& . 070 \& . 060 \& . 062 \& . 059 \& . 0665

\hline
\end{tabular}

Janicki and Lau remeasured with a microphotometer certain of their plates and obtained results which pointed to the presence of five components, which structure would confirm the old quantum theory with a modified selection principle.
${ }^{9}$ McLennan and Lowe, Proc. Roy. Soc. London A 100 , 217 (1921).
${ }^{10}$ Gehercke and Lau, Ann. d. Physik. 67, 388 (1922).
${ }^{11}$ Geddes, Proc. Roy. Soc. Edin. 43, 1, 37 (1922).
${ }^{12}$ Schrum and Janicki, Ann. d. Physik. 76, 561 (1925).
${ }^{13}$ Janicki and Lau, Zeits. f. Physik. 35, 1 (1925).
${ }^{14}$ Houston, Astrophys. J. 64, 81 (1926).

Apparatus and Experimental Procedure

The spectroscopic systems are sketched in Fig. 1. The crossed Lummer plate system A consisted of (a) a Hilger constant deviation spectroscope fitted to hold the small Lummer plate, L_{1}, dispersing vertically and (b) a second spectroscope for the large plate, L_{2}, dispersing horizontally. The echelon system B contained the echelon ${ }^{15}$ and constant deviation prism in

Fig. 1. Arrangement of spectroscopes. T, vacuum tube; M, plane mirror; $l_{1} \cdots l_{8}$, lenses; L_{1}, L_{2}, small and large Lummer plates; P_{1}, P_{2}, prisms; F_{1}, F_{2}, focal planes of l_{5} and l_{8}; S_{1}, S_{2}, S_{3}, slits; p, rotation point of large plate.
tandem in one instrument. The light for B was taken off by a mirror, M, which caught the light that would otherwise pass through the lower half of lens l_{1}, and be thrown away at the front end of plate L_{1}. The constants of the Lummer plates are shown in Table III.

Table III

	Constants of the Lummer plates.	
	Small plate	Large plate
Thickness	0.4827 cm	0.9963 cm
Length	13.1	30.0
Width	1.45	3.98

Line	$\lambda(\mathrm{A})$	μ	$\begin{aligned} & \text { Small Plate } \\ & \mathrm{d} \mu / \mathrm{d} \lambda\left(\mathrm{~A}^{-1}\right) \end{aligned}$	$\Delta \lambda_{m}$ (A)	μ	Large Plate $\mathrm{d} \mu / \mathrm{d} \lambda\left(\mathrm{A}^{-1}\right)$	$\Delta \lambda_{m}(\mathrm{~A})$
H_{α}	6563	1.50746	- 315.436	-0.38606	1.57187	-513.607	-0.17204
${ }^{\mathrm{H}}{ }^{\alpha}$	4861	1.51560	-725.535	-0.20645	1.58581	-1301.47	-0.09038
$\mathrm{H} \gamma$	4341	1.52025	-1023.67	-0.16210	1.59417	-1941.01	-0.07006

${ }^{15}$ Described in Prod. Amer. Acad. Arts and Sciences 57, 1 (1921).

The maximum theoretical resolving powers for $\mathrm{H} \alpha$ are, approximately, for the small plate, 300,000 ; for the large plate, 670,000 ; and for the echelon 660,000.

Lens l_{5} was a compound monochromat, made by Bausch and Lomb, the field being flat to within a small fraction of a mm over a central region 5 cm in diameter.

The source was a Pyrex glass tube of the Wood ${ }^{16}$ form (see Fig. 2). The capillary could be cooled by running water or by liquid air.

The discharge was obtained by a transformer kindly lent us by Professor Pierce of the Cruft Laboratory at Harvard. The current in the secondary circuit was maintained constant during an exposure and the pressure was held at such a value that the positive column striations were clearly marked.

