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THE SYMMETRICAL TOP IN THE UNDULATORY
MECHANICS'

BV R. DE L. KRONiG A~D r. I. RABr

ABSTRACT

Schrodinger's method for determining the energy levels of an atomic system
is applied to the case of the symmetrical top (moment of inertia about axis
of symmetry C, the other one A). The energy values are found to be

h' 1 1 1W. = ——j(j+1)+ -- — '
8m' A C A

in agreement with the result obtained by Dennison from the matrix mechanics.
The quantum numbersj and n must be integers restricted by 0 ~j, t n (

~j, while
half-integral values are not permissible. The intensities of transitions are
also calculated.

INTRQDUcTIQN

~
'HROUGH the important work of Schrodinger' the problem of
finding the energy levels of an atomic system has been reduced

to the determination of the characteristic values of a certain second
order partial differential equation for a function U of the generalized
coordinates, the so-called wave equation. It is the purpose of this
paper to apply his procedure to the case of the symmetrical top, a
mechanical system useful in the interpretation of molecular spectra.
Dennison' has obtained the energy values and intensities of this
system in terms of three quantum numbers, j, n, m on the basis of
the matrix mechanics. He has, however, only shown that his solution
satisfies certain conditions following directly from the fundamental
equations of the matrix mechanics without proving that all these
equations are obeyed themselves, although a comparison with the
amplitudes of the top in the classical theory made it probable that his
results are entirely satisfactory. Moreover the question remained
unsettled whether j. and n had to be given integral or half integral
values. For these reasons a treatment of the same problem by Schro-
dinger's method does not appear superAuous.

' See the preliminary note, Nature 118, 805 (1926). In a paper which came to our
attention after this article was sent in for publication F. Reiche, (Zeit. f. Phys. 39, 444,
1926), also investigates the energy values of the symmetrical top by the same method
and arrives at results identical with ours. He does not, however, treat the intensities,
and therefore it was thought worth while to publish our results.

~ E. Schrodinger —Ann. d. Phys. '79, 361, 489, 734, (1926).
~ D. Dennison —Phys. Rev. 28, 318, (1926).
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Schrodinger's wave equation states that
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THE WAVE E UATION AND ITS SEPARATION

263

Sm'
hU+ (W —V) U=O,

h'

where 6 denotes the gradient of the divergence in the non-Euclidean
configurational space and V(g') the potential energy of the system
under consideration. The question to be answered is: For what values
of the constant 8" do solutions U exist which are Rnite throughout
the configurational space (and zero at infinity if the space extends to
infinity) P These values W shall represent the energies of the stationary
states.

To describe the motion of the symmetrical top we shall use Euler's
angles 8, Q, lP; 8 denoting the angle between the s-axis in space and
the axis of symmetry s' of the top, P and f the angles between the
line of nodes (line of intersection between the x'- and x-axes respect-
ively). The kinetic energy in terms of the generalized momenta is
given by

1 2 cos'0 1 ~ 1 2 2 cos8
P&+ . + P4 + . P4 . P'CPS'

A sin'8 C . A sin'8 A sin'0

A and C being the moments of inertia of the top about the x'- and @'-

axes respectively. For our system the partial differential equation (I)
for U becomes

O'U cos 0 BU A cos' g g'U 1 cl'U—+ + + +88' sin g 88 C sin' g 8$ sinn g 8$'

2 cos 0 O'U 8x'AS'
—+ —U=0.

sin'8 8&8$ h'

This equation will be separated by the substitution

sin (ey+mP)
U ——O(8)

cos (rl,p+ rsvp)

where 8(8) is a function of 8 alone. It is necessary that U returns

to the same value if Q and f are increased by integral multiples of 2s,
since then the mechanical system takes up the same position. This
can only be accomplished by having the constants n and m equal to
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integers. Substituting (3) in Eq. (2) gives an ordinary second order
difierential equation for 0

d20 cos 0 do (nz zz —cos 9)'
+ Ox+00~ = 0,

d0' sin 0 d0 sin'0

——n2.
C

DETERMINATION OF THE CHARACTERISTIC VALUES

/ 1/2

4 —(nz —n) Xz ———+ —+ g + zzz

2 2 4
6

I 1/2

y. z
——(I + zz) zzz

— (nz ——n)zzz =, —— —+ o + 222

2 4

Xz —(nz + n)
2

Eq. (4) can be transformed into the hypergeometric equation by
a suitable change of variables. We shall introduce the following
notation:

The brackets in the erst two expressions mean that X~ and ) 2 shall be
so chosen from the two quantities behind the bracket that ) &

& 0,
712&0; e. g. if (nz+n) &0, (I n) &0, then 71—1

——2(nz+n), @1=—2(nz+n),
4 = ,'(nz —zz)—, pz———', (nz —-n) Furt. hermore vie introduce in Eq. (4)
the new independent variable

x = —(cos 0 + 1)
2

and the new dependent variable

X = x—"'(x —1) "0'.

