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ON THE CALCULATION OF THE SPECTROSCOPIC TERMS
DERIVED FROM EQUIVALENT ELECTRONS

BY HENRY NoRRIs RUssELL

ABSTRACT

The calculation of the spectroscopic terms which result from an atomic con-
figuration containing several equivalent electrons, in which Pauli s restriction is

operative, can be made very simply by the extension of a notation due to Breit. The
results are in agreement with those previously given by Hund for P and d electrons
and those of Gibbs, Wilber and %hite for f electrons. Some minor alterations in

notation are suggested.

' 'T IS now mell established that the spectroscopic terms belonging to an atom'. in a given state of ionization depend upon the combined inHuence of all
the electrons outside the complete "shells. " When these electrons are
unlike (differing in either their total or azimuthal quantum numbers) the
determination of the terms produced by any configuration is very simple; but
when they are equivalent in these respects, the restriction stated by Pauli
becomes operative, according to which no two electrons in the same a'tom can
have the same values for all four of the quantum numbers which define their
state. The following method permits a rapid analysis of the effects of this
limitation.

The notation is substantially that of Hund's book. ' The state of u single

electron in an atom is completely defined by five quantum numbers, s, /, n,
m, and m~. Of these, s defines the "spin" and is always —', (in the usual units
of h/2z), / is less by a unit than Bohr's azimuthal quantum number, and n is

equal to Bohr's total quantum number. The quantities m, and m& are magnetic
quantum numbers, giving the orientations of the spin-axis and the orbit
plane in a (hypothetical) magnetic field strong enough to break down all

couplings between individual orbital or spin vectors; m, has the value+-„
while m~ runs from l to —I by steps of a unit. Pauli s restriction then demands
that no two electrons in the same atom have the same values of n, 1, m, and
m~. The small letters, s, p, d, f, , are used to describe electrons for which

l = 0, 1, 2, 3, ; so that, for example, 2s, 4p, 3d, have exactly the same mean-

ings as Bohr's 2~, 4~, 33.
States of an atom (which correspond to the separate magnetic levels into

which a component of a multiple term is divided) may be defined by the
numbers S, L, mq and mL, .' Of these, S represents the vector sum of the s's

Hund, Linienspektra und periodisches System der Elemente. Berlin, 1927. (Julius
Springer) .

2 Hund uses l; for the electron and l for the atom; but if both are to be used as subscripts,
as is described here, the capital letter appears preferable. The use of s (and S) to denote both
spin-vectors and orbits (or terms) is not likely to lead to any misunderstanding, and it is not
worth while to change the notation already adopted by several active workers to avoid this
formal objection.
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and defines the multiplicity, being 0, —„1, , for singlets, doublets, trip-
lets, ; L is the vector sum of the l's and is 0, 1, 2, 3, , for S, I', D,
F, . , terms. The magnetic quantum numbers, as ordinarily defined, are
in weak fields m=nzl. +m8, and in strong fields m'=mr, +2nzq.

When only one electron is active (as in Na I, Ca II, etc), the quantities
denoted by small and large letters become identical. In this case a total quan-
tum number n can be assigned to the atomic state. When more than one
electron is active, no such assignment is possible, and a complete description
of the situation demands the specification of n and / for each electron. For
example, the lowest energy-state of Ti I is (3d)' (4s)', 'F~, two of the four
active electrons being in 3d orbits, and the other two in 4s orbits.
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Fig. 1. Relation between nzz, mz, and the inner quantum number j, for a regular 'D term.

The relation first stated by Pauli, between m~, ml, and the inner quantum
number j' has been simply expressed graphically by Breit.' The values of
ml. are written above the top of a rectangle, those of nzq at the left, and the
magnetic quantum numbers m = rnq+m J. inside it. The magnetic levels which
unite into a single component of the term in the absence of an external field,
are then obtained by dividing the rectangle into L-shaped strips, as shown by
the dotted lines in Fig. 1, which corresponds to a 'D term (S=1,I =2). The
three "runs" of I from 3 to —3, 2 to —2 and 1 to —1 correspond respectively
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Fig. 2. Relation between mj, mL, and the inner quantum number j, for an inverted F term.

to the components 'D3, 'D2, 'DI. The maximum numerical value of m in each
"run" gives the inner quantum number of the component, in Sommerfeld's
notation.

