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ON DIELECTRIC CONSTANTS AND MAGNETIC
SUSCEPTIBILITIES IN THE NEW QUANTUM
MECHANICS* ‘

PART 1.

A GENERAL PROOF OF THE LANGEVIN-DEBYE FORMULA
By J. H. VAN VLECk

ABSTRACT

In contradistinction to the old quantum theory, the new quantum mechanics
yields very generally the Langevin and Debye formulas x = Na+ Nu?/3kT for the
magnetic and dielectric susceptibilities respectively. It is believed that our proof is
considerably more comprehensive than previous ones, for it assumes only that the
atom or molecule has a “‘permanent’’ vector moment of constant magnitude x whose
precession frequencies are small compared to k7' /h. There is no limit to the allowable
number of superposed precessions. There can, for instance, be simultaneous pre-
cessions due to internal spins of the electron and to ‘‘temperature rotation’’ of the

- nuclei. The presence of other simultaneous external fields in addition to the applied
electric or magnetic field introduces no difficulty. Besides the effect due to the
permanent moment, there is the term Na which arises from ‘“high frequency’’ matrix
elements associated with transitions from normal to excited states. This term is
proved independent of the temperature. The susceptibility formula contains the
factor 1/3 in the temperature term as generally as in the classical theory because
of the high spectroscopic stability characteristic of the new quantum mechanics.
It is shown that the mean squares of the x, ¥, and z components of a vector are equal
in the new quantum dynamics just as in the classical theory, the only difference
being that in the new quantum theory we take the average by summing over a
discrete distribution of quantum-allowed orientations instead of by integrating over
a uniform continuous distribution.

1. INTRODUCTION.

HE present paper is part I of a series of articles on magnetic and dielec-

tric susceptibilities in the new quantum mechanics, and contains the

main elements of the mathematical theory. Part Il will discuss the appli-

cation to dielectric constants, especially in. relation to previous work by

other authors with particular models. Part III will deal with applications
to magnetism, including the paramagnetism of O, and NO.

The main purpose of part I is to give a very general derivation, also
some critical discussion, of the Langevin-Debye formula

X =N<a+3:2T>' W

Here x is the susceptibility, NV is the number of atoms or molecules per unit
volume, % is the gas constant, and « is a constant independent of the absolute

* Presented at the New York meeting of the American Physical Society, Feb. 1927.
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temperature 7. We shall suppose the susceptibility x to be either magnetic
or electric, not because of any deep physical resemblance of the magnetic and
electric polarizations, but simply because it is well known that they can both
be calculated by quite similar mathematical procedures, so that we shall
treat them together wherever possible. Thus 1447y will denote the
dielectric constant or magnetic permeability, and u the permanent electric
or permanent magnetic moment of the molecule, depending on whether we
are dealing with electric or magnetic polarization. The interpretation of the
constant « is somewhat different in the two cases; in the electric one «
is the “induced moment” due to elastic polarization of the atom or molecule
by the impressed field, while in the magnetic case « is usually negative and
represents the induced diamagnetic moment, although we shall see in part
III that the magnetic « is occasionally positive due to the quadratic Zeeman
effect associated with multiplet structures. Thus in magnetism « is usually
small, and so ordinarily omitted. Historically, Eq. (1) was first applied
to magnetism, as in 1905 Langevin!' published his famous paper, and it
was not until 1912 that Debye? extended the formula to dielectric constants
by assuming that there could be a “permanent” as well as “induced” electric
moment in polar molecules.

Our derivation of (1) will be based on the new quantum mechanics.
There is, however, an interesting analogy with the classical theory, as it will
be shown in part II that the same result could be obtained classically if we
averaged continuously over all possible orientations of the moment and
precession vectors relative to each other and to the field instead of summing
over the discrete quantum states. It must be regarded as one of the triumphs
of the new quantum mechanics that it will give the Langevin or Debye
formulas very generally, whereas the old quantum theory replaced the factor
3 in (1) by a constant C whose numerical value depended rather chaotically
on the type of model employed, whether whole or half quanta were used,
whether there was “weak” or “strong” spacial quantization, etc.? This
replacement of § by C caused an unreasonable discrepancy with the classical
theory at high temperatures, and in some instances the constant C even had
the wrong sign.* All these vicissitudes in C are avoided in the new mechanics,

which gives the factor § quite as generally as the classical theory. This

1 P, Langevin, Journal de Physique, (4), 4, 678 (1905); Annales de Chim. et Phys. (8),
5, 70 (1905).

2 P. Debye, Phys. Zeits. 13, 97 (1912). See also his excellent compendium on electric
and magnetic polarizations in vol. VI of the Handbuch der Radiologie. The temperature
effect due to permanent dipoles was also suggested later independently by J. J. Thomson,
Phil. Mag. 27, 757 (1914).

3 Cf. W. Pauli, Jr., Zeits. {. Physik, 6, 319 (1921); L. Pauling, Phys. Rev. 27, 568 (1926).

¢ Pauling? shows that C would be negative in molecules of the HCI type if we use the a-
priori probability 2m indicated by the recent band spectrum intensity measurements of
Bourgin and Kemble. He therefore uses a probability 2m 1 and finds C to be about 14 times
the classical value 1/3, but in a later paper® shows that C would even then become negative
in the formula for the dielectric constant on applying a magnetic field at right angles to the

. electric field. Needless to say, such a behavior is not found experimentally.
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has already been shown by several writers® for special models, and the present
paper may be regarded as extending the result to the general case. In our
opinion the general proof is usually quite as simple as the specialized ones
with particular models, since the algebra of writing out and summing the
various matrix elements is avoided, and there is the great advantage that
it is unnecessary to know the precise form or values of these elements.

