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A~STUDY OF THE LONGITUDINAL VIBRATION OF WIRES.

Bv GEoRGE A. LINDsAY.

I. INTRODUCTION.

HE elastic behavior of wires has been very carefully investigated

by means of torsional vibrations. This method lends itself most
readily, perhaps, to the study of internal friction, for the period may
easily be regulated to any desired length, the amplitude may be made
large, and, by suitable adjustment of the suspended, mass, the free
vibration may be continued for a comparatively long time.

Weber' was the 6rst to observe that a vibrating body is damped in a
vacuum, thus showing with certainty the existence of an internal cause
of damping, and O. E. Meyer' made the erst quantitative study of the
phenomenon, by observing the damping of torsional vibrations.

Voight' measured the damping of Qexural, as well as torsional vibra-
tions, with the view of determining whether, according to Boltzmann's

theory, the logarithmic decrement is independent of the period, as the
latter shows it should be if damping is caused by the elastic after-effect;
or whether there is really internal friction, in which case the logarithmic
decrement should depend on the period. The results of his work were
not entirely in favor of either theory. For flexular vibrations he found
that, for copper and some other metals, the logarithmic decrement varied
inversely as the period, thus supporting the internal friction theory, while

with aluminum, cast iron, and cadmium the logarithmic decrement was
much more nearly constant. In a few cases the decrement actually
increased with increasing period, which is at variance with both theories.
His conclusion was that in some cases the preponderant factor in damping
is internal friction, in other cases it is the after-effect. Voight also found,
as Schmidt' had done earlier, that the logarithmic decrement varies

~ Pogg. Ann. , 34, p. 247, z83S.
2 Ibid. , zz3, pp. 77, I93, I86z.
' Abh. der Konigl. Gesell. der Wiss. zu Gottingen, 38, z892,
' Wied. Ann. , 2, p. 48, x877.
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approximately as the square of the amplitude. Streintz, ' however,

found it to be independent of the amplitude in torsional vibrations, and

also of the period, if the period were varied by changing the moment of
inertia of the suspended mass. Guthe and Sieg found certain platinum-

iridium wires, when vibrated torsionally, to give a maximum value of
the logarithmic decrement, and the position of the maximum on the
decrement-amplitude curve depended on the initial amplitude. This
work will be referred to more in detail later in comparing with the damp-

ing of longitudinal vibrations. Harris, using bismuth wires, observed

a decrease of the logarithmic decrement with decreasing amplitude,
but no maximum or minimum values.

Other experiments, notably those of Streintz, Wiechert, ' and Bouasse
and Carriere, have shown that the previous history of the wire very
markedly influences the after-effect and the damping. While the after-
effect has been carefully observed for longitudinal deformation, as far as
the writer has been able to find, little or nothing has been done on the
problem of the quantitative measurement of the damping of longitudinal
vibrations.

The present investigation is an attempt to measure as accurately as
possible the period of longitudinal vibrations of wires, to consider possible
causes of difference between this and the theoretical period, and to meas-

ure the damping of the vibrations. Both static and dynamic observa-
tions will be given which indicate that the modulus of the wires is not
exactly a constant with varying extension. An expression for the period
involving the amplitude will be derived, which shows that this variation
of the modulus cannot account for the observed variation of the period
with amplitude. It will also be shown that, with the ordinary assump-
tions, the variation of the logarithmic decrement with amplitude is not
sufficient to explain the variation of the period.

II. ELONGATION OF THE WIRES.

A PParo, tl,s.
Four wires were used; one each of copper, steel, phosphor-bronze, and

platinum-iridium. The steel wire was new piano-wire; the copper, a
piece from a spool of commercial wire. Three of the four wires were about
230 cm. long, while the fourth, the platinum-iridium, was only about

' Wien. Her. , 69, II. Abt. , p. 337, I874: 8o, II. Abt. , p. 397, I879.
~ PHYs. REv. , Vol. 3o, No. 4f I9Io.
3 PHYs. REV., Vol. 35) No. 2, I9I2.
4 Wied. Ann. , 5o, p. 546, I893.
~ Ann. de Fac. des Sci. de Toulouse, II., 43I; III„2I7;IV., 357. Ann. de Chimie et de

Physique, 8me Serie, t. I4, p. Igo.
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r4o cm. Long. No attempt was made to take account of previous treat-
ment of the wires, since the adjustment for vibration was rather difficult,
and it was usually necessary to vibrate the wire for some time before
measurements could be made. Excepting the platinum-iridium, which

contained 4o per cent. of iridium, and was prepared by Dr. Heraeus, of
Hanau, the composition of the wires was not well known, and it is not
to be expected that the results are rigidly characteristic of these metals.
In fact, it is known that hardness has a great inHuence on the internaI
friction of wires. Annealed wires exhibit greater damping than tempered
ones of the same material.

A heavy iron bracket was fixed rigidly to the brick wall of the labora-

tory. A strap of iron was bolted firmly to the front of the bracket; but
this was not used as a clamp, for clamping the wire would Hatten it, and
weaken it at the point where it entered the clamp, besides rendering
uncertain the location of the upper end of the vibrating length. Instead,
a small slot, only large enough to admit the wire easily, was sawed in the
iron strap. This slot was filled with solder, and the upper end of the

/

wire was soldered in, thus attaching the wire very firmly to the support.
In order to keep the temperature uniform and fairly constant, the wire was
enclosed in a wooden box, the internal cross-section of which was about
r6 cm. ' The upper end of the box was lightly covered with cotton
batting to prevent air currents passing through, yet not so as to interfere
with the vibrations. Two thermometers were inserted through the side
of the box, one near the top add the other near the bottom.

A fan was installed near the box to keep the air in the room in circula-
tion. Without the fan the temperature of the upper part of the box
sometimes became as much as 3 degrees higher than the lower end,
especially in colder weather, when the room was heated by pipes near the
ceiling. When the fan was working the upper and lower parts of the
box differed usually by not more than 0'.x C. A variation of one or two
degrees has very little effect on the period of vibration, since the modulus

changes only slightly with the temperature; but in determining stati-
cally the elongation due to a certain load, it was very important that
the temperature should not change between readings.

The following precautions were taken to straighten the wires before
using. The steel and phosphor-bronze wires were suspended and
stretched for about one day by /ts the maximum load which they were

required to carry. The copper wire was very soft, and was straightened

by passing it through a drawplate, using a hole the size of the wire.
This straightened the wire without drawing it any smaller. The plati-
num-iridium wire was moderately loaded and annealed by passing through
it an electric current sufhcient to raise it to a yellow heat.
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Instantaneous Recovery.

In order to make a comparison of static and dynamic moduli, the simple
method of measuring the elongation directly was chosen. Consider a
wire loaded as in Fig. x. Let P be the position of the lowest point of the

wire when at rest. From the elastic forces called out
by the distortion, P has a tendency to return to some

point O. This point may not be at all the position of P
before the load was imposed. It does not even remain

constant when P moves up and down. The variation of
0 is due to two things: (r) the eIastic after-eA'ect; (2)
the heating eHect of varying the length of the wire.
When the wire is at rest, (2) is not to be considered;
therefore, disregarding this for the present, let us call
OP = e the instantaneous recovery. This is evidently

~

~

the distance on which the restoring force depends, and

Fig. 1. this is the distance it is desired to measure.

Lever Systems for measuring Recovery.

In order to determine changes occurring very soon after unloading,
the device shown in Figs. 2, 3, and 4 was used. Figs. 2 and 3 show two
sections at right angles to each other. Fig. 4 shows one of two similar

Fig. 2. Fig. 3. Fig. 4.

levers, made each of two stips of brass bent and soldered together along
one half their length. Small conical hollows were made at ee, Fig. 4, to
receive the points of p in Fig. 3. The arms of the lever were bent just
far enough apart so they would hold on the axle P without play, and with
little friction. The lever was thus free to move about the axis of p in a
vertical circle. L, Fig. 2, is this lever seen from the side. d is a small
closely 6tting pin to one end of which the wire TV was lightly soldered.
ns is a small mirror with its plane at right angles to the lever, and con-
taining the axis of p. One of the levers was used for the wire under test,
the other for a comparison wire hung about a cm. from the 6rst. The
mirrors on the two levers were placed so close together that by means of
a single telescope two scales could be viewed at the same time, one
reHected from each mirror.
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bracket, and change of tem-

nning and the box in position

&ecorery of copper eire.

bho.~ ~'& m, ' ~

scale .
gS ~l*&

Fig. 5.