Fig. 2. Vacuum tube used as source.
Visual observation showed that the width of the lines decreased with current density. We therefore used generally but about $25 \mathrm{ma} . / \mathrm{cm}^{2}$. During exposures the temperature seldom changed more than $0.2^{\circ} \mathrm{C}$ and usually much less. The hydrogen was led into a reservoir containing water and thence passed to the discharge tube through a long capillary.

With the conditions under which we worked the preliminary formation of an ice film within the discharge tube, as suggested by Schrum, ${ }^{6}$ was found unnecessary. The secondary spectrum could be almost eliminated, even at liquid air temperature, by obtaining proper conditions of pressure and amount of water vapor.

An attempt was made to increase the electron emission in the discharge tube by means of tungsten filaments. Three of these, kindly presented to
${ }^{16}$ Wood, Proc. Roy. Soc. London A97, 455 (1920).
us by Dr. Coolidge of the General Electric Co., were mounted, one each, near the two terminals and one near the capillary of the tube. With the conditions under which we were obliged to work, notably with much water vapor present, no enhancement of the Balmer series was observed, although the three filaments were used singly, in pairs, and all at once. They were therefore removed.

The dispersion of our 30 cm Lummer plate was such that the image of the nth order of the longer wave-length component of each of the three doublets was almost coincident with the ($n+1$)th order of the component of shorter wave-length: hence the use of the smaller plate to separate these components. The resulting cross pattern had disadvantages from the standpoint of the quantitative evaluation of the wave-length differences

Fig. 3. Crossed Lummer plate pattern of $\mathrm{H} \alpha$. Line of motion of plate in being measured is East-West. E-W line $1 F$ contains the faintest orders of λ^{\prime} and $\lambda^{\prime \prime}$ given by the small Lummer plate; E-W line $1 D$, the densest. Rows " 1 " (on left and right sides of the pattern) contain only λ^{\prime}, the shorter wave-length component of the doublet. Rows " 2 " contain the second orders of λ^{\prime} and the first of $\lambda^{\prime \prime}$. The theoretical positions of the components c^{\prime} of λ^{\prime} and $b^{\prime \prime}$ of $\lambda^{\prime \prime}$ are indicated on the E-W line $1 F$ above the letters c^{\prime} and $b^{\prime \prime}$.
between the components, for the pattern is composed of slanting lines as shown in Plate I and schematically in Fig. 3; but the combination of the two plates increased the chances of observing the presence of other than the well-known pair of components.

The equation used in determining $\Delta \lambda$, or the difference in wave-length between the two components of these doublets, as given by the Lummer plate system, was that of McLennan and McLeod ${ }^{17}$ namely

$$
\Delta \lambda=\frac{\alpha_{s}^{2}-\alpha_{n}^{2}}{\alpha_{n+1}^{2}-\alpha_{n}^{2}} \cdot \Delta \lambda_{m}
$$

where n is the number of the order as seen on the photographic plate; α_{n}, α_{s} are the distances of the images of the nth order of lines of wave-length λ,

[^1]
and λ_{s} (see Fig. 4) from the center of the pattern; $\Delta \lambda_{m}$ is that change in wave-length which would cause the image of the nth order of a pattern given by a wave-length of $(\lambda+\Delta \lambda)$ to coincide with the image of the $(n+1)$ th order of the pattern for λ.
$\Delta \lambda_{m}$ may be calculated from the constants of the Lummer plate and the various values of Fig. 4. Single Lummer plate pattern. α may be measured on the original negatives or machine tracings made therefrom. Although approximations are made in its development, this formula is accurate except for the very highest orders. $\Delta \lambda$ calculated from the 20 th order is

Fig. 5. Ecom Δ_{o} in Angstroms, after small negative corrections for prism lon pattern. dispersion are: for $\mathrm{H} \alpha, 0.3055$; for $\mathrm{H} \beta, 0.1568$; and for $\mathrm{H} \gamma$, 0.1214 . Then $\Delta \lambda=x \Delta_{o} / y$.