At this point it may be remarked that most of the classical derivations
of (1) appear rather inadequate. The literature, to be sure, is full of pur-
ported “generalized Langevin theories,”® but these for the most part are
based on rather unsatisfactory physical premises, such as rigid magnetons,
steady molecular currents, etc. The usual elementary derivation of the
Langevin formula omits even the kinetic energy of rotation. Fortunately
the calculations of Alexandrow? and van Leeuwen? show that the inclusion
of this energy occasions no particular difficulty in symmetrical diatomic
molecules. Miss van Leeuwen replaces an electron orbit by a current,
but unlike most writers, she does not overlook the gyroscopic effect arising
from the angular momentum concomitant to magnetic moment. No com-
putations, however, appear to have previously been published which allow
for the high degree of dissymmetry characteristic of the general polyatomic
molecule, or for the precessions caused by internal spins? of the electrons
which are an important factor in magnetism. Thus the following treatment
not only substitutes the new quantum for the classical viewpoint, but also
gives increased generality. Yet it must be understood that we shall cal-
culate only the terms in the susceptibility which are independent of the
field strength. These are the only terms ordinarily of consequence in dielec-
tric or in para- (or dia-) magnetic media, but the present paper does not .
pretend to treat ferromagnetism or saturation phenomena in which higher
powers of the field F must be considered. Hence we have written Langevin’s
formula in its asymptotic form (1) valid for small (i.e. ordinary) values of
the field rather than giving his more complete expression which contains
the effect of all powers of uF/kT. We suppose throughout for simplicity
that the effective average field on the atom is F rather than the more rigour-
ous expression F+47wP/3. This amounts to assuming the polarization so
small that the Clausius-Mosotti constant (e—1)/(e+2)N reduces to
(e—1)/3N; if this condition is not met there is no trouble, as we would
simply have to replace x in (1) by 3x/(3+4wx).

8 L. Mensing and W. Pauli, Jr., Phys. Zeits. 27, 509 (1926); J. H. Van Vleck, Nature,
118, 226 (1926); R. d. L. Kronig, Proc. Nat. Acad. 12, 488, 608 (1926); C. Manneback, Phys.
Zeits. 27, 563 (1926); P. Debye and C. Manneback, Nature, 119, 83 (1927); L. Pauling,
Phys. Rev. 29, 145 (1927).

8 For references see ‘‘Theories of Magnetism,”” Bull. Nat. Research Coun. no. 18; also
van Leeuwen.8

7 W. Alexandrow, Phys. Zeits. 22, 258 (1921).

8 van Leeuwen, Leyden Thesis; summary in J. de Physique, (6), 2, 361 (1921).

9 We assume the reader to be familiar with the Uhlenbeck-Goudsmit spinning electron,
die Naturwissenschaften 13, 953 (1925); Nature 117, p. 264 (1926).
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2. THE FUNDAMENTAL ASSUMPTIONS

In order to derive the second term of (1) we find it necessary to assume only
that the atom or molecule has a “permanent” moment vector whose precession
frequencies arve small compared to kT. Another way of saying the same thing
is that the various component normal states have a vector moment of com-
mon magnitude y, and have an energy spacing small compared to the equipar-
tition allowance k7. A more precise explanation of these conditions is
given in the following paragraphs.

The stationary states of many atoms and molecules are so spaced that at
ordinary temperatures there is a fairly sharp delineation between normal and
excited states. The excited states we define as having energies of excitation
which are large in comparison with 27, and so they may be considered as
virtually unoccupied in making the calculations. The normal states generally
are a family of “component” energy levels whose separation is usually
smaller than or comparable with 27". This splitting into components ordin-
arily results from the mutual precessions of the various constituent angular
momentum vectors of the atom or molecule and from the precession of their
resultant about some direction fixed in spaced. Thus the excited states are
usually characterized by different electronic or possibly vibrational quantum
numbers from the normal, whereas the component normal levels result from
giving the molecules different amounts of “temperature rotation,” different
orientations relative to the external fields, or from allowing the spin axis of
the electron to assume different orientations relative to the rest of the system.

It is clear that the magnetic or electric moment of the atom or molecule
is a vector matrix M. We follow Born’s procedure of writing matrices in
bold-face type. Certain elements of the matrix M will be identified with
transitions between normal and excited states, and will be shown in section
3 to contribute only to the constant term N« in (1) which is independent of
the temperature; even without proof this seems fairly obvious from the
fact that excited states have by definition energies large compared with k7.
Hence to calculate the second or “temperature” term of (1) we replace M
by a matrix gy formed from M by dropping the high frequency elements of
M associated with transitions to excited states. This replacement of M
by u corresponds to the well-known separation of the “secular” from the
high frequency variations in perturbation theory, and means that in com-
puting the temperature effect the moment matrix may be considered to
involve just the family of normal states rather than the more complicated
aggregate of both normal and excited states. We suppose, moreover, that
the atom (or molecule) has a moment of “definite” or “permanent” magnitude
u. This is not at all a drastic assumption, as it is involved in all permanent
dipole theories, and without it the expression u in (1) would have no meaning.
This means that the magnitude p= (u,2+u,?+u.2)"2 of the vector matrix
u is constant with respect to the time and the same for the various normal
states. Hence |y| is a diagonal matrix whose elements are all equal and in
the terminology of Dirac it may be called a “c-number,” which is the moment
uentering in Eq. (1). The vector u will be constant in magnitude but usually
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not in direction. The components u,, u,, u. will, to be sure, involve no high
frequency elements, as the latter have been eliminated in forming y from
M, but these components will in general vary with the time due to the
existence of “low frequency elements” which correspond to transitions
between the different levels constituting the normal states and which arise
usually from precessions of the various types cited in the preceding para-
graph. In order to obtain the Langevin formula (1) it is essential simply
that these “low frequencies” be small in comparison with 27/k, which is
equivalent to saying that transitions between the various normal states
involve energy changes of magnitude much less than 7.