Wire No. z indicated any sagging of the
perature. It was found that with the fan ru

the temperature change during the read-

ings necessary for a single determination
of the elongation was ordinarily too small

to be observed. For measuring the elon-

gation the mass of figure I was replaced

by a scale pan.
A mass was placed on the pan and after

some time a reading was taken on both
scales, and the mass was immediately re-

moved. Then readings were taken on the
wire under test at the end of 5 sec. , x5 sec. ,

I min. , 2 min. , and 3 min. Two or three
readings on the comparison wire gave cor-
rections to be applied for sagging of the
support, and for temperature changes. The
comparative rigidity of the lever system
allowed a reliable reading to be taken 5
sec. after removal of the mass. The re-

sults are shown for the copper wire in figure

The numbers in parentheses refer to
different masses removed fron& the pan as
shown in the accompanying table.

(1)
(2)
(3)
(4)
(5)
(6)
(l)

Copper.
Mass, gms.

461
930

1,401
1,872
2,343
2,815
3,295

Each mass was left on the pan 2 min. The relative positions of the
curves in Fig. 5 show how slowly the copper wire recovered from strain.
The after-effect and the heating effect are both present in these curves.
The curve for a time interval less than 5 sec. is unknown, but producing
it as the observed part seems to indicate we would have an intersection
on the scale axis as shown by the dotted line.

Owing to the various quantities upon which the computed elongation
depends when deduced from the scale readings, and the possibility of
error, especially in the motion of the pin d, shown in Fig. 2, it was thought
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best to depend on the above apparatus only for the small changes taking
place in the first minute or two, and to measure the entire recovery of
the wire simply by means of a micrometer microscope focused directly
on a point of the wire. Then the correction shown by Fig. 5, and that
for the sagging of the bracket were applied afterward.

For all except copper it was seen that in one half min. to one min.
the wire had entirely recovered from the strain. The microscopic
readings for these could therefore be taken soon after removal of the load.
%ith the copper they were all taken long enough after release so that the
change in length had nearly ceased, but the time of each reading was

noted, and the proper correction applied from the plots.

Instantaneous Recovery Independent of Period of Deformation.

It was found by means of the lever system that the length of time the
load remained on the pan did not inHuence the instantaneous recovery.
The following table shows the instantaneous recovery for various periods
of deformation of the copper wire. t is the length of time the weight
remained on the pan, e the instantaneous recovery in cm. of the scale.
It is the difference between the intersection of the curve with the scale
axis (see Fig. 5) and the reading just before release.

TABLE I.

t min.
1

5

15
30
60
30
15
5
1

Load = 2 Kg,
e.

11.25
11.23
11.20
11.22

11.22
11.23
11.21
11.20
11.23

T/us indicates that although the wire may sufIer a gradual change when

distorted by a constant force, a given Point of the wire has always the same

instantaneous recovery.

Since the change observed by aid of the levers and mirrors after the
removal of the load is small compared with the total recovery, we may
compute the change s in the length of the wire, corresponding to the
distance OD shown on the plot of Fig. 5, by the equation

rr
s = ——OD,2a

where r is the radius of the lever arm and a is the distance from mirror to
scale. r was determined by measuring, with a microscope, the diameter
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of the circle in which the pin d moves when the lever is rotated about the
axis. r was thus found to be 2.I24 cm.

Tenzperatlre Change DNe to Loading and UnLoading.

The formula for temperature change given by Sir William Thomson' is

ATat= Dp,

where A = the reciprocal of Joule's equivalent.
T = abs. temp.
0, = coe8. of linear expansion.
or = linear density of the wire.
t. = specific heat.

Edlund' found, experimentally, that this formula gave too high a value

for t, and according to his results A =
68

when ~p is in gm.68270
When the load is suddenly removed the wire is heated, and as it cools

it contracts, which contraction added to the after-effect gives the curves
in Fig. 5. To compute the part due to the cooling of the wire we have
the change of length due to a change in temperature t,

A Tn'L

If we take I = 200 cm. ,
and hp = 3,ooo grn. , Table II. shows the Dl of equation (g) for

each of the four wires. Edlund's value of A is used.

TABr.H II.
Wire. . . . . . . . . . .Al cm.
Steel. . . . , . . . . . .0.0010
Copper. . . . . . . . .0.0004
Phos. br. . . . . . . .0.0020
Pt.-ir. . . . ~ ~. .. . .0.0008

The instantaneous recovery of the wires is given by

e = e' —s+hL, (e)
where e' is the elongation as measured by the microscope directly. Al

must be determined for the particular length used in obtaining s; then
if this is not the same as the length used in measuring e', s —6/ must be
reduced to that length before subtracting from e'. For the phosphor-
bronze and platinum-iridium s = AL as nearly as the plots will show.
For steel, s was a little more than twice AL, and for copper, nearly ten

~ Math. and Phys. Papers, Vol. 3, p. 66.
g Pogg. Arj.n. , ra6, p. g3y, 186'.



times Al. This indicates that phosphor-bronze and platinum-iridium
have no after-effect, yet this supposition does not agree with the results
of timing. Reasons will be given later for supposing that all the wires

have an elastic after-effect.

Variation of Instantaneous Recovery with Temperature

To find how the instantaneous recovery varies with the temperature,
which is equivalent to finding the variation of the modulus with tem-

perature, the room was kept successively at ten different temperatures
ranging from z5'.7 to a6'.4 C., and the instantaneous recovery was
determined for each temperature for all the masses concerned in Fig. 5.
This test was made for copper only, for the variation of the modulus with
temperature is much smaller for the others. According to Pisati it is
only one part in ro,ooo per degree for steel at temperatures from o' to
5o'. YVith copper, however, it is large enough to be detected over the
range of only Io employed here, and by plotting instantaneous recoveries
and temperatures the equation

eg = en[t + 0.0009 (t —23)] (5)
was found for the relation between the recovery and the temperature,

Since the word elongation is not to be used in any other sense in this
paper, "elongation" will henceforth be used to denote the instantaneous
recovery.

Rap~dity mith W'hick the Wire Regains Norma/ Temperoture.

The heat evolved by the removal of the load is soon dissipated. A
test was made on the copper wire, which, with a diameter of o.5 mm. ,
was much the largest wire of the four, to see how much time was required
for the wire to regain its original temperature. An iron-constantan
thermocouple was connected to the wire by separating one of the junc-
tions, passing the separated elements through small holes in the side of
the box, and soldering them as lightly as possible to the copper wire, a
few cm. apart. The junctions were covered with a little cotton batting
so they might cool at most no faster than the remainder of the wire.
The other junction of the thermocouple was kept at a constant tempera-
ture outside the box. The cross-section of the thermocouple wire was
about r/3D that of the copper wire to which it was attached.

%hen a mass of 2 kg. was removed from the pan, the deflection of a
galvanometer in the thermocouple circuit had practically all disappeared
in one minute, showing that in that time the wire had regained its normal

temperature. Since the other wires were of less than one half the diameter
of the copper wire, the rise in temperature would no doubt disappear in

a much shorter time for them.
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Results for Etorsgatr'ors.

In Table III. are given the elongations for the various wires. The
values of e for copper were all reduced to 23' by formula (5). While the
entire set of elongations for copper was taken at zr', the wires were
vibrated at higher temperatures, and it was for comparison with the
vibration results that the reduction was made. For all the other wires
the variation of modulus with temperature was neglected.

M and e are corresponding masses and elongations, the zero for each being taken with the
pan alone suspended.

M includes one half the mass of the wire.
Mass of the pan = 223 gm.
L' = length for which the elongation was measured.
L = vibration length.
e = elongation for the length L.

D = diameter of the wire.
TABLE III.

Copper.
L' = 209.7 cm.
L = 232.1 cm.
D = 0.586 mm.
Temp. 21'.0

Steel.
L' = 154.1 cm.
L = 231.1 cm.
D = 0.2,17 mm.
Temp. 24 .2

957
1,387
1,818
2,248
2,679
3,101

e Cm.

0.0821
0.1182
0,1560
0.1941
0.2315
0.2690

e23 Cm.

0.0822
0.1184
0.1563
0.1945
0.2320
0.2695

1lX/e.

11,640
11,710
11,630
11,560
11,550
11,510

1,000
1,500
2,000
2;500
3,000

e Cm.

0.2874
0.4309
0.5766
0.7213
0.8675

3E/e.

3,478
3,480
3,467
3,465
3,457

Phosphor-bronse.
L' = 187.6 cm. D = 0.239 mm.
L = 231.5 cm. Temp. = 22 .5.

Platinum-iridium.
L' = 140.5 cm.
L, = 144.6 cm.

D = 0.206 mm.
Temp. = 22'.5,

953
1,383
1,814
2,244
2,675

e Cm.

