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ELECTRONIC STATES AND BAND SPECTRUM STRUCTURE IN
DIATOMIC MOLECULFS. IV. HUND'S THEORY; SECOND

POSITIVE NITROGEN AND SWAN BANDS;
ALTERNATING INTENSITIES

BY ROBERT S. MULLIKEN

ABSTRACT

After a brief review of Hund's theory of molecular electronic states and band
spectra, and a discussion of intensity relations and selection principles in terms of the
correspondence principle, it is shown that practically all the available evidence, as
embodied in previous papers of this series and elsewhere, is in agreement with the
theory. The occurrence of p-type S terms and 0-type P and D terms is explained by
the theory, as also the existence of p-type and 0-type doubling. Selection rules and
other relations in 'P~'S and 'S~'P transitions (including, in agreement with Mecke
and Hulthen, the CH, OH, MgH, and CaH bands) are discussed. Hund's interpre-
tation of the second positive nitrogen bands as a 'P~'P transition is further de-
veloped, and extended to the Swan bands; the apparent absence of Q branches, and
other intensity relations in these bands, are explained; the rotational doubling in
these bands {accompanied by alternating intensities) is interpreted as a-type doubling.
It is shown that the alternating intensities or alternate missing lines in the He2, N2,
Swan, and N2+ bands can all be accounted for formally by the postulate that they
are due to alternate (partially or completely) suppressed levels such that the sup-
pressed values of (jI,—0.&) are always as follows: 8 rotational sub-states, (j—-', —o&) =
0, 2, 4, ~ ~ ~; A sub-states, . 1, 3, 5, ~ ~ ~; here ~q is the part of 0. which is due to the
orbital angular momentum of the electron, and jf, is the resultant of o-p and the
quantity m which measures the nuclear angular momentum in quantum units. —
Finally, the questions of term-notation and formulation, j values for odd and even
molecules, etc. , are considered. The NH P bands ('P~'S) are briefly discussed.

Introdnction Review of—Hund's Tkeory In a very . important paper, '
Hund has discussed from a theoretical standpoint the question of the
nature of molecular electronic states, by a consideration of the orders of
magnitude of the various electrical and magnetic interactions to be expected
in a system composed of electrons and two nuclei.

Hund assumes that, as in atomic spectra, each electron (in particular,
the r'th electron) has orbital angular momentum corresponding to the
(azimuthal) quantum number k, and in addition, a half-quantum (s=s)
of spin angular momentum; the resultant of all the k, 's is denoted k, and
that of the s, 's is denoted s.

Hund shows that in ordinary. cases we may expect k to execute an es-
sentially uniform precession about the internuclear axis, because of the
strong axial field which must result (superposed on a central field) from the
presence of two nuclei. The corresponding quantum number 0& represents
the component of k along the internuclear axis, and should be subject to
the selection rule Do~=0 or + I (for justification, cf. following section).

' F. Hund, Zeits. f. Physik, 30, 657 {1926). The notation used here is di8'erent from
Hund'p; his l, i, and P correspond to k, cr, and j as used here.

637



638 ROBERT S. MULLIEEN

By analogy with atomic spectra, Hund assumes that the electric field
of the nuclei has no effect on s, but that s tends to interact magnetically,
as in the atomic case, with k. Since k should ordinarily precess rapidly about
the internuclear axis, only the component along this axis, namely 0'&, is
effective in orienting s. If the interaction between op and s is sufficiently
intense (case a), s is quantized with respect to the internuclear axis, about
which it precesses; the corresponding quantum number may be designated
0,. By analogy to the rule Am, =0 (m =magnetic quantum number) in
the Paschen-Back effect in atoms, Hund concludes that 0, should be subject
to the rule 60, =0. Since o =a~+cd„ it follows from the selection rules for
a'k and for o, that the rule Ao =0 or +1 should hold.

Hund shows that with a given value of 0 A, , the various possible orientations
of s in case (a) should give rise to a multiple electron level having (usuallys)
the same number of components as for a multiple atomic level possessing
values of k and s equal to those of OI, and s in the present case. Unlike the
atomic multiplet, however, the components should all be equally spaced, but
the spacing should be of the same order of magnitude as for a similar mul-

tiplet in an atom.
If the interaction between s and o~, is small (case b), the torque which

causes s to follow the motion of the internuclear axis may become inadequate
as the rate of nuclear rotation increases. A gradual transition should then
occur with increasing j, to a condition in which s is oriented and quantized
with respect to jz (j=resultant of j& and s), j& being the resultant of m and
o I, (here 0's =0). The expected selection rules in the extreme case are Ao q = 0
or +1, Ajl,. =0, +1, and Aj=0, +1.