This process may be criticized on the ground that, as $\lambda_{1}{ }^{\prime}$ and $\lambda_{2}{ }^{\prime}$ are not extremely narrow and also lie near the outer regions of the intensity curve of the instrument, the measured distance, y, would be too small. $\lambda^{\prime \prime}$, however, lies so nearly midway between $\lambda_{1}{ }^{\prime}$ and $\lambda_{2}{ }^{\prime}$ that both x and y would suffer nearly equal percentage changes, and thus $\Delta \lambda$ would remain unchanged. This reasoning holds for $\mathrm{H} \alpha, \mathrm{H} \beta$, and $\mathrm{H} \gamma$. It relieves us of the necessity of determining the true distance, y^{\prime}, at which narrow lines would lie.

Methons of Measurement

The plates obtained with the crossed Lummer plate system, indicated by the letter L were measured:
(a) Visually, by a Gaertner comparator. Settings were made-on the center of the slanting images in any given East-West line-by the NorthSouth cross hair-set, for instance, as indicated in Fig. 3, on "Line 1 D."
(b) Mechanically by the Moll recording microphotometer of the Harvard Observatory, kindly put at our disposal by its Director, Professor Shapley. To obtain these curves, the plate was moved past the luminous rectangle R of Fig. 6 so that there were exposed on the first run only the images of the shorter wave-length component, e.g., $\boldsymbol{\lambda}_{1}{ }^{\prime}, \lambda_{2}{ }^{\prime}, \lambda_{3}{ }^{\prime}$, etc. lying aslant on any one horizontal line of Fig. 3. The plate case was then moved up in its recess so as to unmask the corresponding East-West line of the longer wave-length images $\lambda_{1}{ }^{\prime \prime}, \lambda_{2}{ }^{\prime \prime}, \lambda_{3}{ }^{\prime \prime}$, etc., and a second run was made. As the vertical height of the photometer slit was but 0.2 mm , the intensity of illumination was low.

Plate I. Pattern a is Plate 4 for $\mathrm{H} \alpha ; b$ is plate 10 for $\mathrm{H} \beta ; c$ is plate 25 for $\mathrm{H} \gamma$. The magnification is 4.2 fold. See Fig. 3 and Plate II as aids in studying the pattern. The numbers refer to rows.

Plate II. Pattern a is plate $L 2$ for $\mathrm{H} \alpha$, magnification 32 fold; pattern b is plate $L 7$ for $\mathrm{H} \alpha$, magnification 28 fold. Observe the persistent assymetry toward the right in λ^{\prime}.

The plates obtained with the echelon, indicated by the letter E, were measured: (a) Visually by the Gaertner comparator. (b) Mechanically, by the Moll microphotometer and later, through the kindness of Dr. Adams and Dr. Pettit of the Mt. Wilson Observatory by the microphotometer of that laboratory.

Results

I. Doublet Separation. The values of $\Delta \lambda$ obtained from the patterns given by the crossed Lummer plates are shown in Tables IV to VI. There appear therein none obtained from the microphotometer curves. The latter values are almost without exception from 6 to 11 percent higher than the corresponding values determined visually. The reason for this is as follows:
$\Delta \lambda$ depends upon the East and West separation of the density maxima of λ^{\prime} and $\lambda^{\prime \prime}$ (see Fig. 6). The background of the plate is more dense in regions D than d and, as the plate passes along so that the small rectangle of

Fig. 6. Toillustrate method of measuring plates with the microphotometer. R, r, luminous rectangles; M, M^{\prime} and m, m^{\prime}, direction of motion of the plate past the luminous rectangles R, r in the study of the doublet separation and fine structure, respectively; $\Delta \lambda$, true doublet separation; $\Delta \lambda_{0}$ separation recorded by the microphotometer; c, n, direction of center of pattern and higher orders, respectively; D, regions of background of plate denser than regions d.
light falls upon the images of λ^{\prime}, the galvanometer registers a maximum density for them too near the center of the pattern, i.e., at $l_{1}{ }^{\prime}$ instead of $l_{2}{ }^{\prime}$, while on the following run, when the plate is moved up and the $\lambda^{\prime \prime}$ images are unmasked, the density maxima are registered as at $l_{2}{ }^{\prime \prime}$ instead of $l_{1}{ }^{\prime \prime}$.