0.4138
0.6023
0.7912
0.9816
1.1742

PI/e.

2,303
2,296
2,293
2,286
2,278

953
1,383
1,814
2,244
2,675
3,097

e Cm.

0.1461
0.2119
0.2780
0.3448
0.4137
0.4812

3/I/e.

6,523
6,527
6,525
6,508
6,466
6,436

tiff/e has no significance for the material of the wire, since it contains
the length and diameter, but as long as these are constant it serves to
indicate whether Young's modulus is constant or not. Owing to the
shortness of the wires used, no great degree of absolute accuracy is
claimed for the above e'longations, and also, since the computation of the
period of vibration does not demand it Young's modulus has not been
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computed. Its absolute value is of little importance here, but its varia-
tion is of great importance.

III. DETERMINATION OF FREQUENCY OF THE VIBRATIONS.

A PParo, tns.

The pan was removed from the wire, and in its place was soldered a
brass disk 6/&q cm. in diameter, provided with threads on the circumfer-

ence, so that over it might be screwed a hollow cylindrical shell about

I4 cm. long. Inside this shell could be attached five other solid disks,
making six different masses which could be used in vibrations. The
shell was closed at the bottom, so that for all masses used, the same surface
was exposed to the air and the damping due to the air friction was, there-
fore, constant.

From the lower end of the cylinder a brass rod 8 mm. in diameter pro-
jected vertically downward an additional Io cm. , and carried on its lower
end a small soft iron armature. The sections of the mass separated from

.'R Il Cl

Fig. 6.
a, soft iron armature; c, cylindrical shell; d, upper disk which screws into the shell.

the cylinder are shown in Fig. 6. The electric circuit was arranged, as in

Fig. 7, so that the wire was self-driven after the manner of the electrically
driven tuning fork. The switch I. closed both circuits at once. The
vibration could be started by raising or lowering the adjustable cup g
until, when the proper height was reached, the vibration would start
and the amplitude could be controlled by the rheostat.

A tuning fork supplied with adjustable masses for regulating the period,
and carrying a lens on one prong, was arranged to vibrate horizontally
in front of the wire, so that when a drop of mercury was placed on the
wire a Lissajous' figure could be viewed through the vibrating lens by
means of a microscope. A phonic wheel was included in the circuit
with the tuning fork, so that the fork could be accurately rated while
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the wire was vibrating. The vibration was so slow that the time re-

quired for an elastic pulse to travel the length of the wire was very short
compared with the period of the wire, therefore we may consider the
wire to be uniformly strained throughout its entire length at all times.

3feasuring the Free Period.

This, of course, was a forced vibration of the wire, and the period was

therefore slightly less than that of the free vibration. It was found,

however, that by adjusting so that the fork was slightly too slow, then

g II

gb
,me
!

Fig. 7.

e, electromagnet actuated by battery s; f, relay; g, mercury cup; j, fine wire soldered to
moving system at d; p, stiA platinum-tipped wire for contact with mercury at g.

shutting off the current driving the wire, the free period could be obtained

with considerable accuracy.
The free vibration could be observed easily for /4 min. with the copper

wire, about 4 min. with the platinum-iridium wire, and 5 min. with the
steel and phosphor-bronze. In case the period varied with the amplitude,
as it did with the copper and platinum-iridium, and also to a slight

extent with the phosphor-bronze, the fork was set too slow for small

amplitudes, and too fast for large ones. By means of the micrometer
microscope the amplitude for which the Lissajous' figure was at rest
could be satisfactorily determined. This, however, necessitated changing

the rate of the fork, and so rating again by the phonic wheel for every
amplitude measured, an expenditure of time which was partly avoided

by counting the number of seconds elapsing during one cycle of the
Lissajous' figure and taking for the mean amplitude, the average of the
.amplitudes at the beginning and the end of the count.

Relation of Frequency to Amplitude.

For the steel wire no variation of the frequency with amplitude could

be detected. The phosphor-bronze showed a very slight increase ia
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the free. That there is not a greater difference is due to the fact that the
relay included in the circuit aided the induction in delaying the pulse
given by the electromagnet. If the pulse were given just at the instant
when the armature reached the middle of its downward motion, there
would be no difference of the free and forced periods.

Although the force acting on the armature is not simply harmonic

with respect to the time yet it may be represented by a Fourier's series,
and it may be shown from the difference between the forced and the free
periods that for small amplitudes the fundamental of the Fourier's

series is in the neighborhood of 65' behind the motion of the armature.
Table IV. is given as an illustration of the manner of timing.

TABLE IV.
Copper.

M = 2,678 gm. p = 5/1.

N = frequency of fork.
n = frequency of wire.

p = N/n, .

emp = 2~o 9 C.

Forced.

Amp. (Mm. ) Amp.
(Mm. )

0.08

Free.

10.604 s

Sec. per %fire Slow
Cycle. or Fast.

53.020 0.20
0.3'1

10.602
10.598

102
34

slow
slow

52.964
0.50
0.66
0.73

10.593
10.586
10.583

0.25 10.593

31
21

slow
slow

52.888
0.75
0,89
0.95

10.582
10.578
10.574

0.54 10.578

50

fast

slow

52.860 0.68 10.572

The 6th column shows the number of seconds required for the Lissajous'
6gure to pass through one cycle, while the last indicates whether the
wire was faster or slower than r/g the rate of the fork.

Tables V. and VI. show in condensed form the free amplitudes and
frequencies for the various masses.

Such tables are not given for phosphor-bronze and steel for reasons
already stated.
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TABLE V.

CoPPer.

Mass, Gm.

956

Amp. , Mm.

0.10
.15
.33

17.700
17.693
17.676

5/2

Temp. , C.

23'.7

1,386
.17
.32
.59

14.715
14.696
14.672

3t/1 23'.8

1,817
, 19
.24
.40

12.853
12.848
12.839

7l2 24'.0

2,247
.14
.32
.45

11.565
11.555
11.545

24'.0

2,678

.08

.25
54
.68

10.604
10.593
10.578
10.572

21'.7

3,100
.22
~ 50
.72

9.831
9.818
9.810

5/1 23'.8

Variatzon of Frezfzzency wittz Mass.

Since, if Hooke's Law holds the period is proportional to the square
root of the mass, we should have the product of mass and the square of
the frequency equal to a constant. From Table III., the ratio M/e is
not a constant. It decreases with increasing mass, except for the 6rst
two masses of the three wires, copper, steel and platinum-iridium. It
would not be concluded from this alone that the elongation is not pro-
portional to the weight removed, for there is considerable uncertainty
about the point to which the curves of Fig. 5 should be produced before
they reach the axis of ordinates. However the results of timing also
show that M/e is not a constant, for Mn' is not constant, except for the
case of copper. Table VII. shows the masses, frequencies, and 3fn',
for each of the four wires.

The n for the copper and the platinum-iridium is obtained from Figs.
8 and 9. It is the n indicated by the straight line, for the amplitude
zero. For copper a small correction to n was made to reduce it to 23'
temperature, the same temperature as that for the elongations of Table
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TABLE Uj:.

Platinum-iridium.

Mass, Gm.

953

Amp„Mm.

0.08
.20
44
.58
.80

13,056
13.053
13.046
13.044
13.037

3/1

Temp. , C.

23'.0

1,383
0.09

47
.75

10.836
10.828
10.824

4/1 23'.2

1,814

0.05
.12
.21
.66
.98

9.450
9.449
9.447
9.442
9.439

5/1 24' 4

2,244

2,675

0.07
.22
.37
.45
.68

0.08
.10
.16
.23
.44
.79
.81

8.480
8.479
8.477
8.476
8.473

7.754
7.753
7.753
7.753
7.750
7.746
7.745

5/1

24'.5

24'.6

3,097

0.14
.32

.60
,62
~ 68
.78

7.190
7.189
7.187
7.184
7.183
7.182
7.181

6/1 24'.6

III. Since r/rr o: le, one half the correction in per cent. which was

made for e, was made here for n: or we might use a formula similar to
equation (5)

sea[I —0.00045(5 —23)].

For the other three wires the correction was neglected for reasons already
stated.



4I2 GEORGE A. LIXDSAF. t
SECOND
SERIES.

TABI.E VII.

/pal Gnl

956
1,386
1,817
2,247
2,678
3,100

17.710
14.732
12.865
11.573
10.607
9.841

Copper.

Temp. Corr.

23'.7 +0.006
23'.8 +0.006
24'.0 +0.006
24'.0 +0.005
21'.7 —0.005
23'.8 +0.004

533-

17.716
14.738
12.871
11.578
10.602
9.845

3.001 X10'
3.011
3.010
3.012
3.010
3.005 X 105

jVI Gm.