In the above and elsewhere we use the terms, “direction of a vector,”
“precession,” etc., rather freely, as a vector matrix clearly cannot be assigned
the same simple geometrical interpretation as an ordinary directed segment.
We mean, of course, simply the quantities in the Born-Heisenberg matrix
theory which “correspond” to the precessions, directions, etc., of classical
mechanics. In particular the precession frequencies mean the spectroscopic
frequencies emitted or absorbed in transitions between various component
levels whose separation is caused by the quantum analog of a classical
precession effect. Throughout the present paper, and also in parts 11 and
III, we use the language of the matrix rather than wave form of the new
quantum mechanics, but the same results follow equally well with the wave
viewpoint, in virtue of the general formal identity' of the wave and matrix
formulations for closed (“abgeschlossen”) atomic systems. In fact we could
even obtain the Langevin formula by going to the opposite extreme from
the matrix aspect, and employing the “field” theory of Schroedinger,
Madelung, and Gordon,' in which the electric charges are spread through
space with a continuous density proportional to ]\Z/IZ, where ¢ is the well-
known Schroedinger wave-function. The identity of the results regarding
susceptibilities ensues since Schroedinger!® has shown that the field theory
gives the same electrical moment as the matrix viewpoint (neglecting
relativity corrections), while Fermi!2 has proved it gives the same magnetic
moment,'® utilizing the definition of the velocity of flow given by Schroe-
dinger and others.!*

10 E. Schroedinger, Ann. der Physik, 79, 734 (1926); C. Eckhart, Phys. Rev. 28, 711

1926).

( “)E. Schroedinger, Ann. der Physik, 81, 109 (1926) 82, 257, 265 (1927); E. Madelung,
Naturwissenschaften, 14, 1004 (1926); Zeits. f. Physik, 40, 322 (1926); W. Gordon, ibid.,
40, 117 (1926). ’

2 Fermi, Nature, 118, 876 (1926).

13 It must be remarked, however, that calculations similar to Fermi’s establish the simi-
larity of results for the part of the paramagnetism arising from orbital angular momentum,
and do not indicate just how to treat the ‘“‘spin’’ phenomenon, as Fermi assumes the normal
ratio of magnetic moment to angular momentum holds throughout. A further complication
is that diamagnetism involves the velocity of light to the power 1/¢? rather than 1/¢, and the
ordinary technique does not furnish a correlation to 1/¢? as the magnetic modifications in the
definition of momenta, etc., would have to be considered; so that there is a bare possibility of a
discrepancy. It seems, however, highly improbable that any successful theory will give
different susceptibilities than those calculated by the matrix method.

14 For references see note 11.
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The basic assumptions may be summarized in the words “permanence
of moment” and “slowness of precession.” The great generality arises
from the fact that it is not necessary to specify the exact form of the preces-
sion, or the numerical formulas for the frequencies and amplitudes. The
phrase “slowness of precession” must not be construed too literally, for the
low frequency elements could result equally well from slow oscillations or
other types of motion than precessions. We use the term “precession” for
the sake of concreteness and because precessions are much the most common
cause of low frequency components; “temperature rotation” of the nuclei
about the center of gravity, for instance, can be considered as simply a
precession about the invariable axis. It is also to be understood that besides
the “low frequency elements” there are generally high frequency terms
which are responsible for the constant term N« in (1). The essential re-
quirement, of course, is that the “high” and “low” frequencies be always
respectively large and small compared to 27 /k. An important feature is
that there is no limit to the number of precessions which can be super-
posed. Nevertheless, even our hypotheses are not sufficiently general in
some instances. In the first place, in the case of dielectric constants, the
centrifugal expansion of the molecule will violate the assumption of a
“permanent electric moment,” as the stretching will slightly increase the
dipole moment in the higher quantum states, so that the diagonal elements
of the matrix Ig] are no longer equal. Fortunately this expansion effect is
small, as band spectra show that the variation of moment of inertia with
rotation rarely exceeds six per cent even in the more elastic excited states.!®
A more important restriction is imposed by the requirement that the ele-
ments in the moment matrix M are all of the “high” or “low” frequency type.
Actually Laporte and Sommerfeld!® find that in atoms of the first long
period of the Mendeleeff table the internal spins of the electron lead to
precessions in the magnetic moment of what we may term the “medium”
frequency type; i.e., precessions whose frequencies are of the same order of
magnitude as £7T/h. We shall find it necessary to treat the magnetism of
NO by a special calculation in part I11 because the spacing of its spin doublet
is about .6kT/h. Also the variable vibrational specific heats of certain
molecules indicate that the energies of excitation of their nuclear vibrations
are comparable with 27. Undoubtedly because of its secular character the
magnetic moment does not have any terms of appreciable amplitude in-
volving the vibrational frequencies. The electric moment will contain such
terms, but fortunately their temperature effect will be very subordinate
since the amplitude of nuclear vibration is usually small compared to the
equilibrium nuclear spacing, and also since the polarization of a linear
oscillator, which represents the nuclear vibrations to a first approximation,
is independent of the temperature.!”

1 Cf. R. T. Birge, Nature, 116, 783 (1925).

16 Laporte and Sommerfeld, Zeits. f. Physik, 40, 333 (1926).

17 This independence of the temperature for the polarization due to a linear oscillator is

proved with the classical theory by P. Debye, Handbuch der Radiologie, Vol. VI, p. 613, and
a simple calculation shows that it also holds in the new quantum mechanics.
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3. Proor

Let us suppose for simplicity that we are dealing with electric rather than
magnetic polarization. The slight adaptations in the proof necessary to
the magnetic case will be given in part III. Before application of the field
F the electrical moment M will be a matrix whose typical element may be
denoted by