Thus the λ^{\prime} maxima are shoved toward, and the $\lambda^{\prime \prime}$ maxima away from the center of the pattern. Both these displacements increase $\Delta \lambda$ and the error increases with the density of the images. This error affects less the visual values of $\Delta \lambda$ because the eye does not integrate the density over a rectangular region, as does the machine, but locates the maximum blackening along the slanting line of the image. These curves then are of little value in the quantitative determination of $\Delta \lambda$. We are limited, therefore, to the visual measurements.

Of the errors summarized in Table I, the shrinking effect enters in only one plate $L 21$ for $\mathrm{H} \gamma$ for the images generally used, those of the orders below
the 20th，are well separated．The reflection coefficient error is negligible． The intensity distribution error is prominent．The images of the shorter wave－length component lie so much nearer the center of the pattern than those of the longer that their maxima are displaced outward more and $\Delta \lambda$ is thereby decreased．It will be noticed，in Tables IV and V ，that in all cases the low orders give low values．It is here，however，that the micro－ photometer curves do aid us，for from them we can determine how many of the low orders should be rejected because of too great a change in intensity from one order to the next．We thus use only those values which are given in bold faced type．Further，in the dense plate $L 15$ for $\mathrm{H} \beta$（Table V）there

Table IV

	$\mathrm{L} 4 \quad \mathrm{~L} 8 \quad \mathrm{~L} 2{ }^{\mathrm{H} \alpha} \mathrm{L} 3 \quad \mathrm{~L} 78$ L30						$\mathrm{H} \beta$			
Plate No．							L10	L13	L14	L21
Current（ma／cm ${ }^{2}$ ）	24	24	24	24	24	13	24	24	24	24
Exposure（min．）	20	22	25	45	55	70	30	15	19	30
Character	Faint	Faint	Medium	Medium	Medium	Medium	Faint	Medium	Medium	Medium
E－W line No．	10	10	10	10	10	10	12D	12D	12D	11D
Order No． 3					． 131					
4				． 132	． 133				． 077	． 078
5		． 133	． 132	． 132	． 134			． 075	． 078	． 079
6		． 135	． 134	． 134	． 135	． 133		． 077	． 080	． 079
7	． 134	． 136	． 134	． 135	． 137	． 135		． 077	． 078	． 080
8	． 137	． 136	． 135	． 134	． 135	． 138	． 076	． 0775	． 079	． 081
9	． 137	． 138	（．129）	． 136	． 136	． 140	． 077	． 079	． 081	． 081
10	． 136	． 137	． 137	． 136	． 138	． 140	． 077	． 079	． 081	． 081
11	． 136		． 135	． 137	． 138	.139	（．073）	． 080	． 079	． 081
12	． 136		． 137	． 138		． 140	． 077		． 080	． 081
13	． 135		． 137	． 137		． 140	． 078		． 081	． 081
14	． 136		． 134	（．130）		． 139	． 076		． 080	． 080
15 16	． 140		． 130			． 137	． 078		． 079	． 081
${ }_{17}^{16}$	． 136		． 139			． 137			． 079	
17	． 139					． 138			． 078	
18 19	． 140					． 138			． 080	
19 20	． 139					． 140			． 082	
20	． 138					． 143			． 080	
22	． 143					． 141			． 079	
22	． 137					． 138			． 080	
23 24						${ }^{.138}$			． 081	
25						.$_{136}$			． 088	
26						（．117）				
29						$\stackrel{.}{140}$				
30						． 140				
Mean $\Delta \lambda$	． 1377	．137。	．137。	．1361	．1368	．1391	．077：	．077	．080。	．080，
Weighted mean of means				1371					794	

exists a small progressive increase of $\Delta \lambda$ with increase in density of the images whether we advance along any of the arrows a to f ．Precisely the same effect enters in a dense $\mathrm{H} \alpha$ plate，$L 25$（not shown）．This is probably a visual error， much resembling that which vitiated the results of the microphotometer tracings．${ }^{18}$ In $L 21$ for $\mathrm{H} \gamma$ ，a very dense plate，the shrinking effect also enters and prevails．We thus rejected $L 25$ and $L 15$ entire and saved only the central values in $L 21$ as it seemed probable that the two errors here offset each other．

