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It is pointed out that the previous solutions of the problem of the re-
flection of radiation from parallel planes by Lamson and Gronwall are physic-
ally incorrect since the intensities, not the amplitudes, of contributions from
individual planes, have been added. It is shown that a mathematical method
due to Darwin leads to a solution identical mathematically with those of
Lamson and Gronwall. Using this result, the intensity of reflection is evaluated
for certain ranges, of the constants directly related to the reflected and trans-
mitted amplitudes due to a single plane.

'HE problem of the reflection and transmission of radiation by a set
of parallel, equidistant, reflecting planes has been treated by Darwin,

Lamson', and recently, GronwalP. The solution of this problem is at
least of theoretical interest in the treatment of the intensity of reflec-

tion of x-rays by crystals, for if we adopt the Bragg picture of the reflec-

tion of x-rays by atomic planes, as contrasted with the space-lattice
treatment of Laue, the reflection and transmission of a crystal sheet for
an incident x-ray beam is essentially a problem of this type. The treat-
ment of the problem of the reflection of x-rays by the methods used in

the optics of isotropic media has been criticised by Ewald4, but recently

Bragg, Darwin and James', have pointed out that the methods used by
Darwin give results almost identical with those of Ewald.

The treatments of the problem by Lamson and Gronwall, while excel-

lent mathematically, are open to he fundamental objection that in-

computing the total reflection as a function of the amount reflected from

each plane, the intensities from each plane have been added. Now in any

practical case, and certainly in the crystalline reflection of x-rays, the

' Darwin, Phil. Mag. 27', 675 (1914).
' Lamson, Phys. Rev. 17, 624 (1921).
' Gronwall, Phys. Rev. 27, 277 (1926).
' Ewald, Zeits. f. Physik 30, 1 (1924); Ann d. Physik 54, 519 (1918).
5 Bragg, Darwin, and James, Phil. Mag. 1, 897 (1926).
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waves in question are coherent, and instead of their intensities, their
amplitudes should be added. Nevertheless it can be shown that a large

part of the mathematical work laid down by these authors is useful in

the physically correct solution of the problem. The mathematical treat-
ment of Gronwall is complete and elegant; he has obtained a solution

intended to give the amount of radiation reHected from an incident beam
of unit intensity by an infinite number of parallel planes, and also to give
the amounts reflected and transmitted by a finite number of planes.
The solutions for a finite number of planes are exceedingly complicated
when expressed in terms of the constants of one plane and will not be
con. idered here. The principal purpose of this paper is to attempt to give
an acceptable physical meaning to the mathematical results of Gronwall

for the reflection from an infinite number of parallel planes.
Let us consider the incidence of a monochromatic, parallel (an obvious

idealisation), beam of x-rays of unit amplitude upon the face of a perfect
crystal at the proper angle for reHection according to the Bragg law. We
will neglect the influence of the index of refraction, also the polarisation
and temperature corrections etc. According to the Bragg picture we can
consider the atoms reflecting the x-rays to be arranged in planes. Let
R~ be the amplitude reflected by a single plane, and let T& be the ampli-

tude of the wave emerging from the lower side of the plane, that is, the
transmitted amplitude. Let R„be the amplitude of the total wave reflec-

ted by n planes (as it emerges above the crystal face) considering all

possible internal multiple reflections, and l„be the amplitude of the
total wave transmitted by n planes. Then following the method of Gron-
wall it is easily shown that the following equations hold'.

R„~g R„+T„'Rg/(——l RgR,)—
T„+g

——T„Tg/ (1—RgR„)

(&)

(2)

These are second order difference equations, and if R is the amplitude
of reHection from an infinite number of planes, Gronwall has shown'

that they lead to the result.

' These equations may be obtained from Eqs. (8) and (7) of Gronwall's paper by
making the substitutions t=T~, r=R~, R„'=R„—R~. The introduction of R' terms
in Gronwall's treatment is unnecessary.

7 The radical in (3) comes in as the result of solving a quadratic equation, and Gron-
wall gives reasons for selecting the proper sign before the radical which are not valid
for the case where amplitudes, and not intensities, are added. Nevertheless, an ar-
gument valid for the present treatment may be advanced which leads to the same selec
tion of sign. Referring to Gronwall's paper, the quadratic to be solved is his Eq. (18).
In carrying through the treatment in the notation of this article, we would let p~=
1 —R~R; then Gronwall's (18) becomes

p+ T&~jp =pl.+Tl
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R= (1/2Rg) (1—T,'+R, ' [(1+—Tg' —R ') ' —4Tg']'*) (3)

It is interesting to note that this same result was obtained with a
slightly different method of approach by Darwin, though it is not explic-

itly stated in his paper in exactly this form. With Darwin let t„be the
amplitude of the total transmitted wave above the (m+1)st plane. Then

to is the amplitude of the incident beam. If r„ is the amplitude of the
total reflected wave above the (n+1)st plane, then ro is that of the
rejected beam from an infinite number of planes. As before let Ri and

T& be the amplitudes of the waves reHected and transmitted by a single

plane. Then it follows that

=+1~ +~lr +I

t„+i.= Tjt„+Sir„+i

If we eliminate r from these equations, we obtain

Tg(t„r+t„„g)=4(1+Tr' —Rr')

Darwin now assumes a solution of the form

(4)

(5)

(6)

t~ = POX~

Solving for x after insertion in (6) gives

2T,x=1+TP RP+ [(1+—TP RP)' 4T '—]~—
in which it is easily shown that the negative sign alone gives a result
of physical significance.