Mz(n]m ; n’j'm’) e2miv(ngmin'j'm’)t

We have here taken the z-component, but there are, of course, similar form-
ulas for the x and y components. For brevity we throughout omit commas
from the arguments, and write (njm; n’j'm’) for (n, j, m; ', j/, m'), etc.
Following the conventional notation, such an element is associated with a
transition from a state specified by indices #, j, m to one by #’, j/, m’. We
shall let the first of the three indices be identified with quantum numbers
(e.g. “electronic” and “vibrational”) which have an effect on the energy
large compared to k7T, so that one particular value of this index gives states
of especially low energy. This value will be denoted by # and yields the
normal levels of the atom or molecule. The second index j or j’ corresponds
to quantum numbers (e.g. “inner,” “rotational,” “spin”) whose effect on
the energy is comparable with or smaller than k7. We do not, however,
include in the second index the “axial” (also called “equatorial” or “mag-
netic”) quantum number which specifies the spacial orientation by quantizing
angular momentum about some fixed direction in space. Instead the third
index m or m’ is to be considered as representing the axial quantum number.
Thus the various component levels of the normal state correspond to fixed
n but different values of j and m, whereas the excited states have an index
n' different from #n. It is clearly to be understood that each index, except
the third, in general symbolizes more than one quantum number ;i. e., represents
a multiple rather than single array. Hence we designate #, j, m as “indices”
rather than quantum numbers. Our proof is thus by no means confined
to systems with three quantum numbers or degrees of freedom.
Let us suppose an electric field F is applied in the z-direction. The
- susceptibility is the quotient of polarization by field strength, or N3, /F,
where N is the number of molecules (or atoms) per unit volume, and 3,
is the average value of the z-component of the electrical moment per mole-
cule. This average, of course, differs from the time mean'® M,®) (njm; njm)
for individual molecules, as the latter will be distributed among the different
components of the normal levels. To get 3, we must average over these
components with each assigned the probability required by the Boltzmann
distribution formula. Hence it is apparent that

18 The time mean value in a non-degenerate system is a diagonal term of a matrix, and
hence specified by an element in which the second trio of indices is the same as the first. In
defining this time mean it is, of course, supposed that the molecule always remains in the same
state. Thus the time mean is over a period long compared to the periods of the spectral lines
but short compared to the duration of a stationary state. Heisenberg's statistics of fluctuations
(Zeits. f. Physik, 40, 501, 1926) shows that (2) is still applicable even if we allow for a molecule
changing states.
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N Zj,mMz<F)(njm 5 mjm) e~ ) (nim) (KT
=7 > im e O (mim kT

’ (2)

where W as usual denotes the energy. We suppose the system non-de-
generate,!® so that all states have the same statistical weight; i.e. the same
factor g in the Boltzmann expression ge=W/*,

Because of “induced polarization,” the time mean M,'") (njm; njm)
of the electrical moment in the field F is not the same as this mean
M.(njm; njm) before application of F. We shall throughout use the super-
script ¥ to distinguish values in the field from those in its absence. It
is clearly to be understood that all amplitudes, frequencies, and energies
without this superscript relate to the case F=0. Now M@ is easily cal-
culated in terms of M by the perturbation methods of Born, Heisenberg,
and Jordan,?® or of Schroedinger.2! These writers show that 2

| M.(njm 5 n'j'm’) |*

2F
M. P (njm ; njm) = M, (njm ; njm) _— > 3)

W g W)
This is, of course, the same result as given by extrapolation of the Kramers
dispersion formula to infinitely long impressed wave-lengths. The sum
over 7/, j/, m’ includes all excited and normal states except the given state
n, j, m. This exclusion of the one term #/, i/, m’ =n, j, m is indicated by the
prime inside the summation sign, and this interpretation of the prime is to
be understood throughout the article. As usual v denotes the frequency
emitted (or absorbed) in the transition between two states when F=0.
Eq. (3) is utilized by all the various writers® who have calculated dielectric
constants for particular models. It gives the polarization to terms of the
first order in F, as this degree of approximation is necessary to get the ordin-
ary susceptibility effects (cf. section 1).
Now the energy in the field is to first powers in F

W (njm) = W(njm) — F M . (njm ; njm). 4)
This follows by well-known perturbation formulas of the new quantum
mechanics,?® which show that here just as in the old quantum theory the
perturbed energy is to a first approximation the energy W (mjm) in the
absence of F augmented by the perturbative potential (here — FJ,) aver-
aged over the unperturbed motion.

19 In case the system is degenerate, we may imagine the degeneracy removed by intro-
ducing a sufficient number of hypothetical supplementary infinitesmal internal forces. This is
legitimate, as Eq. (25) of section 4 shows that the result is invariant of the manner in which
the degeneracy is removed. There can be no spacial degeneracy, for the field F provides an
axis for quantization if not already present when F=0.

20 Born, Heisenberg, and Jordan, Zeits. f. Physik, 35, 567 (1927).

21 E, Schroedinger, Ann. der Physik, 81, 109 (1926).

22 Expressions of the type form [Mz(njm;n’j’m’)] 2 occurring in Eq. (3) etc. may also be
written as the product M, (njm;n'i'm") M.(n'j'm’ ;njm) ; for as the moment matrix is Hermitian,
M(n'j'm’ ;njm) is the conjugate of M,(njm;n'j'm’), and the product of any complex number
and its conjugate is the square of its absolute value. This other method of writing is that
used by Born, Heisenberg, and Jordan.2?
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We now expand the exponentials in (2) as power series in F by means of
(4). When we do this and substitute (3) in (2) we find

N 3 im M(njm ; njm)eVW (nim 1+7

X=—F— > im €W (i) [T
+(B/RT) X ivm| M(njm 5 njm) |* e (nimy1ar (s)
_iB_Zl ) I M. (njm ;n'j'm’) 12 =W (nim)[ kT
h fmnt v(ngm ; n'i'm') - '
Here we have discarded terms in F, F?, - - -, as we are interested in cal-

culating only the constant part of the susceptibility. We have written
lM,(njm; njm)l2 for M.(njm; njm)? which is legitimate since diagonal ele-
ments are real. Also we have introduced the abbreviation

N

= Z,‘ me_W(n;:m)/kT

We must now suppose that the first line of (5) vanishes. (For this reason
we have not bothered to expand the exponentials in the denominator of this
line.) This involves no essential loss of generality,? for if it did not we would
have a “permanent” or “residual” polarization even in the absence of the
field.?* Clearly the numerator of the first line of (5) vanishes by symmetry if
the only external field is the applied electric field F, for in the absence of
all fields there can be no preference between directions parallel and anti-
parallel to F, and hence no moment along F; another way of saying the
same thing is that in the absence of all fields states with positive and negative
values of the axial quantum number are equally probable. In solids there
is, of course, the possibility of directed?’ inter-molecular fields, which might
give the body a residual polarization when F=0, but such effects are not
ordinarily found experimentally except in ferromagnetic media or in crystal-
line dielectrics, both of which are beyond the scope of the present article.