Hund also discusses the question of fine structure. For additional details,
reference should be made to Hund's paper, and to the excellent discussion

by Kemble. ' In a brief review of the empirical data, Hund presented evi-
dence of good agreement with his theory. One of the main objects of the
present paper is to give a more complete discussion of the evidence, including
that recently obtained by the writer and given in previous papers of this
series and elsewhere. ' ' '

Selection rules and i@tensity relations. The question of selection rules and
intensity relations has been treated only briefly by Hund. For an under-

standing of the experimentally observed relations in terms of the theory, and
of the connection of the Honl and London-Dennison intensity equations

' Unlike the atomic case, the full number of components corresponding to the multiplicity
should always be developed with the P terms; e.g. a 4P term would have four components

(af, =1, 0..= + —',, + 1-,'), instead of three as in the atomic. case.
3 E. C. Kemble, Bulletin of National Research Council Subcommittee on Molecular

Spectra, pp. 326—331 and 345—6 (1927).
4 R. S. Mulliken, Proc. Nat. Acad. Sci. 12, 151 (1926).
' R. S. Mulliken, Phys. Rev. 28, 481 (1926).
6 R. S. Mulliken, Phys. Rev. 28, 1202 (1926).
' R. S. Mulliken, Phys. Rev. 29, 391 (1927).
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with Hund's molecular model, a somewhat more detailed, consideration is
needed. This can be given in terms of the correspondence principle.

Let us begin with a particular harmonic component of frequency n, —
corresponding to a particular change in the total and azimuthal or other
quantum numbers of the electron, and in the nuclear vibrational quantum
number, '—in the Fourier analysis of the motion of the emitting electron,
this harmonic component being taken with reference to a system of axes
precessing with the electron orbit about the internuclear axis and of course
also following the latter axis in its precession about the axis of total
angular momentum. (Strictly, because of the slight perturbation of the
orbital motion by the spin s, n should be considered as split into a
group of components 0.+~~., where co, is the frequency of precession of s
about the internuclear axis; but, corresponding to the selection rule Aa', =0,
the amplitudes of all the components having r &0 may be considered negli-
gible). If now we transform to a set of axes fixed in the molecule, one of
these being the internuclear or 0 axis, the previous harmonic component
n yields in general only three components (in so far as the precession of
k about o is uniform) of frequencies n (linear component along 0') and
n+co, (right- and left-handed circular components about 0). Here cu. is
the frequency of precession of k about the 0 axis, and corresponds to the
quantum number 0&. The three components thus respectively correspond
to the transitions 60~ =0 and +1. For brevity these three frequencies will
be called P', P+, and P . The question of the relative amplitudes of these
three components need not concern us here.

Now let us consider any one of the above components P, and let us

suppose that we are dealing with Hund's case (a). Transforming to a set
of axes fixed in space, one axis being in the direction of j, we obtain in general
three new components, namely a linear component, of frequency P, along j,
corresponding to Aj=0 (Q branch), and two circular components, of fre-
quencies P+co;, corresponding to Aj= +1 (R and P branches); co; is the
frequency of precession of 0 about j. The relative amplitudes of these com-
ponents can be expressed as trigonometric functions of the angle 0 whose
cosine is 0/j; this is true even if 0 differs from oq because of the presence
of O', . The appropriate functions (cf. ref. 7, Eq. 3; the functions given in
Eq. 3 are proportional to radiation intensities) are identical in form with
those for Dj =0, + 1 in a line spectrum multiplet, since the Fourier compon-
ents corresponding to 601,=0, +1 are identical in form and type (referred
to the 0 axis) with those (referred to the k axis) associated with Ak =0, + 1

in the atomic case; in the latter case cos 0=(j'+k' —s')/2jk. (We are here
neglecting the effect of molecular vibration, —first pointed out by Kemble;
for refs. cf. ref. 7. This alters the amplitude factors somewhat, in the molecu-

' For a detailed discussion of the methods of the correspondence principle, cf. E. Buch-
wald, "Das Korrespondenzprinzip, "F. Vieweg R Sohn, Braunschweig (1923);J.H. Van Vleck,
Nat. Res. Council Bulletin No. 54, "Quantum Principles and Line Spectra, " Chapter IX
(1926); M. Born, "Atommechanik, " especially pp. 118—121 (J. Springer, Berlin, 1925).

' Cf. A. Kratzer, Naturwiss. 27, 577 (1923); W. Lenz, Zeits. f. Physik, 25, 299 (1924);
. Condon, Phys. Rev. 28, 1182 (1926).
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lar case.) The identity just stated formed the starting point of Honl and
London's derivations of their equations. In a previous paper' it was stated
that Honl and London's three cases (Eqs. 4, 5, 6 of ref. 7) should correspond
primarily to DO. J, = 0, + 1 rather than to 60 = 0, + 1; the reasons for this
statement will now be evident from the discussion given above.