954
1,384
1,815
2,245
2,676
3,098

Steel.

e Temp. 2VIn&.l

9.S2S 21'.S 8.6SS X104

7.908 21'.6 8.655
5.903 21'.7 8.649
6.199 23'.1 8,627
5.675 23'.0 8.618
5 268 22'. 7 8.598 X104

IVI Gm.

Phosphor-bronze.

Temp. cVn&. PI Gm.

Platinum-iridium.

n Temp. P1n&.

953
1,383
1,814
2,244
2,675

7.767 21.3
6.437 21.8
5.611 21.9
5.038 22.0
4.594 21.3

5 749 X104
5.731
5.711
5.696
s.646 x io4

953
1,383
1,814
2,244
2,675
3,097

13.058
10.837
9.450
8.481
7.755
7.193

23.0
23.2
24.4
24.5
24.6
24.6

1 625 X10'
1.624
1.620
1.614
1.609
1 602 X105

In Table VII. all the wires but the copper show a steady decrease in
Dan' with increase of 3I. The decrease is very small, or zero, between the
first two masses, and it has been noted that there was, in general, no
decrease of 3II/e in Table III., until the second mass was reached.

Relation between M and e.

For all except the small masses the results of both the direct measure-

ment of elongation and of the timing, indicate for steel, phosphor-bronze,
and platinum-iridium a greater elongation than that demanded by
Hooke's Law. We will therefore assume the relation

kI = ne+Pe',

and deduce the period which would result from oscillations along the
curve represented by this equation. Since 3II/e decreases with increasing

3f, P will evidently be negative. It is more logical, perhaps, to write

e = a3SI + bM', '

but for solution of the difFerential equation given later it is simpler to
have M expressed in terms of e, as in (7).

I M includes one third the mass of the wire, which addition was negligible for all except
copper.

' J. O. Thompson found the formula e = aM + bM' + cM3 to satisfy his observations in
static experiments with wires. See Amer. Jour. Science, Vol. 43, p. 32, I892.
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IV. DERIVATION OF THE PERIOD.

If we assume small vibrations of the wire, the period, neglecting the
damping term, is known to be

From (7) dM/de = n + 2ep, whence

x g(n + ape)
2K M

(ro)

Since the period has been shown by Figs. 8 and 9 to depend on the
amplitude, the following derivation is given. to show whether vibration

along the curve represented by equation (7) causes the period to vary
appreciably with the amplitude or not.

Returning to Fig. I, let x be the distance from 0 to I' at the time t.
Let M' be the mass which by equation (7) corresponds to the elongation

x. Let F' represent the force of restitution at the time t. M' will be
less than M when x is less than e, and greater than M if x is greater than
e. Then from equation (7)

~x+ Px2F' = M'g = 3/Ig —= kg3f (xe + Pe'
'

at AT~~L,
In equation (3) Iet h = —=

AP toe

at =~x
nP = M' —M = n(x —e) + P(x' —e').

(rr)

Dx is the increase in length due to the shifting of the position of 0 by
temperature changes in the wire, the temperature changes being caused

by the vibration. Then

hx = h Ap = h[n(x —e) + p(x' —e')].

Since equation (7) does not contain this temperature effect, we must

add hx to the x of that equation, and, instead of x, write x + h[n(x —e)

+ p(x' —e')], hx is negative when x & e. Dx = o when x = e. Thus
we take the temperature of the wire to be that of the room when x = e.
We will also suppose the vibrations to be so rapid that there is no time
for the wire to receive or to give out heat, but the vibrations take place
under adiabatic conditions. Then we have, for the elastic force acting
on the mass M, when the distance OI' is x

n {x+h[n(x—e) +P(x' —e')] }+P{x+h[n(x—e)+P(x' —e')] }
'

F'= Mg- (r3)
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Since the effect of the weight of the wire itself on the vibrations is
equivalent to the effect of one third such weight suspended from the
lower end, in what follows, M will denote the suspended mass plus one
third the mass of the wire. Except for the copper wire, however, this
addition was less than /2 gram, and was neglected.

Let
P = I' —Mg. (r4)

Then if we neglect terms of the order of hnP(x' —e') and hnPx(x —e),
which are small compared with nx and n'h(x —e) we shall have from

(r3) and (r4)

n(r + hn) (x —e) + P(x' —e')
Ji = Bing me+ Pe'

g[n(t + hn) (x —e) + p(x' —e')].

The external and the internal friction are each assumed proportional
to the velocity, and the two terms representing them may be combined

thus,
Zx 8x 8x

Jt4 + g . = 0 )
dt dt dt' (r 6)

where p is the external damping coefficient, and q the internal.
As the mass iV moves up and down, 0 (Fig. r), the point to which the

lower end of the wire tends to return, will also oscillate, because of the
after-effect. This motion of 0 will doubtless be somewhat behind the
motion of P in phase. The complete vibration requiring only about r/5
sec. for the lowest frequency observed, there would be only a short time
for the wire to recover between vibrations, but immediately after release
the motion of 0 due to the after-effect is comparatively rapid, so it is
not at all certain that this motion may be disregarded; in fact, a later
discussion will indicate that this is perhaps an important factor in deter-
mining the period.

Kohlrausch proposed the formula —dy/dt = n(y/t), or y = c/t, where

y is the deformation due to the after-effect at the time t after the dis-

torting force has ceased to act, and n is a constant. If this were approxi-
mately true for small t, we should have a very large dy/dt, but all his
observations were taken after ro sec. and as far as the writer has observed,
practically nothing is known of the behavior of the after-effect during
the first second after removal of the distorting force. Since an assump-
tion would be worth little without the support of observational data
and also since it would doubtless greatly complicate the equation, this
effect will for the present be neglected.
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The differential equation of motion may then be written

px' gn(z + hn) gn'he+ g3II
+& +g +dt' dt 3II 3f 3II

x- = O.

If we neglect h and p, then M = ne, and (r7) becomes

d'x dx g—+ o.—+ —(x —e) = o,
dt2 . dt e

(z8)

which is the well-known equation representing damped vibrations, the

solution being
!—at-:2x = e+Ae ' cos ——— t,
g a

We

where the time is counted from the lowest point of the vibration, at which

point x' = e + A, A being the amplitude. The period of this motion is

~i

e

If P is neglected, but h is not, we have

2'
!g(z + hn) o'

"4 e

(2o)

(2r)

From measurements of cr discussed later it will appear that for the
largest value of o found, o'/4 compares with g/e about as r with ro',
showing that under the assumption that the frictional resistance varies
as the velocity, the damping has no appreciable effect on the period.
Hence, if in (z 7) we neglect o(dx/dh), we have left

dx g—+ —[Px' + n(z + hn)x —(n'he + M)] = o.
dt2 M (»)

This equation represents undamped vibrations, but since we desire only
the period that fact is of little importance.

Let

and (22) becomes

Solution of the Equation.

p = 7
3

n(z '+ hn)

2
M+n2he = P

d'x g—,+—(gyx'+ 2bx —g) = O. (23)
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By a first integration we obtain

P' a p(x'+ —x' ——x+ D),M

where P = dx/Ch, and D is the constant of integration.

dx —2gp
p x'+ —x' ——x+ D.

dt 3M 7 7

(s4)

(25)

D may be determined from the condition, that when x = e —A, P = o.
If we let f(x) = x' + (hi/y)x' —(I/y)x + D then f(x) = o when p = o,

D = —(e —A)3 ——(e —A)' + —(e —2),
7 7

(26)

and is thus a function of the amplitude.
If A = e, which is the greatest amplitude possible, D = o.
This amplitude is always impracticable on account of the tendency

of the wire to vibrate transversely when this point is nearly reached.
Equation (25), solved for h, is

dx
~ —2g/h x'+ —x' ——x+ D

7 7
Equation (27) gives the time for any part of the vibration, according

to the limits assigned to x. If the extreme positions of P are taken as
limits the value of h will be /sT.

To reduce the elliptic integral to the standard form of the fj.rst class,

dq dx
P(k, e) =

&x —k' sin'ihi, &(r —x')(r —k'x')

we must find the roots of f(x) = o.
Since the 4th power of x is lacking, we have at once that one root is ~,

and D has been chosen so that another root is e —A. If we substitute
the value of D from equation (s6) in f(x) —o, and divide by x —(e —A),
we obtain

whence

(
+xl e —X+ -I y (e —a)2+ -(e —X) ——= o,

7 7
(z8)

e —A+—
7x =

$2

~ (e —A)' + 2 —(e —A) + —,—4(e —A)' —4 —(e —A) + il. —.
2V 7 7' 7 7

(29)
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P may be expressed in terms of 8 and y.

g = M+ o.2ke = 0;e+Pe2+ a2ke

= ae(z + hn) + Pe'
= 28e+ d'ye'

8e
4 —= 8 —-+ Z2e'.