Separation of high and low frequency terms. Eq. (5) is a perfectly general
expression for the susceptibility which does not require the hypotheses of
“slowness of precession” or “permanent dipole moment” presented in section
2. For further simplification, however, these postulates must be introduced,
and so we now proceed to make the separation into “low” and “high”
frequency terms. In order to make connection with the notation employed
in section 2, we write u(jm; j'm’) for the low frequency elements M,(njm;
ni'm’). Eq. (5), with first line omitted, then becomes

B

(6)

2 Debye also notes (Phys. Zeits. 27, 67, 1926) in a calculation with the old quantum
theory that the vanishing of an expression similar to the first line of (5) involves no essen-
tial loss of generality. .

2 The first line of (5) will not vanish if there is a ‘“‘magneto-electric directive effect”,
to be explained in part II, but this effect is apparently never found experimentally.

% Random inter-molecular fields give no trouble, as with them the first line of (5) vanishes
on:,the average by symmetry.
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x=(B/ET) X im| mlim ; jm) |? =W (nim) [ KT

_28 SV | wajm 5 j'm") |2 eV (nim 137 -
h e v(njm ; nj'm")
. . 121! 2
_ 2B S st o | M.(njm ; w'5'm) | W (nim) 15T
h A v(njm ; n' j'm’)
)

Here the first two and the third lines represent respectively the “low”
and “high” frequency terms, as the third line involves only terms associated
with transitions to the excited states n’ #n.

The terms in the summation in the second line of (7) may be grouped
together in pairs Pj; of the form

2B { | a(xma ; oms) |*

= — W (niymy) [ kT
v(njmmy ; njams)

h
(8)

| a(jams 5 jums) |2e

v(njoms ; njmi)

~W (njymg) | kT

Now wp.(jeme; jimi) is the conjugate of w.(jimi; jams) and so has the same
absolute magnitude. Also v(njums; njimi) = —v(njimy; njams), and by the
Bohr frequency condition W(njsms) = W(njimi) — hv(njimy; njams). Under
the hypothesis of “slowness of precession,” fully explained in section 2, we
may develop the second exponential in (8) as a power series in the ratio
s =hv(njimy; njams)/kT. Then (8) becomes

Pia= —Z(B/SkT) [ p(Fim 5 jams) Iz 6_W(”7'1m1”“'[1-—1——3—%82—%83- .. ] 9

If we neglect terms of the order s3 within the bracketed factor this is the
same as

(10)
Pro=(B/kT){ | Gy ; joms) |* €W nismd IR | (oo jyma) [* e (nizm) 14T |

Now if the influence of orientation, i.e., of the axial quantum number, on
the “unperturbed” energy W(njm) is small compared to 27, we may replace
W(njm)/kT by an expression W(nj)/kT independent of the index m. This
approximation is usually one which is fulfilled with a high degree of precision.
In the first place the ordinary case is that in which the molecule is subject
to no external field except F, and then the unperturbed energy (i.e., the
energy in the absence of F) is independent of orientation, so that the index
m has absolutely no effect on . To allow for the possibility of simultaneous
electric and magnetic fields, or weak inter-molecular fields in liquids and
solids, we admit the more general assumption that W(njm)— W(nj) is
not identically zero but small compared to 2726 Also it is clear that the

% Jt is to be noted that though we suppose W(njm)—W(nj) and hv(njm;nj'm’) both
numerically small compared to k7', we have not assumed that W(njm)— W (nj’'m’) is negligible
relative to k7. The latter assumption would be much more stringent, for usually there are

selection principles which require that certain quantum numbers change only by zero or one
unit, at least in the transitions of appreciable amplitude. In case the quantum numbers
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“high” frequencies v(njm; n'j’'m’) (n' #n) are affected but little by the indices
7, m, j', m', as the separations between components of the normal states or
of the excited states are small compared to the interval between the normal
and excited states. Hence in the third line or “high frequency part” of
(7) we may without appreciable error replace v(njm; n'j’m’) by a number
v(n; n') independent of the indices j, m, 7/, m'.

If we use the simplifications given in the preceding paragraph, and sub-
stitute (10) for (8), Eq. (7) reduces to

X=(B/kT) 2 imirme | pa(jm ; j'm’) | e W i I3T
2B | M. (njm 5 w'j'm’) |

__]:l_ Ei.m.n’.f’.m’(n’;ﬁn) V(n : n,)

(11)

g—W(“f)/kT’

where now the first sum includes the diagonal elements #/, j/, m' =n, j, m.

It will be proved in section 4 that in virtue of the high degree of spectro-
scopic stability characteristic of the new quantum mechanics, an expression
of the form

2w | As(nm ;0j'm’) !
is invariant of the direction of the axis of spacial quantization and equals
?13' Zm,vrt' l A(”’.]m ;”,j,m,)2’ I

Here A(njm; #n'j’m’) denotes an element of the scalar magnitude
IA‘ =(A2+A2+A2)2 of a vector matrix A whose z-component has ele-
ments of the form A.(mjm; wn'j’m’). This consequence of spectroscopic
stability is perhaps the most interesting and vital feature of the entire proof,
as it underlies the general occurrence of the factor % in the temperature term
of the Langevin-Debye formula. On taking 4 =M (n'#n) and 4 =u (n' =n)
(this is only a difference in notation) Eq. (11) becomes by the above

x=(B/3kT) D iim.itm | u(Gm; j'm’) [ W nidieT
2B | M(njm ; n'j'm’) |*

__3_]; Zi,m,n',i'.m’(n’#n) v(n ;n,)

(12)

W kT

associated with the index j can assume a wide range of values, this means that Av(njm ;nj'm’)
is considerably smaller in magnitude than the general expression of the form W(njm) — W(nj'm')
for then the selection principle requires that kv(njm;nj'm’) equal the difference of two adja-
cent, or nearly adjacent components of the normal levels rather than of two comparatively.
widely separated such levels.