From P) and Eqs. (4) and (5) we may also obtain

(ro//0) = (1/2Rg)(2Rp+2Tgx —2Tp)

and if we substitute the correct value of x from (8)

rp/fo= (1/2Ry)(1 —Ty +Rr [(1+Tg2 Ry )2 4TP]~) (10)

This is the result of Gronwall and Lamson if we consider Eo as unity. The
method of Darwin thus involves only first order difference equations, but
Gronwall's method seems more readily adaptable to the study of reHec-

Now the product of the roots of this equation (solved for p), is TP and if they are unequal,
one is greater and one less than T1. But from our equation (2), the present p„must be
greater than T1 or the amplitude of the transmitted beam would increase in the passage
through the system. Thus the larger value of p is the physically significant one, as
Gronwall concludes from other: considerations.

Darwin, Phil. Mag. 2'7, 675, see p. 678 (1914).
9 From the form of the quadratic from which (8) is obtained it follow's that the

product of the two roots given in (8) must be unity. If they are unequal, only the
one less than unity can have physical significance by (7).
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tion and transmission by a finite number of planes. Thus we see that
three different methods of approach lead to the same solution, as expres-

sed in (3).
If we consider the expression (3) for the amplitude of the reflected

beam, we see that for a certain range of RI and TI, namely TI (1—RI.
R will be imaginary. The physical significance of this is of course that
there is a phase shift in reHection, and that

where I is the intensity of the reflected beam.
Let us assume that the wave trains incident on, and reflected and trans-

mitted by, a single plane, may be represented as follows.

y. —ps4lt

y /~i(a& t+5)

yt= kEi

(12)

(13)

(14)

Thus in (13) we assume a phase shift b on reflection, but in (14) we neglect

the shift in transmission. From these assumptions it follows that

Ay=be', Tj ——k

If we substitute these values in (3) and perform the operation indicated

in (11) we should obtain an expression for the reflected intensity. Even
with the simple assumptions (12), (13), (14), this expression becomes

very complicated if the operations are carried out without auxiliary
assumptions. We will first assume that 8 is small so that e"= 1+i'. We
will also set k =1—h. Using these substitutions it follows, without neg-

lecting any terms, that

[(1—R '+ T ')' —4T&']'= [b' —4b'+2b'h(2 —b)

+b'(2 —b) '—i b(8b' 4b' 4b'h(2 —b)) ]—'*. (16—)

If h and 5 are small, and terms of power higher than two may be neglected
in comparison with + (b' —b'), this may be written

[(1—Rg'+ Tg')' 4T ']'* =2 [(b'——b') 2b'ib]1— (17)

We may express the result of taking the square root in (17) in two ways

Case I b& b 2((h' —b')' b'ib(b' b') ')— —(18)

Case II b(b 2( —b'b(b' —h') *'+i(b' h')'*)— (19)

In obtaining these expressions expansion by the binomial theorem was

used, neglecting higher order terms.
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If we treat first Case I, and insert (18) as the value of the radical in (3),
we obtain, setting k' = 1 —2h

R = (1/2b) {2h+b' 2(h—' —b')2+2b'5'(h' —b') '
—ib(2h —b' —2(h' —b')i —2b'(h' —b')-lI (20)

Now if 5 is sma11, the real part of R wi11 be much greater than the imagin-

ary part, and we obtain

I= (1/b') (h —(h' —b')') '= (h/b [(h—'/b') —1]')'

In Case II, we obtain for R

R= (1/2b){2h+b'+2b'8(b' —h') *' —28(b' —h')i

—i(2hb —b'8+2b'8'(b' h')'+2—(b' —h')&I

Neglecting higher order terms, this gives

21!= (1/2b)(2h —2i(b' —h')'*) and I= 1

(22)

Thus in Case II the intensity of the reflected beam will differ from that
of the incident only by very small quantities. This means practically
100% reflection under the ideal conditions postulated.

Neither of the results (22) or (23) are valid if h and b are so nearly
equal that terms in their cubes and higher powers are not negligible in

comparison with + (h' —b'). Nevertheless it is possible to evaluate I if
h = b, thus obtaining a point in this region. It is easily shown that here the
intensity of reflection, as in Case II, will differ from unity only by very
small quantities.

Case II, b& h, is the most important, as at the wave-lengths ordinarily
used, the crystals widely used in x-ray spectroscopy have b&h. The
result of perfect reflection from a perfect crystal at the maximum of the
"rocking curve" for this case has previously been obtained by Darwin
and Ewald. The result of Case I, b&h, might possibly be of interest in

the reflection of very soft x-rays from crystals containing heavy atoms.
The author gladly acknowledges discussions with G. Breit, O. Laporte

and T. H. Gronwall on the subject matter of this paper.

DEPARTMENT OF PHYSICS~

UNIVERSITY OF CALIFORNIA, BERKELEY.
Sept. 11, 1926.