7 7 (So)

Substitute this value of 4 —in (29) and the equation becomes
7

z f $2x= —
(
—e+A ——& i9e'+2'+ —+6eA+6 —e+2 —2 —4A' ). (3r)2 7' 7 7

The expression under the radical differs from the square of ge + A +
8jy only by 4A'. For the largest value of A observed

for platinum-iridium,
90000

(v)'
z

for phosphor-bronze,
250&000

I
for steel.

640,000

For very small amplitudes the ratio is much smaller. Hence 4A'

may be neglected and we may write

x =-,' —e+A ——~
) 3e

x3 ——e+ A

~ ~

x4 = —2e—
7

(u)

are the remaining two roots of f(x) = o.
It was to be expected that if e —A is one root, e + A is very nearly

another, which simply means that in the vibration I' moves very nearly

as far below the point x = e as it does above that point.
If we assume e —A and e + A to be two of the roots, the third root

comes easily from the relation between the roots and the coeKcients,
for if or&, cd and cd are the roots, and

erg =e —A,
co2 = e+A,

then

(34)
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and

+3 = —2e ——.
7

To obtain the integral in (27) in the standard form we have to trans-
form the roots

respectively into

~, e —A, e+A, ———2e
7

I I
I I

The bilinear transformation is

py+r
g =

gy+ s'

Determining the constants, we 6nd

g = I,
I

s k'

Ap=e+ —,
(3s)

e

k
IfA =e, p=r.
If A = 0, k = o, and s = r = ~.

dx ps —gr dy

eo &f(x) & M' v. &(r —y')(r —k'y')

p)
i = g'f —

I, = f(P), «r g= r;
k

' g]'

(37)

A A
e + ——kA —e ——kA

ps qr k-
~f(~) &f(~)

I —&a C04 C03 COI
—Q)2k= —,wherea=

I +&a' C04 402 COI
—Cda

The three 6nite roots are all positive, and the graph of the function

appears somewhat as in Fig. Io. The integration takes place from

co2 = e —A to co~ = e+ A, and is therefore real.
D is negative except when A = e in which case it is zero.

—+ pe+A
7a =—
—+pe —A
v

(gg )
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Let c = —(b(y) —3e, a positive quantity. Then

[c —A

& c+ A c —&c' —A'
~c —A+~, +A

(39)

Fig. 10.

When A = o, k = o, and the last member of equations (36) becomes
indeterminate. To evaluate it, from (39)

hence,

c —&c2 —A2

A

—c+ &c'— (4o)

also from (39),

A
limp p

= 2c,

Ak = c —&c' —A',

A
.'. ——PA = 2 &c' —A'

(42)

pg —gp 2&c' —A'
(44)

Fix

&f(~)

2v c2 —A~

3' "' dy
s 2 gP „&(z—y') (z —k'y')

(43)

When xp = e —A. , yp = —I; when x& = e + A, y&
——z. Integrating

between these limits we have /q'1. Hence the period is given by

8&c' —A' g3IIT= — K
+f(P) ~gP
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where E is the value of the complete elliptic integral

1 jy
~ ~ &(r —y') (r —hY)

k was found to be very small for all values of A really obtained, and it
approaches zero with A, Thus if A = o.5 cm. for platinum-iridium,

sin 'k = 2a'. If A = x.o cm. for steel sin 'k = p'. But the largest
value of A given in Figs. rr and I2 is about o.r cm. This gives for

platinum-iridium p = sin ' k = 4' ar" and for steel y = o' 42". For
phosphor-bronze q is slightly larger than for steel. If k = o,

f1 dy = —= x.57o8.
(r —y') (r —h'y') ~ +r —y'

Ifsin 'k = I'
1 dy = & 57o9

o &(x —y')(x —h'y')

Since k is in no case larger than sin 3o', and for ordinary amplitudes is

much smaller, we may use K = s/a for all the wires and all amplitudes

The etIect of varying amplitude on the other factors in eq. (46) will

be shown after a and P have been determined.

Simplification of the Equation (46) for Small Amplitudes

When A = o, (g6) becomes
~4 I 3MT —2a —~(——

rf(p) ~ —&gP
This may be further simpli6ed,

D = —f(e), when A = o,

=2 8+ 38,
'y v

f(p) = p' —o'+ -(p' —s') — (p —o)-
v 7

= (p —e) p + pc+ e'+ —p+ —e —2-o —3e'
7 7 7

= (p —e) p2+ pe —&e2+ —p ——e
7 7

r

f(P) = (P —o)'I, P+ "+-„I.
From equation (g6)

Ap=e+ —=e+zt,", whenA =o;

(49)

(5o)

.'. f(p) = (2c)'(o + 2c —e —c) = yc'. (5r)
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Hence, from (47),
r

T 2' Q 2X
—2gP( ———3e)7

M
g[n(r + hn) + 2Pe]

z g[n(r + hn) + 2Pe]

2' 1II

(52)

(53)

This is the final form for the expression of the frequency for vibrations
of small amplitude, in which the motion is along the curve represented

by the equation 3II = O,e+ pe', except for the small heating effect
indicated by the term containing h. The eBect of larger amplitudes as
shown by (46) will be mentioned later.

Omitting the term hn, (53) is the same as (ro). If the wire obeyed
Hooke's Law, we would have only to set p = o, and (53) reduces to

t 1gn(r + an) r lg(r+ an)
M 2+4 e

which is equivalent to (2r) except for the damping term.

(54)

ComPutation of Constartts for the Equation M = ne + Pe'

The next step is to 6nd the constants 0. and p of the equation M =
O.e + pe', which will best satisfy the observed values of the frequency as
given by equation (53).

We have from (53)
I

iVn' =,[gn(r + hn) + 2pe]4''
Since 2pe is small compared with gn(t + hn) it will be sufficient to write
iVln in place of e; for e = M/n —pe'/n, and the maximum value of

Pe /n is about one per cent. of M/n. This will influence the determina-

tion of p only, and one per cent. in the value of p is negligible. Making
this substitution for e in (53), the equation becomes

= I 2PMn' = —,gn(r + hn) +—M
47r

(55)

If we plot Mn' as a function of M, we obtain for steel, phosphor-
bronze, and platinum-iridium the results shown in Fig. rx. The slope
of each of these lines is p/2ir'n for that wire, and the intercept on the Ban'

axis is gn(i + hn)/47r'. hn is of the order o.oor for all the three wires

to which the equation applies, hence for hn we may use the value obtained

by neglecting h and p altogether. The values of x + ho. are



4.2 2 GEORGE A. LINDSA Y. t
SECOND
SERIES~

Copper. . . . . . . . . . . . . .
Steel. . . . . . . ;. . . . . . . .
Phosphor-bronze. . . . . .
Platinum-iridium. . . . .

. . . . . . . 1.0021

. . . . . . .1.0013

. . . . . . . 1.0015

. . . . . . .1.0011

The heating effect has therefore little inHuence on the frequency.
It will be noticed on the steel and platinum-iridium plots that when

3f is small Mn is less than it should be. This may be explained by sup-

posing that the wire obeys Hooke's I aw for small elongations. Also, as
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. . .-gP+rttH. W.~~ Ht -HH-~~ ~—.lt-ttt. ' g tHt tttt+ .', ,','.'.','.'.*.*+t

+4gjQ i'-. 4@TN —.Itt M +~fl V

t'ai".

r tttt 8M. Htt . ,

Q/$ ' -l~Ht +t +tt ~1WM Mt~ %+I+. tHI; I++ I +tl. Wtt ~ r+ ~ ~ r+

H+ -+ +I+l H H '. . . -'Ht tHt .'.'', ' '. : '. —:'. '. .I I I
': "M M .W4

tH. H' H ,'Ht '; ' '"'';. ';':;; HHtHt'+' - cd, .