Eq. (4) then takes the form of the hypergeometric equation

O'X dX
x(1 —x) + [y —(n + P + 1)x]——nPX = 0,

dx dx

(7)

where

n = Xg+ Xg+ )3, p = )g+ X'+ ps, y = 2)g —1. (10)

From these and our choice of ) ~ and )2 it follows always that

e+P —y= 2X2&0.

M oreover y —1 =p, where p is an integer & 0.

4 See L. Schlesinger —Differentialgleichungen, {Sarnmlung Schubert No. 13, Goschen
1900, Chapter 4.)
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To the interval of our old variable 8 from 0 to x there corresponds
the interval from 0 to 1 of the new variable x. From Eq. (8) it follows

that if 0 is to be finite in this interval including the limits, then (since
Xi and Xq~0) X must be regular inside this interval and at the limits
must not become infinite of higher order than x ~' and (x —1)

The solution of Eq. (9) is expressible in terms of hypergeometric
series. We know that y —1 =p, where p is zero or a positive integer.
We distinguish the following cases:

(a). If p&0 and neither n nor p is equal to one of the numbers
1 p; or if p=0 and neither n nor p is equal to zero, then two in-

dependent particular solutions in the neighborhood of x = 0 are given by

Xi ——F(a,p, y, x),

Xg = G(u, P, y, x) + F(n, P, y, x) log x,

where

P ~(~ + h)P(P + 1)
F(0i,P, p, x) = 1 + —x + g + 0 ~ ~

v 1 2v(7+1)
is the hypergeometric series, and G is a series

G(~, p, y, x) = x' & Q coax", co% 0.

(b). If p)0 and at least one of the quantities a or p is equal to
one of the quantities 1 p, then

Xi ——F(n, p, y, x),

X2 ——x'~F(a+ 1 —y, p + 1 —y, 2 —y, x).

In the second series the zero factors in the numerators and denominators
of the coefficients are to be omitted.

(c). If p=0 and at least one of the quantities iz and p is zero,
then

X = Const.

will be a solution.
We see that there are no solutions O~ fulfilling the requirements of

6niteness inside the interval unless at least one of the quantities 0.

and p is zero or a negative integer. For if that is the case, the solution

X& will have only a Rnite number of terms and hence be finite through-
out the interval. However, if neither n not p is a negative integer or
zero, Xi will become infinite for x=1, since F(o, P, y, x) diverges for
x=1 if, as in our case, the real part of y —n —p &0, becoming infinite

as (1 —x)& ~ t'=(1 —x) '"' (or as log (1—x) if y n p=0). The——
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solution X2 on the other hand becomes infinite as x' &=x '"& (or as
log x if 1 —y=0).

From Eq. (6) and Eq. (10) it follows that if o. and p are real, &~p
so that for convergence P must be zero or a negative integer. That will

only be the case if

=j(2+ 1) —~' j = (Xi + X2), (Xi + X2 + 1)

as is easily seen from (6) and (10). Hence j must be a positive integer
or zero since X&+'A2 is always a positive integer or zero. As a direct
consequence of the condition expressed in Eq. (11),

we have

j & X&+ 'A2,

(12)

since, according to the definition (6) of 4 and 4, (4+4) is always
the larger of the two quantities ~n~ and ~m~.

Introducing our value 0 into Eq. (5) we get for the energy levels

h' 1 1
W;„= —j(j + 1) + ———e'

Sm' A C A

in harmony with Dennison's' results, but with the additional informa-
tion that j and n must be integers. The requirements (12) shows that
for a given j and n there exist 2j+1 values of m. This (2j+1)-fold
occurrence of the value W; among the characteristic value of the
wave equation corresponds to the fact that the state (j, n) will divide
into (2j+1) levels under the action of an external field. The quantum
number j determines the total moment of momentum, n the moment
of momentum about the axis of symmetry.

CALCULATION OF INTENSITIES

As shown by Schrodinger' and Eckart' the matrix elements of the
coordinate g' in the Born-Heisenberg mechanics are given by

(13)

where U~ and Ug are the characteristic functions belonging to the
states k and l respectively, while dv is the element of volume of the

l' C. Eckart —Phys. Rev. 28, 711, (192").
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configurational space. The integration extends over the whole domain

of the variables. C& is defined by

(14)

If in our problem we consider a radiating charge attached to the
top such that its coordinates in the system of axes x', y', z' rigidly
connected to the top are a, 0, c, then its coordinates in space are given

by

x = csin9sing+ a cos$ cosltt —acos Hsing sing,

y —c sin 0 cosP+ a cos Q sing+ a cos 0 sin& cos P,

z = c cos 0+ a sin 0 sin Q.