In Hund's case (b), starting with any one of the three harmonic com-
ponents P, we first transform to a set of axes, one of which is along j&., and
which precess with jA, about j. This gives three components of frequencies

P and P+ co;r„which for brevity may be denoted y', y+, and y, corresponding
to transitions Aj& = 0, + 1. The relative intensities are then given in the
same form as before (Eq. 3 of ref. 7); but here cos 0=0&/jz. The next step,
using any one of the components y, is to transform to axes which are fixed
in space and one of which is parallel to j. The precession of jI, and s about their
resultant j is completely analogous to the precession of k and s about their
resultant j in the line spectrum case. Hence the relative intensities for the
three components of frequencies y, y+co;, corresponding to Aj=0, +1,
are again given by Eq. (3) of ref. 7, if here 8 is the angle (usually small)
between the vectors jr. and j, and if 0' —0" in Eq. (3) is replaced by j&' —j&".
By examination of Eqs. (3) it can be seen that if cos 8 =1, all the intensities
vanish except those for which Aj =Aj~, while if cos 0 is very rear 1, as is neces-
sarily the case in practise, except for small values of jI, or. large values of s,
the remaining intensities are very small. Except for certain weak series, a
rule Aj, =0 (where j,=j j&) should —be obeyed in the case of doublet terms.
where j=jJ, + &.

From the preceding we may conclude that in Hund's case (b) the in-

tensity distributions in P, Q, and R branches (neglecting weak satellite
lines where DjNhj&) should fall under the same types as in case (a), each

type being characteristic of a particular combination of values (initial
and final) of 0& and jr. , in the same way as of the 0 and j values in case (a).
Exact equations analogous to the Honl and London equations will be given
for case (b) in a subsequent paper. For transition cases between (a) and

(b), it is not yet obvious what the intensity relations should be.
Singlet electronic states. The writer has shown that the band spectra

of various molecules containing an even number of electrons are naturally
classified as corresponding to transitions between singlet electronic states
('S, 'P 'D . ,) with p~0 for all and 0 =0, 1, 2, The following

types of transitions are known (cf ref. 6, Table II): 'S—+'S, 'S~'I', 'P~'S,
and 'D —+'I'. These indicate a selection rule 60 =0, +1. For the case o =0,
the rotational states are single, for a)0, they are double ("a-type doub-
ling" ), ' ' the two rotational states having equal a priori probability. r All

these relations are in agreement with Hund's theory if we identify 'S, 'P,
and 'D states in the sense here used with the three cases 0.

1,
——0, 1, and 2

(all with o, =s= 0) in Hund's theory. The selection rules 60&.„=0, + I,
60., =0 are obeyed, and the occurrence of single rotational states for ~=0
and double rotational states for 0. &0 is also in agreement with Hund's
predictions. That 0 z (here equal to 0) is really an electronic quantum number
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corresponding in general to a precession about the internuclear axis, is
supported by the agreement of observed intensity relations, ' in bands of
the types mentioned, with those predicted on the assumption that ol, is
such a quantum number. To be sure, the evidence in the cases cited gives
no ground for decision as to whether it is 60 or Acr~ which governs the in-
tensities. In many transitions' ' of the type 'PI, 2

—&'S and 'S~'PI, 2, however,
we have 60.1, = +1, but Do =+-,'or +1-'„giving evidence that 0~, not 0',

is the real quantum number.
Doublet electronic states. Band spectra corresponding to transitions be-

tween doublet electronic states are now known for a number of molecules
containing an odd number of electrons. While in singlet states Hund's
cases (a) and (b) are not distinguishable, since s=0, the two cases should
in general be distinct in doublet states, if we suppose that the latter are char-
acterized by s =-,'.

For 'S states we then expect 0 &
=0 and j& = m (Hund's case b here becomes

identical with his case d). Since there is no torque to orient s in the 0 direc-
tion, it might seem that s could orient itself freely in any direction (or with
respect to an external magnetic field). But the observed structure of the
ZnH and similar bands of a 'P—&'S type shows that the usual selection rule
Aj=O, +1 is observed, and that p=+-', for 'S states; also 0.=0 as expected.
The definite orientation of s as p in 'S states is attributed by Kemble' to
an interaction between s and a small magnetic field, parallel to m, developed
by the molecule as a result of its rotation. The slight energy difference
(p-type doubling') which exists, for a given value of m, between F, states
(p =+2) and F~ states (p= ——',) is also ascribed by Kemble to this field.
The observed existence of just two energy levels for each value of j is in
agreement with Hund's theory.

In 'S~'S transitions, ' ' " the observed transitions (F~—&F& and F~~F~)
are apparently limited to those in which p does not change sign, i.e. in
which s does not reverse itself. This limitation Aj, =0 is in agreement with
the theory (cf above under "selection rules" .) for transitions between
doublet states which fall under case (b). The theory however predicts the
existence of additional weak lines, and in particular accounts for the hitherto
unexplained (ref. 5, p. 506) apparent existence (ref. 5, p. 489; ref. 10) of
an I'"& state with j=0; a more detailed discussion of the relation of theory
to experiment for 'S—&'S bands will be given in a later paper.

For 2P states, Hund's theory predicts o A,
——1, with s = + 0., = ~~in

case (o), giving 0=1—', or ~; in case (b), 0&=1, s=2=+j, . For many mole-
cules (NO P bands, "ZnH and other bands listed under 'F~'S and 'S—+'F
in Table II of ref. 6), typical 'F states approximating case (a) actually
occur, having a double electron level with 0 =-,'('F~) and 0 = 1-', ('F2).