This fact explains why we can apply our proof of the Langevin-Debye formula to molecules
having ‘“‘temperature rotation’ even though by giving the molecule sufficient quanta of rota-
tion the ratio s =Av(njm;nj’m’)/kT may be made as large as we please. For the numerical
magnitude of the exponent in the Boltzmann distribution factor ¢ W@ /kT jncreases much more
rapidly than s. (One varies approximately as the square, the other as the first power of the
rotational quantum number.) Hence terms for which s is comparable with unity will have such
a small exponential factor or probability that they can be disregarded. This will be discussed
more fully in part II, where a calculation will be made of the error due to neglecting higher
powers of s in (9).
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Simplification of low frequency elements. From the rules for matrix
multiplication it follows that

it | wGim 5 j'm’) |* (13)

is a diagonal element u?(jm; jm) of the matrix u?, which is the square of the
absolute magnitude of the secular moment vector matrix u formed from
M by deleting the high frequency elements (cf. p. 730). Now in consequence
of the hypothesis of a “permanent dipole moment,” fully explained in section
2, the magnitude of u? is independent of the time and the same for all the
component levels constituting the normal state. Hence p2(jm; jm) is a
number u? independent of j and m, so that the expression (13) reduces to
4% and the low frequency part (first line) of (12) now becomes

(B/3kT)u? 3 jm e W nDIKT, (14)

Now we have already supposed on p. 736 that W(njm) can be replaced by
W (nj) in the exponential factors, so that the denominator of (6) is identical
with the sum?” in (14). Hence by (6) Eq. (14) is simply Nu2/3%T, which is
the “temperature part” of the Langevin-Debye formula.

Invariance of high frequency part of x. The high frequency terms,
represented by the second line of (12), are not included in the ordinary
calculations of molecular susceptibilities or dielectric constants, and instead
it is usually taken for granted, perhaps by analogy with a classical linear
oscillator,!” that their net effect is invariant of the temperature. The warrant
for this seems to the author by no means so obvious but what it is repaying
to actually demonstrate that the total contribution of the high frequency
elements is independent of 7. The analysis has, of course, been somewhat
lengthened by their inclusion but gains considerably in completeness. The
demonstration is an easy consequence of the “sum-rules” for intensities
applied to absorption rather than emission, for it is the essence of these
rules that an expression?® of the form

D ivme | M(njm s n'j'm’) ! (15)

is independent of the indices j and m, provided the spacing of components
is small compared to the frequency of the line itself; i.e., provided v(njm;
n'j'm’) can be replaced by v(n; »n’) as already assumed on p. 737. The
sum-rules were first established on semi-empirical grounds, but the work of

27 The double sum in (14) may also be written as the single summation Y_;p;e~W (#)/kT
where p; is the number of quantum-allowed orientations for the state j; i.e., the number of
permissible values for the axial quantum number. The expression p; would be the a-priori
probability if the spacial degree of freedom were neglected and the system consequently
treated as degenerate. Ordinarily p;— 1 equals twice the maximum value of the axial quantum
number, as positive and negative values of this number are equally probable.

28 As usually stated, the sum-rules relate to the invariance of intensity, and intensity is
proportional to the fourth power of the frequency as well as to the resultant amplitude M?
which represents the combined effects of the x, y, and z components. However, we have
seen that v(njm;n’j’m’) can without sensible error be replaced by an expression »(n,;n’) inde-
pendent of j,m,j’;m’, and so the independence of the intensity-sums of j and m also implies
the independence of (15) of j and m.
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Born, Heisenberg, and Jordan,?? and of Dirac®® shows that they are re-
quired by the new quantum mechanics.?* The ordinary sum-rule for Zeeman
components shows that > - [M(njm; n'j'm’) |2 is independent of m, and this
taken in conjunction with the sum-rule for “multiplet” components?®?
(or band spectrum components) shows that (15) is independent of both
j and m, at least provided j is associated with the one type of precession
ordinarily identified with the inner (or rotational) quantum number. Actu-
ally we have already stated that the index j may correspond to several
quantum numbers and hence represent the effect of several superposed
precessions; e.g. simultaneous precessions resulting from internal spins
of the electrons and from “temperature rotation.” However, Dirac notes
on p. 298 of his paper?? that there is no difficulty extending the proof of the
intensity rules to systems which are composed of any number of parts and
which so contain any number of precessions, provided the parts are coupled
together by “secular” forces which do not distort the motion and instead
give rise only to pure precession. This result is also obvious from the cor-
respondence principle inasmuch as the sum-rule is the quantum analog
of the fact that classically the intensity of radiation is not appreciably affected
by slow precessions which do not sensibly alter the sizes and shapes of the
orbits. It must, however, be emphasized that the validity of the sum-rule
requires that the coupling responsible for the separation of the normal
levels into components must result in “pure precession” without distortion.
This rules out centrifugal expansion and similar effects, but we have already
seen at the close of section 2 that their effect is only subordinate.

From what has been said in the preceding paragraph we may replace
(15) by an expression .IM(n; n') [2 independent of j and m, and so the second
line of (12) reduces to

2B M(n;n')|?
_?h_ Zn,(n,#){L_(i_n_& Z].,m e—W(nf)/kT} (16)

v(n ;n')

29 Born, Heisenberg, and Jordan, Zeits. f. Physik, 35, 605 (1926).

30 P.A.M. Dirac, Proc. Roy. Soc. 1114, 281 (1926).

31" Born, Heisenberg, and Jordan deduce the formulas proposed by Goudsmit and Kronig
and by Hénl for the relative intensities of Zeeman components. Dirac gives the rather more
difficult derivation of the formulas advanced by Kronig, Russell, Sommerfeld and Honl for
intensities in multiplets. These various formulas are more comprehensive than but necessarily
include the corresponding sum-rules for Zeeman and multiplet components.