By methods similar to those used in Table IV we obtain for $\mathrm{H} \gamma$ mean values of $\Delta \lambda$（plates $L 18, L 19$ ，and $L 21$ ） $0.064_{8}, 0.065_{3}$ and 0.067_{3} ，respec－ tively，which yield a weighted mean of means of 0.066_{4} ．The weighted mean
${ }^{18}$ The increase cannot be due to the coming out of component $c^{\prime \prime}$ of Fig． 7 which would displace the center of gravity of the $\lambda^{\prime \prime}$ system at the most but 0.001 A ．
is determined in all cases by giving each mean a weight equal to the number of orders used. In Table IV $L 30$ gives, at the very low current density of $13 \mathrm{ma} / \mathrm{cm}^{2}$, a value for $\Delta \lambda$ of 0.139_{1}. We shall return to this point later.

The doublet separations as determined by the echelon are given in Tables VI and VII. All the plates taken which were suitable for visual measurement were used (the densest plates being rejected). From the best of these plates microphotometer tracings were made.

The chief errors entering with the echelon are: First, the shrinking effect. This could not be avoided in the visual measurements, but in the case of the microphotometer curves the saddle heights were obtained and corrections made using Hansen's table for symmetrical doublets. In using these we assume symmetry which is not strictly the case; but the error must be small. Second, the visual error. This is present in all the measurements but was avoided as much as possible by the rejection of the densest images. Third, the intensity distribution error. This fortunately enters to a very small extent in this particular case, as the image of one component in single order condition lies very nearly between the two images of the other in double order condition, as mentioned on page 274.

The visual and microphotometer values are listed in Tables VI and VII respectively. No good tracings could be obtained for $\mathrm{H} \gamma$ as the images were poor. The weighted means are calculated as in Table IV.

Table VI
Visual measurements of $\Delta \lambda$ from echelon plates.

Line	Plate No.	Current $\mathrm{ma} / \mathrm{cm}^{2}$	Character of image	$\Delta \lambda^{*}$ (Angstroms)	Means	Weighted means
H_{a}	E 8a	24	faint	0.1338	0.1367	0.136_{3}
	E 8b	24	faint	. 1354		
	E 6b	24		. 1386		
	E 7a	24	medium	. 1388		
	E35a	25	faint	. 1305.$\}$	$\left.\begin{array}{l} 0.1353 \\ 0.1365 \end{array}\right\}$	
	E21a	23	${ }_{\text {faint }}^{\text {medium }}$.1400 .1349		
			medium	. 1381 \}		
H β	E22	23	medium	0.0771		0.0794
	E10b	24	medium	. 0772	0.0774	
	E11b	24	medium	. 0779		
	E 9b	24	dense	. 0794	$0.0794\}$	
	E38b	25	dense	. 0818)		
				$.0826\}$	0.0813	
H γ		25			0.0637	0.067_{2}
	E35b	25	faint	. 06334$\}$		
	E38b	25	medium	. 0713		
		2	medium	. 0701 \}	0.0707	

* The agreement between different determinations of $\Delta \lambda$ from the same plate is such that four decimals may be saved.

Table VII
Microphotometer measurements of $\Delta \lambda$ from echelon plates.

* Mount Wilson microphotometer: very reliable tracings.
\dagger As both saddle heights were high, but unequal, two corrections were made and their difference taken.