The existence of combinations 'S—+'S 'PI, 2—&'S 'S~'PI, ~, and 'PI —+'P~

and 'F2—&'Fy (cf ref. 11, NO p bands), indicates that the selection rule

"E. Hulthbn, Phys. Rev. 29, 97 (1927); CaH bands 2P~'S and 'S~'Stypes.
» F. A. Jenkins, H. A. Barton, and R. S. Mulliken, Phys. Rev. 29, 211A (1927), and

forthcoming detailed articles; Nature, 119,118 (1927).
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Ao. l, ——0, + 1 is obeyed, while the complete absence of the combinations
'Pq —+'P2 and 'Pq —+'P& in the NO P bands gives striking evidence in support
of Hund's rule 60', =0. The intensity relations" in the NO P bands also
agree with the theory for case (a).

In 'P —+'S and 'S~'P transitions involving case (a) 'P states, neither of
the rules Aa, =0 and Aj, =0 can be observed, since 'S states always fall
under case (b). Actually in the ZnH, CdH, and HgH bands, ' we have
+a.,—++p in 'P2~'S and —o.,—&+p in 'P&—&'S, "giving altogether four P,
four Q, and four R branches.

In addition to the more obvious examples of 'P~'S and 'S~'P tran-
sitions, there are several band spectra (CH, OH, MgH, etc.), briefly con-
sidered in previous papers, ' ' which may now likewise be classified as
'P —&'S (MgH) and 'S +'P (C—HX3900, OH), if one supposes with Mecke"
that the electronic doublet separation (2P& —'P&) shrinks rapidly with
increasing j. As Hund has shown, this last feature finds a natural explanation
in the transition from case (a) to case (b) of his theory. In this transition
+o, should go over, for normal multiplets, according to Kemble (private
communication; cf. ref. 26), into +j„resulting in a decreasing electronic
energy separation, and in terms of the Kramers and Pauli formula, giving
a variable 0 and p (cf Eqs. 1 and 2 below).

Kratzer's interpretation of the CH bands, recently advocated in slightly
modified form by the writer, ' involves, for the final state of the molecule,
a constant o (o = 1) and p(p = + —',). For very large values ofj this is obviously
in harmony with Hund's case (b) as above discussed, for a 'P state. The
excellent agreement of the experimental data with Kratzer's interpretation
for small as well as large values of j must now probably be considered for-
tuitous (in agreement with Mecke and Birge, and contrary to earlier con-
tentions of the writer ') in view of the strength of Hund's theory.

Hulthen has recently concluded" that certain CaH bands should be
classified, like the MgH bands, as 'P—&'S. These differ from the HgH type
bands in that the 'P& states combine only with the 'S states having p = —+~,

and the 'P& states only with p =+-'„so that there are altogether only two
P, two Q, and two R branches. Since in case (b) we expect (for normal
doublets, j,= —-,'for 'P2 states and +-', for 'P& states, this would indicate
that the predicted rule Aj, =0 (see above under "selection rules ")
is effective here as in 'S—&'S transitions. The PI and P2 states both show

Q "combination defects" which may be ascribed to 0-type doubling" com-
bined with Q "crossing-over, "" just as in 'P~'S transitions (cf. ref. 6,
p. 1205, Eq. (1a), and Fig. 1). In CHX3900 there are six branches which
follow similar selection rules to the CaH bands. The same is true of the OH

"There are of course two rotational sub-states, for each of the cases +0, and —cr, , in
each case one of these comt&ines with +j„the other with —j, (cf. ref. 6, Eq. 8A.)"R.Mecke, Zeits. f. Physik, 36, 795 (1.926).

'4 The o.-type doubling appears to be about equally great, in case .(b), for 'P& and 'P2
states, judging by the CH and OH bands; in CH (according to Kratzer's analysis) this doubling
can be represented by using a double value of B.

'~ R. Mecke, Phys. Zeit. , 26, 227 (1925).
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bands, except that there are additional weak branches (satellite series).
In these CH and OH bands, or at least in OH, j,=+-', for the 'P2 states and
—

2 for 'P&, and the 'P doublet is inverted (cf. later paper), but the Dj, =0
rule still holds (for the six strong branches). In CHX4300 there are twelve
branches, but, as wi11 be shown in a later paper, these bands are due to a
'D~'P transition. A detailed comparative study of structure and intensity
relations for the whole group of 'P—&'S and 'S—&'P transitions mill be given
in a later paper.