The arrangement here given holds good in general for "regular" terms.
For inverted terms, the strips are inverted as shown in Fig. 2, representing a

' j is not written as a capital (a) to avoid confusion with Lande's usage, (b) because
inner quantum numbers have a meaning only for atomic states, and not for the separate
electron-orbits.

4 Breit, Phys. Rev. 28, 334 (1926).
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'J" term. The same arrangement may be obtained by keeping the strips as
before but changing the sign of each individual m, and ml.

When two unlike electrons occur in an atom, the values of L and 5 resulting
from the combination of their individual values of l and s may be derived by
the aid of Sommerfeld's form of the vector-model, or as Breit has shown, by
the graphical process just illustrated. For example, Fig. 1 represents the com-
bination of a P-electron (I =1) and a d-electron (l =2) provided that the outer
vertical and horizontal rows are supposed now to represent the two sets of
values of m& and the quantities inside the rectangle the values of m& which
are obtained by adding the others in all possible conbinations. Dividing them
into strips as before we obtain runs of m~ from 3 to —3, 2 to —2 and 1 to —1,
which give L = 3, 2, 1, or D, P, 5, terms. If additional electrons (not equivalent
to any previously considered) are to be added, the values of nzrfor e,ach term
of this first resultant are to be combined independently with those of m& for
the new electron.

The s-vectors are similarly treated; thus Fig. 2 represents the addition of an
additional electron (s=-', ) to a configuration giving a sextet term S=3, the
new runs of ms being from 7/2 to —7/2 and 5/2 to —5/2, and the new terms
septets and quintets.

So long as the electrons are all dissimilar there is no restriction on these
combinations. Any pair of values of m&, m& may be added to give a new m&
and any other pair of values of m&, m, to give a new ms. It is therefore suffi-
cient to consider the combinations of the two separately; and terms of any
given type (5, P, D) will appear in both the multiplicities produced by add-
ing the new electron.

But when the electrons are equivalent in their total and azimuthal quantum
numbers, Pauli s restriction operates. All cases in which both m~ and m, are
the same for a pair of electrons must be excluded, and, what is more, cases
obtainable from one another by a mere permutation of the order in which the
electrons are counted correspond to the same atomic configuration, and give
exactly the same energy-level.

How this works may best be seen by an illustration. In the case of two
equivalent p-electrons, the diagram for mz, is as follows.

0 —1

[2]
0 1 [0]

—1 0 [—2]

When mq = 0, the individual values of m, must be + 2 and —2. The two elec-
trons are dissimilar in this respect, and hence the combination of the m~ s
is unrestricted, giving runs of mq, 2 to —2, 1 to —1 and 0. But when ma=1
(or —1) the two m, 's are alike, and the m~'s are restricted. The values of mr.
on the diagonal, which are bracketed above must now be excluded, and the
values below the diagonal become mere duplicates of those above. All that
remains of m~ is the run 1 to —]..
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Collecting these results we have,

1 to —1

2to —2, 1 to —1, 0

1 to —1

3gl

We have evidently here exactly the sets of values of m& and mL, which are
required to form the terms indicated at the bottom.

In order to distinguish between primed and unprimed terms a very simple
rule which is now being followed by several investigators may be deduced
from Heisenberg's statement that, in any electron transition which gives rise
to radiation, one electron changes its azimuthal quantum number by one unit,
while at the same time one other may change by two. If then we assign to
the various types of orbits 0, 1, 2, 3, for s, p, d, f, electrons respectively (which
are Hund's values of l) it is evident that the sum of the l's, in any transition,
must change from odd to even, or vice versa. This gives us two groups of
terms, —even terms (l sums even); S, P', D, P', G, etc. : odd terms (l sums
odd): S', P, O', P, G', etc.—which may be distinguished by the fact that th' e
odd terms have an odd number of p and f electrons, taken together, in the
configuration. If primed terms are defined in this way, a notation is obtained
which is consistent with the accepted notation for the sodium, calcium and
aluminum groups, and which may be applied without ambiguity to all cases.

In the case of three p-electrons, the sum ms = + 3/2 may be obtained only
when all three of the values of m, are alike. The three values of m~ must then
all be different; that is, they must be 1, 0 and —1, and ml, =0. The sum ma =-',

is obtained when two of the m, 's are -,'and the other —~. The first two give
the run 1 to —1 for mr, . Since the third electron is dissimilar (having a different
value of m.) this run combines freely with the m; of the third electron, giving
runs from 351. of 2 to —2, 1 to —1 and 0. The case where m, = —-,'is exactly
similar.