We have but to substitute these and our characteristic functions in

Eqs. (13) and (14) and to evaluate the definite integrals.
As an example we shall take the coordinate z. For the matrix

element corresponding to the transition j, n, m —j', n', m' we find

with the aid of Eq. (13)

II
2+ (F23

s(j, m, rN;j ', m', m') = C;„C;.„. ~ A(C)'" sin gdgdiI)d)fi
VQ JQ aJQ

(c cos 8 + a sin 8 sin 4)O~(j)e)m)g)O~(j')I')rw', 8)

{
sin (n)t) + rmg) sin (ri'd) + m'tg)

(i+ 0){ ('S+ 4)

the volume element dv in the non-Euclidean space being given by

ds = (g)' dgdit)dg = A(C)' ' sin gdgdit)dg

It is immediately evident that due to the integration over P and

p z(j, n, m; j', n', m') will be diiferent from zero only when n'=n,
n'=n+ 1 and m'=m. These conditions correspond to the well-known

selection rules for the radiation emitted by the top. It will be sufhcient
for the purpose of illustration to restrict ourselves now to the case
n' =n. We then have

s(j,l,m; j', N, ~) = 4~scC;„C,'„„A(C)i&s

~ ' d0 sin 0B ', n, m, e B ', n, m, e . (15)
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For C;„we integrate over p and lt in Eq. (14) and obtain

4x'A(C)'"C, »„ t de sin 08'(j, e,m, 9) = 1
0

(16)

and similarly for C; „
We now proceed with the evaluation of the integrals. Expressing 0

in terms of the hypergeometric series according to Eqs. (7) and (8)
and writing

A = K+V~

where v is a positive integer or zero, we get for the first integral

Ii =
I

d0 sin 0 cos 00 j,e,m, e 0 j', e,m, e
80

t
1

= ( —1)'~ dx(1 —2x)F(e + v, —v, y, x)F(~ + v',
0 —v', y, x) x& '(1 —x) ' '.

Both e and y are the same in the two functions F, since they are given by

e = 2(Xg + X2) + X3 + p3,

according to Eqs. (10) and (17), and are
cording to Eq. (6).

All integrals occurring in this and the
be reduced to the general form

y= 2Xg —1

hence independent of j ac-

remaining calculations can

1

J
dxF(e + v, —v, y, x)F(e' + v', —v', y', x) x& '(1 —x) '~ (18)

0

by means of the relation valid for any hypergeometric series

xF (e + v, —v, y, x) =

(V —1)(v —2)—[F(e + v —1, —v —1,y —1, x)
(e + v —1)(v + 1)

—F(e+ v —1, —v —1,q —2, x)]

Multiplying the dilferential equation (9) for F(s+v, —v, y, x), which

in our new notation is

x(1 —x)F" + [p —(g+ 1)x]F' = —v(v+ e)F,

by x~ '(1 —x)' r, it is seen that

(19)

—(e + v)vFx& '(1 —x)' 7 = [F'x&(1 —x)' '+']. —
dx

(20)
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Substituting F(e+v, —v, y, x) from this relation in (18) and integrating
by parts we get

p1
dxF'(c+ v, —v, y, x)F'(e'+ v', —v', y', x)x'(1 —x)'~+'.

1

v(e+ v) ~0

This procedure can be continued by differentiating Eq. (19) and getting
a relation similar to Eq. (20) with F' and F" instead of F and F'.
Since the Ii s are polynomials in x it is thus possible to reduce the in-
tegral (18) after a finite number of steps to the form

p1 const. p!q!
const. l' dx xv(1 —x)' =-

00 (P+ C+ 1)'

2( —1)' 'v! [(7 —1)!]'(~+ v —v)!(~ —1)(~ —2v + 1)

(y + v —1)!(e+ v —1)!(c+ 2v)(e + 2v —1)(e + 2v + 1)

The integral in Eq. (16) is evaluated in the same fashion and gives

In our example I1 vanishes except when v' =v+ 1, P' = s or j' =j+ 1,
j'=j. This result represents the selection rule for j. If v'=v i. e.
j'=j, then

C „

Then from Eq. (18)

( —1)™hy v —1)!(v. + v —1)!(~y 2v)

8x'~(c)"'v![h —1) lj'(~+ v —7)!

(e —1)(e —2y + 1) em
s(j,I,m; j,e,m) = —c

(e + 2v —1) (e + 2v + 1) j(j + 1)

This agrees with Dennison s' expression, our notation j, n, m cor-
responding to his m, n, o.. In the same way the other intensities are
computed. They too are found to agree with Dennisori's values except
that the quantities called by him 8 „", , and 8 1", , z, must be

mn o ~+0 ~+0+1 m+6 8$ —8+
16m'(m + 1)'

(
PL + 0 t8 + 0' 1 fg + K' '5'2 + S i

64m'(m' —ii)

a difference probably due to a misprint arising from the inversion ~f
a + sign.

DEPARTMENT OF PHYSICS,
COLUMBIA UNIVERSITY,

November 4, 1926.