In agreement with Hund's theory, there are in all known 'P states four
rotational states for each value of j except for j= 1. In case (a), this results
from 0'-type doubling'" in each of the electronic states 'P& and 'P2. In case
(b), or gives o-type doubling, " and on this is superposed + s doubling; for
large values of j, the latter goes over into p-type doubling, since then j,~p;
furthermore, the 0-type part of the doubling here shows the same properties
(cf. above, CaH, CH'h3900, OH) as for typical o-type states (e.g. 'P states). '

Triplet electronic states: interpretation of second positive nitrogen ttnd
Sean bands. We now come to the question of band spectra due to com-
binations of triplet electronic states. For a 'P state, OJ, =1, s=1; 'Po, 'P~,
and 'P2 correspond in Hund's case (o) to o, = —1, 0, and +1, respectively,
in case (b) to j,=+1, 0, +1. Hund gives a theoretical diagram (Fig. 4)
for a 'P—&'P transition, and on p. 671—2 makes it probable that the second
positive nitrogen bands" ' " are an example of this type corresponding
for low values of j to case (a) and for high values to case (b). The fact
that (aside from rotational doubling) only three P and three R branches
are known in each band is accounted for by the selection principle ~0', = 0, or
~j& ——~j, limiting the intense transitions to 'Po —&'Po, 'P&—&'P&, and 'P'2 —+ P2.

For small j values, if case (o) holds, the molecular term values should
have the form

F=F(n)+F(o)+B(j 2 o')+—
Here F(n) is the vibrational term, and F(o) is the electronic term which
according to Hund's theory should have three equally spaced values cor-

'~' The splitting of the rotational levels into two is apparently much more pronounced in
'P1 than in 'P2 states in case (u), (ZnH, CdH, HgH, NO, refs. 4, 11);in fact the experimental
evidence for any rotational splitting at all in 'P2 states here is confined to certain perturbed
lines in the HgH bands (cf. ref. 4, bottom p. 156, and refs. there given).

"E.Hulthen and G. Johansson, Arkiv f. Mat. , Astron. och Fysik, 18, No. 28 (1924);
Zeits. f. Physik, 26, 308 (1924). The designations a, P, p, a, b, c, are respectively equivalent to
P3, P2, P1, R3, R~, R1 in the notation of Lindau and Mecke. When used with numerical sub-
scripts, e.g. c3, the subscript is the value of the quantum designation m; the following relations
hold, '"P1, R1, branches, j"=(m+-', )+1 P2, R2 branches, j"=(m+-') P3, R3, j"=(m+~2) —1
thus (m+-', ) is the same as jz" (for values ofj sufficiently large so that jz has a meaning).

P. Zeit, Zeit. Wiss. Photog. 21, 1 (1921); R. Mecke and P. Lindau, Phys. Zeits. , 25,
277 (1924); P. Lindau, Zeits. f. Physik, 26, 343; 30, 187 (1924). Lindau's m values are the
same as Hulthbn and Johansson's, for the R branch, but one unit lower for the P branch.

'8 R. Mecke, Zeits. f. Physik, 28, 261 (1924); Phys. Zeits. , 25, 1 (1924).



ROBERT S. MULLIJI".E1V

responding to 0 =0, 1, and 2. For large j values, where case (b) is approx-
imated, the relation is'

(2)

The three values of F(j, j—j&) should be closer together than those of F(cr)
in case (a), increasingly so with increasing j (cf. Hund s Fig. 3). The arrange-
ment of the band lines and the relation between the j and jI, values for case
(b) are shown in Fig. 1.

Several features will now be considered which have been discussed only
very briefiy or not at all by Hund. Since N2 is an even molecule, the j
values should (in the writer s numbering) be half-integral. That this is
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Fig, 1a corresponds roughly to the arrangement of the lines (missing lines are dotted) in
the R branches of the Swan bands. '" The arrangement is similar in the second positive nitro-
gen bands, except that (1) the dotted components are present but weak, (2) the doublets are
unresolved in the R3 branches and nearly so in R& (in regard to the relative positions of the two
components in P2 and R2 cf. R. Mecke, ref. 16, p. 271, footnote), (3) R1, R2, and R3 are more
widely separated for a given value of j&. The relative position of the strong and weak doublet
components in relation to the j values is correct as given, for N2, but has not been definitely
determined for the Swan bands. Fig. 1a is also applicable to the P branches (P1, P2, P~)
if the values of j' and j'z given are reduced by two units. '" Fig. 1bshows schematically the
arrangement of the strong and weak lines in the R branches in the N2+ bands, as given
by Fassbender. "
true is shown by an examination of the 62I" and 62F" values for small values
of j; these ""are of the expected form 62Ji=4BT with approximately
half-integral T values, which shows (cf. ref. 5, p. 491) that the j values are
half-integral if Eq. (1) is applicable.