In calculating the final means from the values obtained by the Lummer plate system and the echelon we feel, first, that we are justified in rejecting entirely, for reasons previously stated, the microphotometer results of the crossed Lummer plate system; and, second, that the relative weights we
should assign are: 3 to the Lummer plate visual measurements, although visual (both because of the greater dispersion of the instrument and the greater number of determinations), 1 to the visual and 2 to the microphotometer values obtained with the echelon. These weighted means are given in Table VIII.

Table ViII
Final results for the doublet separations of $\mathrm{H}_{a}, \mathrm{H} \beta, \mathrm{H} \gamma$. Weighted means of $\Delta \lambda$ and the corresponding values of $\Delta \nu$ obtained under the conditions of tube diameter, of pressure, and of temperature specified in the text.

Line	Mean values given in Table No.:	Lummer plate system visual	visual	helon microphotometer	Weighted means of $\Delta \lambda(\mathrm{A})$	$\underset{\left(\mathrm{cm}^{-1}\right)}{\Delta \nu}$
Ha	$\begin{gathered} \text { IV } \\ \text { VI } \end{gathered}$	0.1371	0.1363	0.1373	$0.137_{0}+0.001$	0.318 ± 0.002
H β	$\begin{gathered} \text { IV } \\ \text { VI } \\ \text { VII } \end{gathered}$	0.0794	0.0794	0.0785	$0.079_{1} \pm 0.001$	0.335 ± 0.002
H γ	$\begin{gathered} \text { (in text) } \\ \text { VI } \end{gathered}$	0.0664	0.0672		$0.066_{6} \pm 0.002$	0.353 ± 0.004

The theoretical values of $\Delta \nu$ on the old quantum theory are given in Table IX. With them are also tabulated the values predicted by the new quantum mechanics, with the spinning electron, based on the intensities given by Sommerfeld and Unsöld. ${ }^{19}$ To these are added the experimental results obtained by Houston and the writers. The observations agree better with

Table IX
Doublet separations, $\Delta \nu$, theoretical and observed, of $\mathrm{H}_{a}, \mathrm{H} \beta$, and $\mathrm{H} \gamma$.

Doublet Separations, $\Delta \nu$, theoretical and observed, of $\mathrm{H}_{a}, \mathrm{H} \beta$, and $\mathrm{H} \gamma$						
Theoretical	Old quantum theory*	H_{a}	$\mathrm{H} \beta$	H_{γ}		
	New quantum mechanics,	0.328	0.350	0.357		
	with spinning electron	.320	.345	.354		
	Houston	.315	.331	.353		
	Kent, Pearson and Taylor	.318	.335	.354		

* These values follow on the Bohr-Kramers' theory without an electric field and neglecting component $c^{\prime \prime}$ of Fig. 7. See Birge, Phys. Rev. 17, 594 (1921).
\dagger At low current density.
the new theory. Houston's results we regard as the most accurate hitherto obtained. Our values are somewhat larger. He, however, used a large current density. A change of $\Delta \lambda$ with current density would explain the result given by plate $L 30$ (see Table IV) taken at but $13 \mathrm{ma} . / \mathrm{sq} . \mathrm{cm}$. and giving, for $\mathrm{H} \alpha, \Delta \lambda=0.1391 \mathrm{~A}$ and $\Delta \nu=0.323 \mathrm{~cm}^{-1}$.

It will be noted that the theoretical value for $\mathrm{H} \beta$ on the new theory is greater than those observed by both Houston and us by an amount greater than the experimental error.

[^2]II. Fine structure. The new quantum mechanics with the spinning electron gives, at the hand of Sommerfeld and Unsöld, for $\mathrm{H} \alpha, \mathrm{H} \beta$ and $\mathrm{H} \gamma$, structure and relative intensities as shown in Fig. 7.

The Lummer plate images of $\mathrm{H} \alpha$, on the original negatives and under the proper photographic exposure conditions, show repeatedly a consider-

Fig. 7
Fig. 8
Fig. 7. Theoretical structure according to the new quantum mechanics, with the spinning electron. The intensities given for $\mathrm{H} \gamma$ are approximate.