$.
'

.+---t.'. I. '. '. ''
. I. t-tt+CS@ t-t~

p/n/g .tt ', ', ;,';;,';', ,'', ;', , ', '', '', ',
'
, ',

' t~lCT-t---itt-. ----g ~'I:': '. 0- ' tt+H-ttt
t I+ +H+ ttl!I ++~tt tt ttt-: f:t

'. I.tt + - - - tH++t+t 'tH. + t » ~:~ ++ptrt+'
::+tt.-l-+i H '. ::::.': . . +. . . . . ~t. . . , .-t. . ~~+ltil~H. rW+H+~

gjp "-++-. :::. :::::::,:'. . : '. ,' + ~r. .g:: '. .': .'::: . . .' t::' .'.''.'.';'l', ~ ++
' + ', ,'H+ttW

t+-. t.+-
70 -'-tt'' ii'.'!i ' !i i!'++".". 'i i

t'i ' "+ 'i :'. ' -i-::::"i . .' ~". i ;'lii ttHHi!.'i '.'. i ','~--Hit t- ii tWNWt/P . :: . ".*::::::::':';, l.t+, ~ ' '''' .':::::,',':,'Htt~t tHH ttttHt~ Htl ~I-+I.+.t:::..' '.
'
, ~ . . . , . . '

. .'', '. '. .'', ,'.''. ~~gt+HtHt ~Hatt . .'H- -t

gq — ":'::~ +--iI-&'. ~.-:-":IIIII::".e@t+FkRPj" -REF-~ &="-'.. . .,

tttI+-tttt, ' ' ,'.' ,
',''. W~~~ttH. AQ. WW+~@ @+II~~t ~

tttttt . .''. H. ', H*, H:;'H-+I+I+I+ ~ + .'.''. '. .' .'.': .':::.. . I+

+ ++tH. +g~ ++ -+r.'.
' +--r '''t+ . ++Ht t+ItHtt+' u, ,H-tWtttt-~--:. :::::~: H:, ::::~+ H::;, ~H:~ .

S tt ~ - .++".','', ', ;', ~ ~ ~ ~: ' ' . .+I-'- +I+~' ': -ttl-+-t + +WI+H+ H-- ~ -l ,
'',

,
' ' 'ttt .+

: I-H-++I. -+I++t

, t.-. ttt. Httttttttttt tttP. X1g4f ttt I-~-t

4:-:N +"+.. .++. tWW~-' H ~)ggg'~W+H

+ ' '''' ''t tttttlt H-
,gP „::::-- ' „"~g~INJ,~HHHH „„~~=W~H,.:::::. . %:8=tw

li --tttttttt tH--t-tt-'HHrH. i; -i ~~i'H+WtHi " ii;ii i: li;:iiHt ,
'tt-tt+i-'" 4

gOO gOOa IGLOO OOOO-r g$OO OOOO j +-
8 ass. i n. . /ms.

Fig. j.i.

will appear later in comparing the results for direct elongation, the wires
seem not to be entirely straightened out until the second mass is reached,
in spite of the precautions, already noted, which were taken to straighten
them. The phosphor-bronze wire does not exhibit this deficiency in
Mn' because the elongation of that wire was relatively greater, and
the first weight took the wire beyond the region where the elongation is
proportional to the load. The largest weight used was too great for the
phosphor-bronze wire, and although no permanent elongation could be
observed when this mass was removed, yet it is plainly evident from the
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small value of 3In' for this mass that the rate of elongation of the wire
at this point was greater than that which is given by 3II = ne + Pe'.

For the copper wire, Mn' is a constant within the range of error, but
it is to be noted that the greatest elongation is only about the same as
the range for which Hooke's Law holds in the case of the steel and
piatinum-iridium wires. H there is any range for which equation (7)
represents the behavior of the copper wire, that range is very limited,
for the product of Mn' is a constant as far as observed, and the wire
could sustain only a little more than the heaviest weight without passing
the elastic limit.

From Fig. II the following equations were obtained.
Steel: 3f = 3,498 e —22.0 e'. (56)
Phosphor-bronze: 3f = 2,32' e —I9.6 8'. (5y)
Platinum-iridium: 3' = 6,6o2 e —166 e'. (58)

To show with what degree of accuracy these represent the observed

frequencies, we write eq. (53) in the form

Ign(t + kn) pn= —
Q +2 —

g,

and compute n for each mass, comparing the observed with the computed
values.

TABI.H VIII.

Steel. Phosphor-bronse. Platinum-iridium.

P1 Gm. ep s. t2p—18 ~ ZV1 Gm. np mc. np—n, . cV Gm. np. jap

954
1,384
1,815
2,245
2,676
3,098

9.525 9.531
7.908 7.908
6.903 6.900
6.199 6.199
5.675 5.673
5.268 5.269

—0.006 953
.000 1,383

+ .003 1,814
.000 2,244

+ .002 2,675
—0.001

7.767 7.766
6.437 6.436
5.611 5.611
5.038 5.037
4.594 4.606

+0.001
+0.001

.000
+ .001

.012

953 13.058 13.076 —0.018
1,383 10,837 10.836 +0.001
1,814 9.450 9.449 +0.001
2,244 8.481 8.479 +0.002
2,675 7.755 7.753 +0.002
3,097 7.193 7.193 0.000

np = observed value of the frequency for in6nitely small vibrations, taken from Fig. g
for platinum-iridium.

n, = frequency computed from equation (5g).

The above residuals show that the frequency is very well represented

by equation (59) except for the first masses of steel and platinum-
iridium and the last of phosphor-bronze. For the smallest masses it
is not certain that the wires were fully straightened, but on examining
the results for all the wires including the copper we must conclude that
for small distortions, the elongation is proportional to the distorting force,
beyond that there is a region where the wire very closely obeys the law
expressed by equation (7), then the eiongation increases more rapidly
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even than this formula demands, and finally the strain becomes so great
that the wire gives way. The weaker parts of the wire pass through
these stages in advance of the stronger parts, and their cross-section
being lessened, they elongate more and more rapidly, until rupture takes
place at one of these points.

ComPutation of Frequency for Wires Obeying Hoofre's Laxo.

Formula (2x) gives the period if the wire obeys Hooke's Law and if
-we measure the elongation directly. For small elongations we might
expect this formula to give a period agreeing well with the observed,
but it does not. In all cases the e observed directly and substituted in

(2x) gives too small values for n, indicating that the observed e is too
:large.

Table IX gives the values of n„computed from formula (2x), using
the values of e observed directly. The masses are the same as those
used in the vibrations, except for steel. For this reason steel is given
separately in Table X.

At first sight it might be supposed that these results for phosphor,
bronze and platinum-iridium are satisfactory, with the exception-
perhaps, of the smallest mass; and that formula (2x) gives the period
more closely than (59): but it must be remembered that formula (2x)
.assumes that e ~ 1/I. Therefore we have no right to substitute in it the
values of eo in Table IX, because the ratio eo/3E is not constant, and we

0

TaaLH X.
Steel.

M Gm. e
MGm. e Cm. 22pe t!p —rtc.

1,000
1,500
2,000
2,500
3,000
Mean. .

2.874X10 4

2.873
2.883
2.885
2.892
2.887X10 4

954 0.2754
1,384 .3996
1,815 .5240
2,245 .6481
2,676 .7726
3,098 .8944

9.525 9.501
7.908 7.888
6.903 6.888
6.199 6.193
5.675 5.673
5.268 5.272

+0.024
+0.020
+ .015
+ .006
+ .002

.004

need to use a different ratio of eo/3II for each one, which is contrary to
the hypothesis on which (2x) is derived.

Columns 3 and 4, Table X, give the vibrating masses and the corres-
ponding elongations, which were computed from the mean e/3II by mul-
tiplying by the mass used in vibration. n, is the frequency from

x g(x + bn)
27r e
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using the e of column 4. Table X. shows, as the values of 3XIn' of Table
VII. also do, that no constant value of M/e will satisfy the observed
frequencies.

ComParison of e from Static and Dynamic Obseroations

Finally the elongations corresponding to the observed frequencies
were computed for all the wires. For the copper wire the formula,
e = g(x + hn) /4

s'n' was used. For the others formula' . (56), (57), and

(58) were inverted, giving e in the form of equation (8).
Steel: e = z.859 X xo 'M + 5.r X ro "M' (6o)

Phosphor-bronze: e = 4.z97 X xo 'M + r.6 X xo 'M2. (6r)
Platinum-iridium: e = r.5r& X xo 'M+ 5.9 X ro "3P. (6z)

For these three wires e, was computed for the given load plus the pan,
then for the pan alone, and the difference compared with the elongation,

eo, observed directly. In the case of copper since the product of Mn~

was a constant no computation was made for the initial load.

Fig. 12.

Jh sn

ilttass in gms

Fig. I2 shows eo and e, for copper as ordinates with M on the axis of
abscissas. e, and 3II give a straight line, while eo and 2' do not. For
the other wires neither curve is a straight line, and they lie so near to-
gether that they have not been plotted. eo —e, is always positive,
however, for all the wires, and increases with 3E.