The question of missing lines has been discussed by Hund. The theoretical
values of j" for the first line in each branch are readily specified, noting'"
that 0. =0 for E3 and R3, 1 foi I'2 and R2, 2 for I'-i and R~, and assigning to
j;„in each case the first half-integral value in excess of cr. In Table I the
predicted first lines are compared with those observed. The apparent
presence of P~" (2—',) is rather disconcerting. The apparent absence of R~'

(2-,') is less strange, since this component of R& (2-,') would be weak due to
'ga It is possible that the assignment of a values, and the relation of j to jk, for the P&R1

and P3R3 branches, should be interchanged in ref. 16, Table I, and Figs. 1a and 2b. Presumably
+0., ('P& in case a) goes over into —j, of case 0, and —0,('P0) into +j„for normal triplets, and
the reverse for inverted triplets. The relation (m+-,') =jk" of ref. 16 is reliable.
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the alternating intensity phenomenon (see below). On the whole the results
are not very satisfactory, but the experimental difficulties in determining
the presence or absence of weak lines in a crowded region are great.

TABLE I
Valles ofj"—./~~ for first recorded line of each branch

Band PI' P1" P2 P3 R1' R1" R2 R3

X3371
3577
3805
3536
3755
3998
3710
3942

Theory

3
3

(3)
3

2 2 1 3 2 2 1
2 1 1 3 2 (1) 2
2 (2) 1 (3) 2 1 0
2 (3) (3) (3) (2) 2 1

2 1 (2) 1
1 0

4 1 4 0
4 (1) 3 3 2 (1)

3 3 2 1 2 2 1 0

Notes. The data for the first five bands are from Hulthen and Johansson, "and Zeit.";for
the last three, also the presence of R3(1) in X3536, the data are according to Lindau. '7 Values
in parentheses are uncertain due to superposition.

Closely analogous to the second positive nitrogen bands, as pointed
out by Heurlinger, are the Swan (probably Cu or perhaps C&H&) bands, ""
which can therefore probably also be classified as 'P—+'P. The triplet separa-
tions in these bands are smaller than in the N2 bands, indicating that
Hund's case (b) is approached even for rather small jvalues.

The apparent absence of Q branches in the second positive nitrogen and
the Swan bands can be explained by a consideration of the intensity equation
of Honl and London and Dennison for the case 0'=0" (cf. ref. 7, Eq. (4)).
As in the NO P bands, "only very short weak Q branches are to be expected
(none at all in the case 'Pa +'Po), whose -presence would probably not be
noticed without special search. "" Also, corresponding P. and R branches
should be approximately equal in intensity;" so far as can be seen from the
available data, " this relation is fulfilled. Since according to Hund's theory
'Po, 'PI, and 'P& states have equal a priori probability for a given value of j,
we should furthermore expect P&(=P&'+P&" in Table I) =P2 P3 —Rf-—
(=Rz'+R, ")=R2 ——R3, approximately. This appears to be not in conflict
with the data"" (but cf. Lindau, ref. 17, p. 351).

The rotational doubling in the N& and Swan bands is presumably 0'-type
doubling of the type specified by Eq. (2) of ref. 6." In the Swan bands,
the doubling is accompanied by alternate missing lines" apparently of the
same type as in the 'D~'P band of He2 (cf. p. 1208—10 of ref. 6; and cf.

"T. Heurlinger, Dissertation Lund, 1918;R. Komp, Zeits. Wiss. Photog, 10, 123 (1912);
etc.

20 R. Fortrat, Ann. de physique 3, 350 (1915): Swan band ) 5165. R. C. Johnson, Phil.
Trans. Roy. Soc. London, 226A, 157 (1927): comprehensive summary and large amount of
new data.

"The Honl and London equations are of course directly applicable only for case (a),
but may be expected to be at least qualitatively applicable here, especially for low values ofj.

Certain additional series in the second positive nitrogen bands have been reported by
Konen (cf. Heurlinger, ref. 19, p. 55), but are probably due to impurities (cf. ref. 16).

Mecke earlier interpreted this doubling in the N2 bands as p-type doubling. 's
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Fig. Ia of the present paper with Fig. 3 of ref. 6). This is true for all three
P branches and all three R branches; also, the magnitude of the doublet
separations is nearly the same in all three branches of each kind.

Fig. j.a shows how the strong and weak doublet components depend on j
and j& in the Swan bands. '" It is without doubt significant that the relative
positions of the strong and weak components are the same for all three mem-
bers of a triplet (P&, P&, PH or R&, R„R3),hence are determined by j&, not by j.
For large values of j the P2 and P3 (eventually also the P&) branches draw
together (similarly with the R branches), and the scale of the multiplicity
due to the three orientations of s becomes finer than that of the o.-type
doubling. The tendency seems to be toward a coalescence of Pj, P2, P3
and R~, R2, R; each into a single series of alternate-missing-line doublets

(of the He2 "D—&'P type) whose spacing and intensities are a function of
j&, and are presumably characteristic of 0.

1,.
The existence of rotational doubling for all three of the electronic states

'Po, 'P~, and 'P2 (in spite of the fact that, —for low values of j,—o is zero
for 'Po, just as for 'S, where rotational doubling is absent) is in agreement
with Hund's theory, and gives the latter further support.