% The ordinary statement of the sum-rule for the inner quantum number is essentially
that the sum

Zmi’m' [ M(”]m H ”’j,m,) l2 (A)

is proportional to the a-priori probability p; (cf. 27) of the state j, assuming momentarily that
j corresponds to the inner quantum number. Eq. (A) contains sums over m and m’ inasmuch
as the Zeeman components are supposed unresolved in the ordinary multiplet rule. The sum-
rule for the magnetic quantum number shows that all the components of the state j contribute
equally in the sum over m in (A). As there are p; such components, the factor p; thus cancels
out if we do not sum over m in (A), thus making (15) invariant of both j and m.
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The double sum in this equation is the same as the denominator of (6)
inasmuch as on p. 736 we made the approximation W(njm) = W(nj). Thus
(16) becomes an expression

o= == Zn it ER)T

IM(n n’)[
v(n ;n')

which is independent of 7. This is the desired result, and (17) constitutes
the “constant” part Na of the Langevin-Debye formula. The right-hand
side of (17) does not involve the index m, or the direction of the axis of
quantization,®® and so the choice of this axis cannot influence Nea. It is
clear that N« is positive since the v»(z; »n') are negative or “absorption”
frequencies.

Combination of the simplifications affected in the high and low frequency
parts yields the complete Langevin-Debye formula x = Na+ (Nu2/3kT).

Special case that F is the only external field. 1t is to be noted that the proof
has nowhere assumed that the axis of spacial quantization is the same as the
axis of the applied field F. Ordinarily, however, F is considered to be the
only external field, and then these two axes will coincide. When this is the
case there will be no external influences when F=0, and hence there will
be no secular precessions about the axis of quantization before application
of F. This means that the third index will have no influence on the energy
in the absence of F and consequently that all frequencies of the form
v(njm; njm’) will vanish, as the absence of the superscript @ (cf. p. 734)
means the frequencies are to be measured with F=0. Nevertheless there
will be no trouble with zero denominators in Egs. (3), (5), (7), (8), as the
matrices M, or g, will contain no elements in which m'sm since the z-
component clearly cannot involve the frequency of precession about the
z-axis, which is the direction of F. Thus in Egs. (3), (5), (7), (11) the sum-
mation over m’ may be replaced by the substitution m’ =m.

an

4. THE FUNDAMENTAL SPECTROSCOPIC STABILITY RELATION.

We have already mentioned that the high spectroscopic stability charac-
teristic of the new quantum mechanics is the cardinal principle underlying
the continued validity of the Langevin-Debye formula. We shall not attempt
a precise definition of the term “spectroscopic stability.”* It means roughly
that the effect of orientation or of degeneracy in general is no greater than
in the classical theory, and this usually implies that summing over a discrete
succession of quantum-allowed orientations gives the same result as a
classical average over a continuous distribution. In calculations of suscepti-
bilities, and also in many other problems, the principle of spectroscopic

33 It is obvious from the mode of definition that M(n;n’) cannot depend on the direction
of the axis of quantization. Otherwise the total intensity of a spectral line, i.e., the x, y, and z
effects combined, would depend on the direction of this axis, which is absurd.

3 For references on spectroscopic stability and some discussion of its important applica-
tion to the polarization of resonance radiation see J. H. Van Vleck, ‘“Quantum Principles and
Line Spectra,” Bull. Nat. Research Council, no. 54, p. 171 ff.
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stability may be regarded as embodied mathematically in the statement that
the double sum

Sl st 0 [ (18)

is uniquely determined even in a degenerate system, and has a value in-
variant of the manner in which the degenerate degrees of freedom are
quantized. Here f(sl; s'l') denotes an amplitude element of any “quanten-
theoretische Grosse,” i.e., of any matrix f which can be regarded as a function
of the coordinates and momenta. We suppose the-indices / and !’ to corres-
pond to a quantum number ! whose value has no influence on the energy,
while s and s’ represent the effect of all other quantum numbers. The
summation with respect to ! extends over all the components of a family
of states s whose energies (“Eigenwerte”) coincide due to degeneracy. The
interpretation of the sum over !’ is similar. Thus the summation embraces
all the various transitions which are possible between two “multiple”
energy levels each composed of a number of equal-valued components.
A simple physical illustration is summing over all the Zeeman components of
a given spectral line in a vanishingly small magnetic field. The invariance of
an expression similar to (18) has already been established by Born, Heisen-
berg, and Jordan?® for the special case that only one of the systems of energy
levels is multiple. This simplification would require that I (or else /') assume
only one value in (18). The invariance of the more general expression (18)
was mentioned without proof in a preceding paper by the writer,? and he is
informed that the more general result has also been obtained independently
by Born (unpublished). In the work of Born, Heisenberg, and Jordan,
and of Born, it is supposed that f is a coordinate or momentum matrix, but
this appears to be a needless specialization.

Proof. The demonstration is very similar to that given by Born, Heisen-
berg, and Jordan for the special case that one of the systems of levels s or s’
is single, and we assume the reader has at least a superficial familiarity with
their procedure®” for quantizing the perturbations of a degenerate system.
Let S be the “transformation matrix” associated with the passage from one
mode of quantization of the degenerate system to another.: The function S
will generate a contact transformation from the original variables p:°,

<o, pa% @i - -, gl to a set of new variables p1, © + ¢, Pn, Q1 c ¢y Qa
by means of the connecting relations

pk=Spk°S_1, qk=qu°S“.

If the system is made non-degenerate by applying an external field, the
secular perturbations are calculated and quantized by finding the particular
contact transformation which will reduce the perturbed energy to a diagonal
matrix, but this fact is of no immediate consequence. Born, Heisenberg,
and Jordan show3® that in general

% Born, Heisenberg, and Jordan, Zeits. f. Physik, 35, 590 (1926).

% J. H. Van Vleck, Proc. Nat. Acad., 12, 662 (1926).

37 Born, Heisenberg, and Jordan, Zeits. f. Physik, 35, 577-590 (1926).
38 Ibid., p. 574.
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f=SfS-1 (19)

where £ is the same function of the p”s and g%s that f is of the p’sand g’s,
so that

f=f(p1, Ct oy Pns gLy, ot qn) f():[(plo) e ’pon: qlox e ;qno)-

Now we suppose S to be a “secular” transformation matrix associated only
with the ambiguity arising from the degeneracy, and hence S(sl; s'l') will
vanish unless s =s’. This means simply that in the language of section 3,
S possesses no “high frequency elements,” and in, fact contains only elements
associated with zero frequencies representing transitions between component
states of coincident energy. Therefore by the rules for matrix multiplication
an element of (19) may be written

f(sl s s'UYy= D 0nS(sl 5 si)fO(s1” ; SV)SH(s'Y ;5 sV, (20)

Here we have made use of the fact®® that in virtue of the orthogonality
properties S™! equals S$*, where S* denotes the conjugate of S, and S the
transposed matrix formed from S by interchanging rows and columns,
so that S*(s'l/; s'I"") = S*(s'l""; s'l').