Fig. 8. Microphotometer curves obtained from enlargements of the original negatives. For $\mathrm{H} \alpha$, plate $L 7$, order 12 , $\mathrm{E}-\mathrm{W}$ line $7 D$; for $\mathrm{H} \beta$, plate $L 12$, order 10 , E-W line $7 D$; for $\mathrm{H} \gamma$, plate $L 21$, order 3, E-W line $6 F$ (a dense plate). Not much emphasis should be placed upon $b^{\prime \prime}$ in H_{γ} as constructed. $\lambda^{\prime \prime}$ is nearly symmetrical.
able extension of the long wave-length end of λ^{\prime}. This is visible to the unaided eye in enlargements (see Plate II) and is undoubtedly due to the fine structure component, c^{\prime}, of Fig. 7-clearly present although unresolved. An homologous extension exists in $\mathrm{H} \beta$ and $\mathrm{H} \gamma$.

On this theory we need not have recourse to the Stark effect to explain the presence of this component. λ^{\prime} has indeed been shown to be partially polarized, but the new theory has not yet advanced sufficiently to justify any definite statement as to the cause of this polarization.

In the microphotometer study of the structure, to obtain sufficient light, enlargements of the original, negatives were first used. The negative was run in the direction mm^{\prime} of Fig. 6. The curves of Fig. 8 were obtained as follows: Graph paper was placed over the microphotometer negative and the original curve traced in, free hand. From the upper portion of λ^{\prime}, the λ^{\prime} axis was determined and the longer wave-length slope of the curve constructed. With $\lambda^{\prime \prime}$ the top of the curve is unsymmetrical and the axis was here determined from a region about two-thirds the way down. The longer wave-length slope of $\lambda^{\prime \prime}$ was then drawn. By subtracting ordinates the curves for c^{\prime}. and $b^{\prime \prime}$ were obtained.

It will be noticed, however, that the peaks of these three curves are all flattened at the top, that the weaker doublet component is stronger than theory demands (see Table X for theoretical ratio) and in all cases, except that of c^{\prime} in $\mathrm{H} \alpha$, the observed satellite lies much too far from the main line.

Fig. 9. Microphotometer curve from an original negative of $\mathrm{H} \alpha$, plate $L 7$, order 12, E-W line $1 D$ (a rather dense image).

Over-exposure would produce just these three effects. The curves are, however, reproduced as an illustration of the different types of assymmetry in λ^{\prime} and $\lambda^{\prime \prime}$ and as an indication of the probable existence of fine structure. It may be shown that at liquid air temperature the theoretical half-widths of b^{\prime} and c^{\prime} in $\mathrm{H} \alpha$ are about equal to their separation. Therefore in even this most favorable case resolution would be impossible at that temperature.

As it was thought that the processes of enlargement produced the enhancement, tracings were made of adjacent images on the original negative. Fig. 9, however, shows that the photographic distortion enters somewhat even here. We were thus forced to use lower and fainter orders despite the effect of plate grain.

These final curves for $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ are shown in Fig. 10. As less photographic distortion was here present, the following more accurate method of drawing the curves could be employed: By trial the height, half-width and position of the curve for b^{\prime} was determined. Using the same half-width for $a^{\prime \prime}$, its height and position were obtained. The horizontal scale between b^{\prime} and $a^{\prime \prime}$ was thus found, $\Delta \nu$ being, as in Fig. 7, 0.3285 and 0.3493 for $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ respectively. The theoretical positions of $c^{\prime}, b^{\prime \prime}$ and $c^{\prime \prime}$ were then
determined. The theoretical intensity ratios, $b^{\prime}: a^{\prime \prime}$ (see Table X), could not be used because of the intensity distortion produced by the Lummer plate, but within each component of the doublet the theoretical relative intensities were assigned.