In the N2 bands, there is an obvious doubling, accompanied by alter-
nating relative intensities of the two components (P~' and P~", and R~'

and R2"), only in the P& and R& branches; here the doublet separation is
approximately constant (do 0.24),""suggesting that it is mainly "elec-
tronic" in origin (cf. ref. 6, bottom of p. 1206). In the Pg and R2 branches, the
existence of doubling coupled with alternating intensities is made evident
by a displacement of the lines alternately to left and right, together with
slight diffuseness in certain lines. " In the P3 and R3 branches, the lines form
a single series without alternating intensities, but by analogy with the Swan
bands, there is no doubt a latent doubling as demanded by the theory; the
existence of two series, related in intensity like those in the P& and Rj
branches, but superposed, would account for the observed apparently uni-
form non-alternating series, while with a truly single series any alternation
would necessarily be evident.

The NH bands: note added r'n proof The NH .b—ands recently analyzed
by Hulthen and Nakamura (Nature, Feb. 12, 1927) and classed by them»'
as 'P~'S are in all probability 'P~'S The strong Q .branches show Aol, /0
The existence of Q combination defects and of three, rather than six, P
(and Q, and R) branches show that an S electronic state is involved. (The
P'Q'R' branches evidently belong to a second band, as Hulthen and Naka-
mura point out). The Pnol states in fact show a narrow triplet separation
increasing linearly with j, as expected for S (case b). The initial states,
showing wide triplets getting narrower with increasing j, must then be P.

A genera&sation concerning alternate suppressed rotational levels. Alternate
weakened or suppressed lines in the N2 and Swan bands, as in the He~ bands
(ref. 6, Fig. 2), are presumably due to a partial or complete suppression of
alternate rotational levels. In the case of He2, it has been shown' that the

'~The classification 3I'~ S was a misprint for P~ S, the writer has since learned from
Dr. Hulthbn.
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observed relations can be explained in terms of a system of missing levels
which is characteristic for each type ('S, 'P, or 'D) of electronic state;
the suppression of a level is a function only of j and of r; or, since s=0
and 0 =ah, here, we may say that it is a function of j& and a&. We may say
further that, for each of the two types of rotational sub-states in He2, the
suppressed values of (j~ —0~) are characteristic and independent of 0~
and of the total quantum number of the excited electron, and are as follows
(cf. ref. 6, Fig. 2): B sub-states, (j&——', —0&) =0, 2, 4, ~; A sub-states,
1, 3, 5, . ; note that for 0 I, = 0, only 8 sub-states occur. '

6Y2

PP PI

Rg Rg

8 ~i R,
Hg

R2
R,

7N,

Fi j=d

18'rz
iDY

i4 Yz

Fig. 2a Fig. 2b
Fig. 2. Possible scheme of rotational energy levels and transitions, (a} for the negative

nitrogen (N2+} bands, (b) for the Swan and second positive nitrogen bands; in (b) the three
values ofj(j z —1, j&, andj f, +1) for each value ofj I, belong to 'Po, 'PI, and 'P2 levels, respec-
tively. '" The spacings and intensities are not to scale. The relative position of the Ill and I'2
levels in (a) and of the A and B levels in (b) is not certain; the same is true in (b) of the relative
magnitude and order of the 'Po, 'Pi, and 'P2 levels and of the A and B rotational levels, in
initial and final states. In (b), if suitable additional rotational levels are used, P branch transi-
tions can be drawn, similar to the R transitions, with no "crossing over"; Q branch transitions
should be very weak and involve crossing over (A~B and 8~A), according to Eq. (2) of ref. 6.

Since there seems to be no reason why the scheme of alternate partially
or wholly suppressed levels as a function of j& and OJ, should differ from one
homopolar molecule to another, it is reasonable to postulate that the state-
ment just made for He2 holds exactly for all homopolar molecules. The data
on the N2 and Swan bands are evidently compatible with this postulate,
since the missing or weakened lines are a function of j& (not of j), hence, we
may say (o& being the same for all three 'P states), of (j&—0&). In the
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N~+ bands ('S—+'S transition) the two branches (P and R) are each composed
of alternately strong and weak doublets;" here again (Fig. 1b) weakness or
strength is determined by j&, or jl, —01„not by j.

In the case of He2, the absence of observed combinations, such as 'P—&'P

and 'S—&'S, between like electronic states was attributed' to a compLete
suppression of alternate rotational levels in betise ~n&r'al and final states.
The occurrence of the combinations 'P~ —+'Po, etc. in the Swan and N2
bands, and 'S—+'S in the N2+ bands, then indicates that suppression occurs
for one only of the two electronic states (Swan bands) or ls only partial
(N2 and Ns+ bands); partial suppression might be present in either or both
of the two states.