We thus find the array

my= + ~~

+ 1—2 2 to —2, 1 to —1, 0

2P 4g~

Beyond this point we need not go, for, as is well known, a complete shell
of six P-electrons must have mal=0, m~ ——, 0, giving a 'S term. A shell of five
electrons gives the same values as a single electron, and one of four the same
as one of two, except that the sign of each individual rnq and ml, is changed,
whence it follows that the terms are the same as those previously calculated,
but are inverted.

The advantages of the present method of calculation are more apparent
in the case of equivalent d-electrons. When discussing it, we will, for brevity,
write (4) to denote the "run" 4 to —4, etc. The free combination of any two



HENRY NORRIS RUSSELL

runs (m) and (n) (where we may suppose m&n), then gives a set of runs

(m+n), (m+e —1), and so on to (m —rs).
For two d-electrons, we have the diagram

[4]
1 3

0 2

1

—2 0

1 0

3 2

[2l

[ol

0 —1.
—1 —2

[—21

When rug=0 combination is unrestricted, but when my=+1 the diagonal
values must be rejected and the quantities below the diagonal are duplicates
of those above, so that we have simply the runs (3) and (1). Our array then
becomes

ms +1 (3) (1)
= (4) (3) (2) (1) (O)

'G 'Ii ' 'D 'I" 'S

We may next note that, with 6ve d-electrons and m, = +5/2, all the m, 's

are of the same sign and mz, must necessarily be 0. With four electrons and
nz, = +2, only one of the five possible values of m& is lacking in any set, so
then mr, has the run (2) as in the case of a single electron. Finally, for three
electrons, and m, = + 3/2, two are lacking, and mr, has the runs (3) and (1).

Very little further calculation is now necessary. For three electrons and
ms ———',, we have two with m, =+—',

, giving runs (3) and (1), and one with
m, = ——„giving the run (2). These runs combine without restriction, giving,
in the erst case, runs of (1), (2), (3), (4) and (5), and in the second (1), (2)
and (3). Here we have

ms = + —', mr, = (1) (2) (3) (4) (5)

+ 1—2

(1) (2) (3)

(1) (3)
~D 4P' 'G 'H' 4I" 'D

For four electrons, mq= + 1 can be obtained from three electrons from which
m, has one sign and mr, = (3) or (1), and one of the other sign, giving the '

same combinations as before, while when m, q ——0, m, =+-', for two and —-,'for
the other two, giving runs of (3) and (1) to be combined freely with another
(3) and (1).

In writing the resulting array, we may record simply the number of runs of
mI. of each length found for any given value of mq, as is done below. The
number of terms of the highest multiplicity and of any given sort (8, P, D)
is then equal to the number of runs listed under the corresponding value of
mI. and in the row headed by the highest value of mq. The numbers of terms
of any lower multiplicity are found by subtracting, from the numbers in the
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row headed by the corresponding value of nz8, the numbers in the row next
above these.

The results for four and 6ve equivalent d-electrons are shown in Table I.
In the latter case, ms = + 5/2 gives, the single run (0), ms = + 3/2 the resultant
of runs of (2) for the four similar electrons, and (2) for the other one and
ms= +2 that of (I) and (3) for the group of three electrons and (1) s,nd (3)
again for the group of two.

TABLE I

The array for four and five equivalent d electrons.

Four
electrons

Five

mg
m$= +2

+1
0

mg = +5/2
+3/2
+ 1/2

(o) (1) (2)
1

2 2
2 2 4

(3) (4) (5) (6)

Terms
Four Quintets

electrons Triplets
Singlets

D

1
2

Five
electrons

Sextets
Quartets
Doublets

1
2

our analysis is now complete. The resulting terms may be arranged in the
form shown in Table II.

TABLE II
Resulting terms for equivalent d electrons

d10

d,d'
d2 d8
d3 d7
d4, d'
d6

1S
2D
3P 3F~
4PI4FI
'D
6S

1S . 1D 1G
'D 'P' 'D 'F' 'G 'H'
'P ' 'F"P' 'D 'F' 'G 'H!
4pr 4F~ ~ 4D . 4G

t t

1S 1D lG 1S 1D 1F 1G 1I
2D 2pr 2D 2F~ 2G 2H~.2S 2D 2F~ 2G 2I

This is identical, in content, with Hund s table' but brings out the note-
worthy regularities in arrangement in a somewhat different manner. The
terms of lowest energy level are found in the second column and the other
terms of practical importance in the third.