V. DISCUSSION OF RESULTS.

The dynamic modulus of metals has been found by other methods to
be greater than the static modulus. The same is true for these longitudi-

nal vibrations, as shown in the last paragraph. No attempt has been
made to determine the absolute value of either modulus, it being outside
the purpose of this investigation.

If we consider the modulus to be proportional to d3I/de, we have from

equation (7) dM/de = a + zeP, which may easily be computed by
equations (56), (57) and (88). For copper, since p = o, we have

M/e = 4s'Mn'/g(x + hu)
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Possible After-egect in Al/ the Sires.
A large after-effect is shown in Fig. 5 for copper, and some is also

exhibited by similar curves for steel. Since the recovery is rapid at first,
it seems quite possible that the point of instantaneous recovery may be
far beyond that indicated by the dotted continuation of the curves. The
greater part of the recovery may be during the first second or two follow-

ing release, or even while the load is being removed. The curves for
copper unquestionably show that it is rapid at first, for very little of
the effect there indicated comes from the heating of the wire. For
phosphor-bronze and platinum-iridium there is apparently no after-effect,
but the recovery may be so rapid that it is complete before an observation
can be taken. This theory would explain the discrepancy between the
observed elongation and that computed from the results of vibrations,
which is equivalent to saying it would account for the difference between
the static and dynamic moduli.

We may suppose, then, that the observed values of the elongation
are all too large. The deformation due to the after-effect is much larger
than would be supposed from usual observation, for it decreases very
rapidly when the load is first removed, and by the time an observation
can be made a great part of it has disappeared. Thus there may be consid-
erable after-effect in wires which apparently show none; the wire may
have entirely recovered by the time the first observation can be made.

Inftttence of the After egect on t-he Period

Considering again Fig. I, as the point P oscillates, 0 will also oscillate
with a certain amplitude depending on the period, the distance OP, and
the material of the wire, as well as its condition as to hardness, tempera-
ture, etc. The phase difference between the motions of 0 and P will

depend on the period and the manner in which the wire recovers after
removal of the load. This last is an important element, and also an
uncertain one. If the phase difference were zero, then P and 0 would
both move downward through their mean positions at the same instant.
In the half of the period when P is below its mean position, 0 would also
be below its mean position. As a result the force of restitution would be
less than if 0 remained at rest, and the period would be increased. %hen
P and 0 were above the mean positions there would be a greater elastic
tension on account of the displacement of 0, and this would also increase
the period, so that we have a decrease in frequency due to the motion of
O. It may be noted that this is just opposite to the effect of the motion
of 0 due to the heating and cooling of the wire. (Comp. the term ha in
equation (g3).)



GEORGE A. LINDSA Y. t
SECOND
SERiZS.

But we must suppose that 0 is somewhat behind P in phase. Then
when the two points are on opposite sides of their respective positions of
rest the frequency would tend to increase, when they are on the same side
it would tend to decrease. Unless the motion of 0 became 9o' or more
behind that of I', the frequency would probably be decreased by this
motion of 0.

That this does not account for the variation in 3IIn' for steel, phosphor-
bronze, and platinum-iridium, appears from the fact that 3Hz did not vary
appreciably in the case of copper, which is just the one in which the after-
eA'ect was greatest. It is true that the recovery of copper is not so rapid
as that of the other three metals, and hence the amplitude of 0 may not
be as great, but we should expect at least a noticeable variation in Mn'.

VI. THE DAMPING oF LQNGITUDINAL VIBRATIoNs.

A PParcctus.

The amplitude of the vibrations when the wire is only about two
meters long cannot be very great; consequently the accurate measure-

ment of the damping becomes a matter of some difficulty. The following

method has yielded fairly satisfactory results.
A fiber of glass was attached to the wire, and allowed to project about

I cm. at right angles to it. The 6ber pointed towards a specially con-
structed camera. The lens, which was one used in an ordinary gal-
vanometer telescope, and had a focal length of about I5 cm. , was stopped
down until the aperture was only about 5 mm. At the back of the
camera was fixed a drum, 4o cm. in circumference, rotating about a
vertical axis. The axis was a screw, so that as the drum revolved, it
moved parallel to the axis. A small drop of mercury was placed on

the end of the glass strip next to the camera, the drop was brightly
illuminated by the light from an electric arc, and the camera was so
placed that the image of the drop fell on the drum. Owing to the great
curvature of the small mercury drop, a sharp spot of light was obtained.
A rapid photographic 61m was attached to the drum, and rotated as the
wire vibrated, thus obtaining a record of the vibration. The mercury
drop could not be placed directly on the wire, because of the fogging of
the film by light refiected from the wire. The glass 6ber was colored red,
so that any light rejected therefrom would not aGect the record. Fig.
I3 shows a section of a record for steel.

Since the purpose was only to measure the amplitude, uniformity of
motion of the drum was unnecessary. It was therefore turned by hand,
a handle outside the camera box serving that purpose. The mass was
set vibrating and the drum started. Then the current driving the wire
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was shut off and at the same time the drum was stopped for an instant.
The several vibrations thus heaped up together indicated where the damp-
ing began.

The measurements of the amplitude were made on a measuring engine
of the Detroit Observatory, the plate-holder of the engine being mounted
to revolve about an axis parallel to the axis of the microscope. This
permitted an easy adjustment of the cross hair tangent to two adjacent
waves. For all the wires except copper, I,ooo vibrations could easily
be measured. Beyond that number they were so small that a relatively
large error in the logarithm of the amplitude was introduced. The lens

was so placed that the amplitude on the 61m was about equal to the
actual amplitude of the point on the wire. The motion might easily
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Decrement curves for steel ~

have been magnified, but what was gained in this way was lost in defini-

tion of the trace. The largest double amplitude measured was about

4 mm. on the film, the smallest about o.3 mm. . Ordinarily the measure-

ments ran from 3 mm. to 0.) mm. The measuring engine read directly
to o.oo5 mm.

Two records were made for each mass suspended from the copper wire,

because the rapid damping allowed room for two on the film. For the
other metals the damping was so small that only one record. was made
on each film. Every goth vibration was measured and the logarithms of

. these were averaged by pairs, so that the plots show only the logarithms
for every 6oth vibration. Figs. I4 and r5 represent graphically the
decrements for the masses given in Table XI. in order of increasing
magnitude. Similar curves were drawn for copper, and the logarithmic
decrements of Table XI. were obtained from these curves.
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Vari'att'on of the Logart'thmtc Decrement

It was found by Schmidt' for torsional, and later also by Voight2 for
flexural and torsional vibrations, that the logarithmic decrement varied
with the amplitude. They expressed the relation in the form

X = Xp+Li',
where Xp is the logarithmic decrement for very small vibrations.

The values of Table XI. for copper are plotted in Fig. 16. Although
the rate of increase is different for diferent masses, the increase is nearly
proportional to the increase in amplitude' in all cases, and

represents the relation. The second mass gave an abnormally large
decrement for the larger amplitudes, as seen from Table XI. There is
no apparent reason for this. Both records taken of this mass show the
same peculiarity.

While with the other wires, the logarithmic decrement for a rough
approximation, increased in proportion to the increase of amplitude, the
increase was much less than with copper, and less regular. The logarith-

I Loc. cit.
' Loc. cit.
' Bouasse and Carriere found X = bA for torsional vibrations of copper. (See Ann. de

Chim. et de Physique, 8me Serie, t. r4, p. zo8.)
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mic decrement for steel, especially for the smaller masses, is very nearly
constant,

For phosphor-bronze only two masses were used and there is a remark-

able difference in the decrement in these two cases. The decrement for
the small mass, x,383 gm. , is only about one third that for the larger
mass, 2,244 gm. , and that for the smaller mass is very nearly constant.
In goo vibrations this amplitude decreased from 6.o4 to 3.27, while for
the larger mass in the same number of vibrations it decreased from 5.56
to I.48. For the other metals there is no apparent dependence of )
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Fig. 16. Copper.

on the period. If we produce the straight lines of Fig. I6, backward to
the axis we get for ) 0, omitting No. 2

Mass. P,p.

(1). . . . . . . . . . . . . .001a1
(2)
(3). . . . . . . . . . . . . .00136
(4). . . . . . . . . . . . . .00130
(5). . . . . . . . . . . . ..00186
(6). . . , . . . . . . . . . .00160

With the largest mass suspended from the copper wire a single test
was made of the effect of starting with a larger amplitude. In the case
of the greater initial amplitude the decrement is slightly higher for large
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amplitudes, but as the amplitudes decrease the decrements in the two
cases approach equality.

The temperatures were nearly the same in all cases, so little variation
can be expected from this source.