A possible arrangement of the rotational levels for the N2 and Swan bands
is shown in Fig. 2b, and for the N2 bands in Fig. 2a. In Fig. 2b the three
levels corresponding to 'Po, 'P&, and 'P2 are drawn equidistant in accordance
with Hund's theory, arid in agreement with the observed approximately
equal spacing of the triplets formed by R&R2R3 or P&P2P3. The latter might,
however, have arisen from a suitable non-equidistant arrangement of
'Po, 'Pi, and 'P~ in initial and final states. It is also uncertain whether the
three levels are more widely spaced in the initial or in the final states, and
whether in each case 'P~ is the highest level as in a normal multiplet or the
lowest as in an inverted multiplet. '" The relative magnitude etc. of the rota-
tional doubling in the initial and final states is also uncertain, since the
doubling observed in the band-lines represents a difference of two term-
doublings. These uncertainties can probably be removed only by the
analysis of band systems having terms in common with the bands here under
discussion.

Gen«ol remarks on term notation, ter-m formulatr'oe, -j values, etc Hund's.
theory gives no explanation of the phenomenon of alternating intensities
in band lines. '4' Also it does not obviously account for the precise nature and
selection rules which are observed in 0-type doubling, although it does predict
correctly the presence or absence of such doubling. But at every point where
the theory as so far developed is specific, all the experimental evidence
appears to be in agreement with it.

The question of a systematic difference between the j numbering of even
and odd molecules was not considered by Hund. In terms of the new
quantum mechanics, the rotational energy for a O.-type term is given by

= & [j(j+I) —e'j+ ." If this formulation is adopted, the experi-
mental evidence'~' '" shows definitely that j(j=o, a.+1, e+2, . ) is

"M. Fassbender, Zeits. f. Physik, 30) 73 (1924); R. Mecke, ref. 18.
'4" W. Heisenberg has recently presented a very interesting theory of alternating inten-

sities (Zeits. f. Physik, Spring, 1927) in terms of the wave mechanics."This equation, obtained for the symmetrical rotator by D. M. Dennison (Phys. Rev. ,
28, 318, 1926), Kronig and Rabi (Nature, 118, 805 (1926), Phys. Rev. 29, 262, 1927), and by
F. Reiche (Zeits. f. Physik, 39, 444, 1926), is doubtless also applicable here. Dennison does not
decide between integral and half-integral j values, but Kronig and Rabi conclude that only
integral values are allowable. This conclusion may well hold when a corresponds to nuclear
rotational energy. but in view of the experimental facts, evidently does not hold when 0. is an
electronic quantum number and when s ~s present with a half-integral value.
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integral for even molecules and half-integral for odd molecules (the j values
in the above formulation are all 2 unit less than those used by the wpiter
in previous papers). The same j values also hold in p-type terms, and
doubtless in general.

In terms of Hund's theory, it is now apparent that the Kramers and
Pauli rotational energy term F(j) =3m'+ =28[(j'—0')'"—p]'
while formally capable of accounting for observed relations, is inappropriate
physically, and should be replaced in Hund's cases (a) and. (b) by Eqs. (1)
and (2) above; in transition cases, the relation is more complicated. The
variable electronic term in Eq. (2), which must also be present in transition
cases, probably gives contributions&'involving all powers of j. The contri-
bution to the quadratic term probably accounts for the frequently rather
large differences " between the apparent 8 values for the components of
a 'P or other multiple level; hitherto these have been interpreted as due to
(unaccountably large) differences in moments of inertia, but recent work of
Kemble and Jenkins" indicates that they can be accounted for quantitatively
in terms of Hund s theory, with a single moment of inertia. The electronic
contribution to the linear term in j also probably accounts in part (not
wholly, since secondary p's occur even for singlet electronic states) for the
frequent occurrence of apparent "secondary p's, " whose existence is equiva-
lent to the occurrence of a linear term in j; also, cf. Kemble, ref. 3, pp. 345—7.

The "effective rotational quantum number" T, de6ned in previous papers'
as j—p, retains its meaning in Hund s case a (where p = 0, T =j ). In case (b),
T might best be redefined as 7=j&, in the special case of 'S states (where
j=j&+p, p=+2), this coincides with the previous definition. For tran-
sition cases between (u) and (b), the appropriate definition of T is not
evident. When cases a and b are approximated, Eqs. 8E, 13, 14, and 15 of
ref. 5, after dropping the terms in po, remain valid, in terms of T, for
F(j ), hiF(j ), 62F(j), and v.

In terms of Hund's theory, it is evident that the notation 'S, 'P, iP,
etc. , as used in previous papers of this series, is far from identical iri meaning
with that for the line spectrum case. According to the theory, the molecular
quantities s, 0&, and 0 in case (u) play the same part in molecular multiplets
as do s, b, and j (Sommerfeld s j„j„and j) in ordinary atomic multiplets
(but cf. ref. 2). The most notable difference is the distinction required be-
tween k and 0& in the molecular case. Practically there is at present little
evidence on which to base this distinction. Probably 0.I, is identical with k
in many or perhaps even in most of the familiar band spectra. When it
becomes possible to determine both k and o~, such a notation as e.g. 'PI
might be introduced to describe the case k =2, 0.~ =1, s =-'„0,= ——,'. In
the mean time, the continued use of the simple designations 'PI, 'S, etc.
would seem to be both appropriate and convenient for the empirical classifI-
cation of molecular electronic terms.
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