From the equation $I=I_{o} e^{-x^{2}}$ experimental curves for the five components were then plotted and the sums of the ordinates taken. The resultant curve fits the irregular microphotometer trace fairly well for both $\mathrm{H} \alpha$ and $\mathrm{H} \beta$.

The theoretical half-widths for $\mathrm{H} \alpha$ and $\mathrm{H} \beta$, at liquid air temperature, are 0.051 and 0.038 ; those used by us are 0.079 and 0.058 A respectively. This indicates 175° absolute, instead of 78°, as the effective temperature in the tube, which is probably not far from the truth, as the tube was run continuously and the capillary was of rather large (1 cm) diameter. Further-

Fig. 10. Microphotometer curves from original negatives, faint images. For $\mathrm{H} \alpha$, plate L 7 order 4 , $\mathrm{E}-\mathrm{W}$ line $6 D$; for $\mathrm{H} \beta$, plate L 12 , order 4 , E-W line $13 D$.
more the scale of the negative is not strictly normal as assumed in our construction, and finally the microphotometer curves do not indicate true intensities. Despite these facts, we feel justified in stating that with $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ the resultant curves are not inconsistent with the presence of the five components given by the new quantum mechanics with the spinning electron. Of the presence of c^{\prime} we are certain; we are reasonably sure of $b^{\prime \prime}$; and, lastly, the resultant curves fit the case better with $c^{\prime \prime}$ than without it.

To Dr. Houston of the California Institute of Technology we are indebted for the facts concerning the interferometer presented in Table I, for valuable
suggestions in connection with corrections made in evaluating our plates, for the calculation of the intensity relations given in Fig. 7 and for his cordial and able assistance, generously given. We must record also our great indebtedness to our various assistants, especially Messrs. Handy, Hartwell and Ireland.

Table X
Intensity ratios, $\mathrm{I}_{\lambda^{\prime},} \mathrm{I}_{\lambda^{\prime}}$, of the components of the doublets-illustrating the effects of not only the intensity distribution of the Lummer plate but also over-exposure.

Line	Theoretical ratio	Observed Ratio			
		Denser images or higher orders	From figure:-	Fainter images or lower Orders	From figure:-
H_{a}	1.24:1	$1.01: 1$	9	1.07:1	$\} 10$
$\mathrm{H} \beta$	1.12:1	1.02:1	9	$1.43: 1$	
$\mathrm{H} \gamma$	1.03:1	-	-	1.02:1	8

This research was made possible by grants from the Rumford Committee of the American Academy of Arts and Sciences; this aid we most gratefully acknowledge. The work was begun at Boston University and completed at Mount Wilson Observatory and the California Institute of Technology in March 1927. To the last two institutions we are deeply indebted for the great facilities placed at our disposal.

Boston University, April. 1927.

Plate I. Pattern a is Plate 4 for $\mathrm{H} \alpha ; b$ is plate 10 for $\mathrm{H} \beta ; c$ is plate 25 for $\mathrm{H} \gamma$. The magnification is 4.2 fold. See Fig. 3 and Plate II as aids in studying the pattern. The numbers refer to rows.

Plate II. Pattern a is plate $L 2$ for $\mathrm{H} \alpha$, magnification 32 fold; pattern b is plate $L 7$ for $\mathrm{H} \alpha$, magnification 28 fold. Observe the persistent assymetry toward the right in λ^{\prime}.

[^0]: ${ }^{6}$ Schrum, Proc. Roy. Soc. London A105, 259 (1924).
 ${ }^{7}$ Van Cittert, Ann. d. Physik. 77, 372 (1925).
 ${ }^{8}$ Hansen, Ann. d. Physik. 78, 558 (1925).

[^1]: ${ }^{17}$ McLennan and McLeod, Proc. Roy. Soc. London A90, 246 (1914).

[^2]: ${ }^{19}$ A. Sommerfeld and A. Unsöld, Zeits. f. Physik. 237 (1926).