The case of equivalent f electrons demands a little more reckoning. Two
such electrons may be treated in the same fashion as two d-electrons, giving

(I) (3) (5)
= (o) (&) (2) (3) (4) (5) (6)

lg 3jP~ 1D 3P~ 16 3II~ 11

6 Hund, LiniensPektra, p. 119. The table ih his original paper, Jacks a 'G term for d4 and
a 'S for d6.
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With three electrons, and ms=+3/2, the actual cases must once more be
counted, and care must be taken not to count the same combination twice.
This may be assured by combining the first two electrons as above and adding
a third only when its value of ml, is less than for either of the other two. In
this way each permutation will evidently be counted once and only once.

For the two electrons the exhibit of the permissible values of m~ and uzi,
forms a triangle, as follows.

nz)=2 1 0

m1. =5 4 3

—1 —2 —3

0 3

3 2 1 0 —1 2

1 0 —1 —2 1

—1 —2 —3 0

—3 —4 —1

—5 —2

We may begin by combining M& = 5 in the first column of the triangle
with the values of nz~ in subsequent columns and in the outer row above, then
the values M'

r, ——4, 3, in the next column with the numbers in the following
columns of the outer row and so on. Thus we get the series of numbers

6, 5, 4, 3, 2; 4, 3, 2,

3, 2, 1, 0;
2, 1, 0;
1, 0,
0, —1, —2;

0, —1 )

—2'
)

—3'
—4. ~

which may be immediately rearranged into the runs (6), (4), (3), (2), (0).
For ms ——+ ~ we have two electrons with m, of like sign, giving the runs (1),

(3), (5), and one of opposite sign with the iun (3). The final array may then
be written as follows.

mr,

528=+j
+1—2

Terms

(0)

1

(2)

1

3

D'

(3)

1

3

(4)

1

G'

(5) (6) (7) (g)

Quartets

Doublets 2 2 1 1

The remaining computations are now straightforward. Four electrons with
rr4 alike give again the runs (0), (2), (3), (4), (6), five give (1), (3), (5), six
give (3) and seven give (0).

The results were worked out independently by Messrs. Gibbs, Wilber and.
White, and may be found in their paper, (which immediately follows this).
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(By mutual agreement, the theory has been presented by one author, and the
numerical results, so far as they are new, by the others. )

A word may be said about the notation of the terms corresponding to high
values of L. The letter Jhas been omitted by Hund in accordance with German
usage. P and S are preoccupied. The list of letters then becomes

I.= 0 1 2 3 4 5 6 7 8 9 10
S P D Ii 6 H' I X L M

L= ii 12 13 14 15 16 17 18 19 20
0 Q R T L7 V W X Y Z

Even this extension is barely adequate to include what may be anticipated
among the rare earths. The highest multiplicity to be expected is 11,which, as
Hund points out' should occur in Gd only, and give a term "Ii arising from the
configuration f'd's, which must be either the normal state or a very low metas-
table one. The highest value of I.among the "middle terms" with one excited
electron should occur in the same spectrum, arising from the configuration
(4f) ' (5d)' (6p), which should give a term for which mr, = 16, of type ' V'. Similar
terms originating in the configuration f'd'p or f'd'p should occur in Eu and Tb.
Still greater values of L could be reached in highly excited states; for example
the configuration (4f)'(5f) (5d) (6d) (6p) representing an atom of Tb with
three excited electrons, should give a maximum value L=20, and a term
which would demand the notation 'Z.

Among the multitude of levels given by this configuration mould also be
some derived from the 'S term of origin f', which would be of multiplicity 12,
and all types from "Sto "I.. These terms however would be very unlikely to
give lines strong enough to be observable.

In conclusion, reference may be made to the beautiful manner in which
Breit's graphical process4 solves the problem of the limits of series in complex
atoms, and shows which components of a given term in the arc spectrum
(for example) go to given components of the limiting term in the spark spec-
trum. The results are naturally in accordance with those given by Hund in
Fig. 34 at the end of his book.

PRINCETON UNIVERSITY)
OBSERVATORY,

April 4, 1927.

' Hund, Linienspektru, p. 177.