It would be very desirable to test more fully a single wire, carrying a
constant load, to determine the effect of change of temperature, and

previous treatment of the wire, as well as the variations of other condi-
tions for which there was not opportunity in this limited investigation.

Cause of Damping.

If the damping were caused by internal friction of the particles, and

the friction were assumed proportional to the velocity, then we should

T
have ) ~ —~ n, or X/e = a const. That this is not fulfilled at all

by any of the wires is plainly seen by reference to Table XI., and by
comparing ) for equal amplitudes and diferent frequencies. The phos-

phor-bronze shows a marked variation in the other direction; X decreases
with increase of frequency.

In Boltzmann's theory the decrement is independent of the period,
and this seems to be nearer the truth, for longitudinal vibrations. As

already stated in the introduction, Voight found for torsional and flexural

vibrations that some metals showed, as phosphor-bronze has done in the
present instance, an increase of X with decrease of n. A definite con-

clusion can not be reached for phosphor-bronze, however, since but two

frequencies were used.

Correction for A~r Damping

A correction for the damping due to the friction of the air was made as
follows. The cylindrical shell shown in Fig. 6 with the rod attached
as when used for vibrations, was suspended in a horizontal position by a
bifilar thread, so as to swing in a direction parallel to the axis, thus expos-

ing the same surface and giving it the same motion through the air. The
wire in longitudinal vibration presented only a small surface compared
with the shell, and its effect would be nearly compensated by the
friction of the bipolar threads mentioned above. The logarithmic decre-

ment of this pendulum system was then determined for the different
Hlasses.

From equation (i6) p = 2XO/To, where Xo and To are respectively the
logarithmic decrement, and period of the pendulum vibrations.

g = 2(X/T —Xo/To) = &X /T, where X is the logarithmic decrement
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due to the internal damping alone. T is the period as it would be if
there were no air damping, and is practically identical with r.

'1
= X —)0—.

0

Thus Xo(T/To) is the correction to be subtracted from the measured

value of ) to obtain the decrement due to the metal alone.
For small amplitudes the following were observed.

Mass. Ap, T sec.
2,244 0.00027 3.44

3,097 0.00027 3.44

The greatest correction to be applied is for the smallest value of n.
The smallest value of n was for phosphor-bronze, where for M = 2,244

vibs.
gm. , n = 5,o4 sec.

There was no mass of 3,o97 gm. used with phosphor-bronze, but for
steel

M = $,09$ gm. , n = 5.27
3f = 2,244 gm. , n = 6.20

Thus we have for phosphor-bronze,

for steel,

VVI gm.

2,244

ApT

Tp.

0.000019

2,244 0.000015
3,097 0.000016

Therefore the maximum correction to be applied to X given in Table XI.
is o.oooo2. For the copper it would be about half this value, and hence,
when compared with the decrement for internal damping, is small

enough to be neglected.

The Platinum-Iridium 8'i re.

The platinum-iridium wire was chosen because of the peculiar behavior
of such wires noticed by Guthe, ' and later investigated further by the
same author and Sieg.' They found an excessive damping of torsional
vibrations for platinum-iridium wires containing 4o per cent. of iridium,
which is the same composition as that of the wire used in the present
instance. It was accordingly expected that the damping of the longi-
tudinal vibrations would also be large. The result was a decrement
comparable to that of steel and phosphor-bronze, and far below that of
the copper. When the wire was later suspended and vibrated torsionally,
it was found that neither did this wire exhibit unusually large damping of

~ Proc. Iowa Ac. Sci., rg, p. z47, x9o8.
2 PHvs, REv„Vol.XXX. No. 4, I9xo.
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torsional vibrations. The highest decrement observed for the torsional
vibrations was 0.00270, when the initial amplitude was 825 . The
decrement decreased considerably with the amplitude. Since the length
of the wire under discussion was I45 cm. and the one used by Guthe and
Sieg was 40 cm. , an angle of 825' is about double the twist per unit length
for which they observed a logarithmic decrement some 2/s times as
large. The diameter of the wire used here was 0.206 mm. , as compared
with 0.I9g mm. for theirs. Their wire showed a difference in period of
2 per cent. between large and small amplitudes. The period of this wire

was found to be I8.069 sec. for II' amp. , I8.I33 sec. for 550' amp. , a
difference of only /s per cent. There is, therefore, evidently a difference
in the composition of the two wires, or else previous treatment is very
influential in determining their behavior.

Variation of Period with Anzp/itude.

The effect of damping on the period is given by

2'1

where ~ = aX/T.
For copper, which exhibited the greatest damping, let us take ) = o.oI0

in natural logarithms, which corresponds to the highest ) computed in

common logarithms. Also take 1= o.o7 sec., which is approximately
the period for 3f = I,386 gm. Then

.02 g 2

o' = = 0.29, = 0.020,.07

9» = 8I70.
e .I2

Hence a'/4 compares with g/e about as r with 4oo, ooo. The observed

variation of T was /g per cent. , hence the variation was not caused by the

change in X, provided 0. enters into the equation for the period as shown

above. The fact that X varies so greatly with the amplitude shows

however, that the internal friction, whatever may be its nature, is not

proportional to the velocity.
The equation (46) is an expression for the period which involves the

amplitude. The largest value of A observed in timin'g was O. I cm. Sub-
stituting this in equation (46) we ffnd that for platinum-iridium, &c' —A'
differs from c by r part in 7oo,ooo, and in the denominator, &f(p) differs,
when A = 0, and when A = o.r cm. by only I part in 3,000,000. It has

already been stated that X[= F(k, s/2)] is not perceptibly affected by
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changing A within' the limits of the experiment; hence the vibration
along the curve represented by (6o), (6t), or (6z) will not account for
the variation of T. This also appears by considering that for copper the
dynamic modulus was a constant, yet the greatest variation of period
with amplitude was observed here.

By comparing elongations from static and dynamic observations as in

Fig. r2 it is found that the differences eo —e, per unit length, in the order
of magnitude beginning with the largest, place the metals in the following

order: Copper, platinum-iridium, phosphor-bronze, steel.
This is the order of variation of period with amplitude; the copper

showed the greatest variation, the platinum-iridium considerable, the
phosphor-bronze very little and none was detected for steel.

The position of the wires with regard to the magnitude of 'A is uncertain
for all except copper, which again undoubtedly stands at the head.

The indication is that the wires having the largest after-effect, have
also the greatest variation of period with amplitude, and the largest
decrement, although it is to be noted that rapidly of recovery from after-
effect is of as much importance in affecting the period as the total magni-

tude of the after-effect.
VII. SUMMARY.

1. As a result of the measurement of the frequency of longitudinal
vibrations of wires, carrying various loads, it appears in Section IV. that
for small loads, the modulus is a constant; for greater loads the modulus

decreases with increasing load, although the wire is still far within the
elastic limit.

2. These two regions are of different relative extent in different wires.

A soft copper wire showed a constant modulus until the elastic limit was

very nearly reached (see Table VII.). Steel, phosphor-bronze and

platinum-iridium, showed a relatively large range of elongation where the
frequencies for small amplitudes are satis6ed by an equation of the form

Ig[n(t + hn) + zPe]
n see Table VIII. ,2K M

where, for a given wire a and P are constants, e is the elongation for the
mass M, and e and M are connected by the relation M = ne + Pe'. h is
a small constant depending on temperature changes in the wire as the
wire vibrates.

3. The modulus determined dynamically is, as usual, larger than that
measured under static conditions (see Fig. 1z).

4. This difference in moduli may be explained as the result of a large
after-effect, the greater part of which disappears very rapidly after the
removal of load (see Sec. V.).
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5. The frequency decreases with increase of amplitude, in the case of
copper and platinum-iridium. The relation may be represented by
n = no —Li where b is a positive quantity. b is greater for large
frequencies than for small (Tables V. and VI.). The variation for phos-
phor-bronze was exceedingly small, and for steel piano-wire n was evi-

dently independent of the amplitude.
6. The wire which showed the greatest variation of period with

amplitude also showed the greatest damping and the greatest after-eGect.
7. The logarithmic decrement was measured and found to vary with

the amplitude (Sec. VI.). For copper, at least, the increase of t. was

very nearly proportional to increase of amplitude (Fig. r 6). The
logarithmic decrement does not vary with different frequencies in such a
manner as to indicate that the damping is due to internal friction.

The writer is under obligation to Professor Guthe for proposing the
investigation, and for making valuable suggestions during the progress of
the work, to Professor Randall for advice in regard to some of the experi-
mental part, and to Professor Curtiss for the use of a measuring engine
of the Detroit Observatory.
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