From (20) it is seen that
Zl,l'f(Sl s SUH(sL s = Zz,w,z/',z”'.,zi",z"{fo(sl" 5 SV (s $T) a1
S(st; sUNS*(sl ; sIv)S*(s'V, s'VS(sY 5 s') }

where we write /v for I’”"/, etc. Now the orthogonality relations?? give
DoiS(sl; s )S*(sl siv)=8(l", Iv) (22)
where
s, 1y =1, 8(l", 1) =0, I (23)

There are also, of course, equations similar to (22) and (23) in which s, I, 1",
I are replaced by s’, I, I¥, I'" respectively. Thus (21) becomes

Do f(sly SUYFE(sE,s'U) = D wnfo(sl 5 V)X 5 s'U"). (24)

Now on the right-hand side we may replace I’, I’’’ by I, I’ for this is only a
change in the notation for the variable of summation. Also the product of a
complex number and its conjugate equals the square of its absolute magni-
tude. Therefore (24) may be written

Do | Gty SO P= D00 | fosE ST PP (25)

This is the desired result, for it shows that an expression of the form (18) has
the same value before and after the transformation, and is thus invariant
of the mode of quantization.

It is noted that the expression (18) is invariant even when s =s’, for there
is nothing in the above demonstration which requires ss’. With s=s’ the
summation in (18) or (25) extends over the various transitions within a
multiple level rather than over those between two multiple levels.

® [bid., p. 584, Eq. (11).
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A pplication to spacial degeneracy. The most important application of (18)
or (25) in calculating susceptibilities is to the case where the degeneracy
arises from the absence of an external field, so that one direction in space
is as good as another. Then the various values of the indices / and I’ corres-
_ pond to different values of the axial (often called “equatorial” or “magnetic”)
quantum number belonging to a system of “multiple” levels whose com-
ponents differ from each other only in that they represent different “quan-
tum-allowed” orientations relative to the axis of quantization. The contact
transformation of the type considered above then simply involves a rotation
of the coordinate axes, and means that the direction of spacial quantization
is shifted from one direction in space to another. Now clearly if A is any
vector, the double sum (18) has by symmetry the same value whether we
take f equal to any one of the three components A4,, A4, A, provided we
average (18) over all possible directions for the axis of quantization, for after
the average there is no preference between the x, y, and z directions without
external fields. But we have proved an expression of the form (18) invariant
of the axis of quantization, and hence the average over all directions for this
axis is unnecessary. Thus (18) always has the same values with f equal to
A, A, or A, regardless of the choice of the axis of quantization. Hence,
since A?= A2+ A2+ A,? it follows that .

Do | Aa(sl s sV) [P=3 200 [ AT S1) |? (26)

with analogous equations involving A, and A,. This is the same result as
was quoted on p. 737, section 3, except for a slight difference in notation.
We there used the three-index notation A(njm; n'j’m’) instead of A(si;
s'l') in order to permit further classification of the families of energy levels.
The two indices # and j together correspond to s, and m to /.

The proof given above assumes complete spacial degeneracy, which
means that the molecule should be subject to no external forces, and in
section 3 we applied (26) to the “unperturbed motion” executed when the
applied electric field F is zero. In section 3, however, we admitted the possi-
bility of other simultaneous external fields independent of F (e.g., a “crossed”
magnetic field), so that there was not necessarily spacial degeneracy and
freedom from external influence when F=0. We can, nevertheless, still

“apply (26) to such cases if the result of these other external fields is only
to introduce precessions or secular motions corresponding to frequencies of
the form »(sl; s’), without any “high frequency perturbations” of the type
(sl; s'l'), s's%s. For then the effect of these external fields is given by a
“secular” contact transformation of the type considered above, which will
leave invariant the values of expressions similar to the left-hand side of
(26). Actually an external field will in general alter to some extent the ampli-
tudes of terms of the type (sl; s’l’) (s'5£s), but these “non-secular” pertur-
bations will in general distort the amplitudes only to a low degree, as this
is a well-known result in dynamics. Hence it is a good approximation to
apply (26) even when the unperturbed motion corresponding to F=0 is
itself a motion in some other external field. The usual case, of course, is
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where F is the only external field, and then (26) holds rigorously for the
unperturbed motion.

Illustrations of (26). An example or two will perhaps make the results
obtained above more concrete. If A be a unit vector matrix, then A, may
be regarded as the cosine of the angle between this vector and some fixed
direction in space chosen as the x-axis. Eq. (26) shows that the mean value
of the square of the cosine of this angle is one-third when we average over all
the various allowed orientations relative to the axis of quantization (not
necessarily the x-direction). This is the same value as results by symmetry
in the classical theory when we average over a uniform continuous distribu-
tion of orientations. This agreement is the underlying reason why the sus-
ceptibility formula (1) contains the factor { quite as generally in the new
quantum mechanics as in the classical theory.

Another simple illustration of (26) is furnished by the theory of dia-
magnetism. It can be shown that the diamagnetic susceptibility is propor-
tional to x2+4y?if the magnetic field is applied in the z-direction. Now by the
rules for matrix multiplication the average value of x2 for the state s is

Doev| w(sl; V)| e (27)

where s’ is to be summed over all possible states, including s’ =s, and where
pe is the number of I-components belonging to the multiple state s. In other
words p, is the a-priori probability of the state s, or, what is essentially the
same thing, the number of values assumed by its axial quantum number.
Now (27) is simply an expression of the form (18) summed over s’, and there
are, of course, similar expressions for the y and z components. Hence by (26)
the average values of x2, y?, and 2? are equal, and since 72=x2+7y?+ 22, we
can take x2+4y2=2¢2, just as in the classical theory. This has an important
experimental application, as it shows that the diamagnetic susceptibility
per molecule should not vary with pressure (see ref.%)
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