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DIPOLE GAS
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ABSTRACT

The investigation of the motion of a diatomic dipole molecule in crossed
magnetic and electric fields shows that according to the old quantum theory
there will be spatial quantization practically with respect to the direction of
the magnetic field for experimentally realizable values of the field strengths.
As a result of this the old quantum theory definitely requires that the applica-
tion of a strong magnetic field to a gas such as hydrogen chloride produce a
very large change in the dielectric constant of the gas. The theory of the
dielectric constant of a diatomic dipole gas according to the new quantum
mechanics, on the other hand, requires the dielectric constant not to depend

upon the direction characterizing the spatial quantization, so that no effect
of a magnetic field would be predicted. The effect is found experimentally not
to exist; so that it provides an instance of an apparently unescapable and yet
definitely incorrect prediction of the old quantum theory.

I. TREATMENT BY THE OLD QUANTUM THEDRY

N THE present paper we calculate the dielectric constant of a diatomic

dipole gas in a magnetic field. We shall defer application of the nev

quantum dynamics until ffii, and commence by employing the old

quantum theory even though it is now obsolete. We include treatments

by both theories because the difference in the results is very interesting

and furnishes additional evidence for the new mechanics, inasmuch as
in the old theory the dielectric constant is materially influenced by a
magnetic field. This effect, which is absent in the new theory, arises from

the fact that with sufficiently strong magnetic fields the direction

characterizing the spatial quantization of the rotating molecules will be
the direction of the magnetic field instead of that of the electric field.

In order to determine the 6eld strengths with which this transition occurs,
it is necessary to determine the motion of the gas molecules in crossed

electric and magnetic fields. The motion of a diatomic dipole molecule

in an electric field has been treated by Hettner" and by W. Pauli, Jr.'
The equations of motion can in this case be solved by means of the
separation of variables. This procedure can also be followed for the
motion of the molecule in a magnetic field alone, and in both a magnetic

* Fellow of the John Simon Guggenheim Memorial Foundation.
' G. Hettner, Zeits. f. Physik 2, 349 (1920).
' W. Pauli, Jr. , ibid. 6, 319 (1921).
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146 LINUS I'A ULING

and an electric field when the two fields are parallel; it cannot be used for
crossed fields, however. The treatment given the problem of crossed
fields in this paper is based on the methods of Bohr 3 and is somewhat
similar to that given the problem of the hydrogen atom in crossed
electric and magnetic fields by Klein4 and by Lenz. '

We shall for simplicity consider a diatomic molecule without resultant
electronic angular momentum as a rigid assemblage of charged mass-

points along a line. For our purposes it can be characterized by three
quantities, the moment of inertia 3=Zns, r;, the electric moment

IJ, =Re;r;, and the electric moment of inertia or quadrupole moment
K =ZE;r, in which e; is the charge and m; the mass of the ith mass-

point, and r; its distance from the center of mass of the molecule. The
detailed consideration of the quantum-allowed states of motion of the

Fig. 1.

co =3p'E'A/2p', (1s)

(1b)AM =ff,II 2Ac,

molecule given in the appendix of this paper leads to the result that
except for terms of the order of magnitude of e/u&~ the spatial quantiza-

tion in eros~ed electric and magnetic fields is the same as for the magnetic
field alone; namely, the total angular momentum vector P, of magnitude

P=jh/27r, has a component in the direction of the magnetic field vector
H of magnitude mk/2s. , and P further undergoes precessional motion

about H with uniform angular velocity. or and co~ are given by the
equations

3 N. Bohr, "On the Quantum Theory of Line Spec&ra, " Part II, Det Kgl. Danske
Vid. Selsk. 8, IV, 1 (1918).

4 O. Klein, Zeits. f. Physik 22, 109 (1924).
~ W. Lenz, ibid. 24, 197 (1924).
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in which 8 and H are the electric and magnetic field strengths respec-
tively; —co~ is the angular velocity of precession of P about H in the
presence only of the magnetic field, and —co cos O~, in which 0~ is the
angle between P and the electric field vector Z, is the angular velocity
of the precessional motion of P about E in the presence only of the
electric field.

The dielectric constant of a diatomic dipole gas. Under the influence of
an electric field a gas becomes electrically polarized in the direction of the
field, the amount of polarization per unit volume being

3 e—1I' =— E= SIT,+SaE,
4n- ~+2

(2)

in which e is the dielectric constant of the gas, 1V' the number of molecules
in unit volume, and 0. the deformation coefficient or coefficient of induced
polarization of the gas. pt is the average value of p for all molecules in the
gas, where p is the time-average of p, cos 9 for one molecule in a given
state of motion. An expression for p, applicable to polyatomic molecules
in general was obtained by Debye' with the use of classical statistical
mechanics; namely,

Tt
=p'8/3k T. (3)

The interpretation of the oscillation-rotation' and the pure rotation'
band spectra of hydrogen chloride required that this result be aban-
doned; for with the old quantum theory these spectra showed. that the
rotational energy of the molecule was restricted to the series of values
W=(j'It')/8n'2, with j= s, s, ss, ~ ~ ao. The exPression for the dielec-
tric constant of a diatomic dipole gas according to the old quantum
theory was derived by W. Pauli, Jr., in the following way. For a given
molecule the average value of p, cos 0 is

p
p =—,' cosa(A,

7 sto

On substituting for dt its value given in Eq. (32) of the appendix, expand-

ing in powers of tsar/n„and evaluating the resul. tant integrals by contour
integration, one obtains the approximate result

2m'A p'E
~ —(3cos'0' —1),

AS jR

' P. Debye, Physik. Zeits. 13, 97 (1912).
7 Colby, Astrophys. J. 58, 303 (1923).' Czerny, Zeits. E. Physik 34, 227 (1925).
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in which 0+ represents as before the angIe between P and E. Assigning

equal a priori probabilities to all of the possible quantum states character-
ized by the quantum numbers j and m, we have for the probability of a
given state

and for P we have

p= Q; Q„ro(j,m) p(j, m).

When the electric field alone is present this expression can be easily
evaluated, for then cos 0' is equal to m/j, and

2~2+ @~A
p(j, m) =—— 3——1 I,h2j'2 j2

with
p =p'EC/k T, (8)

in which o'=k'/8 AnkT

This is the result given by Pauli, who evaluated C by giving j and m

integral values and assuming cr to be very small. Values of C as a function

of o have also been published by the writer, ' assuming the values &&, ~3,

~ for jand +&&, +z, +z, - +jforns.
The injfuence of a strong magnetic jfeld on the dielectric constant. If in

addition to the electric field a strong magnetic field is present, the average
value of p cos 0 for a molecule in a given state of motion will no longer

be given by Eq. (4). We prove in the appendix that if the magnetic
field is so strong that the ratio a&/cosr is small compared with unity, the

spatial quantization is relative to the direction of the magnetic field,

about which P undergoes a uniform precession. Accordingly the cosine
of the angle 6 between P and H will be equal approximately to m/j. We
now have the trigonometric relation

cos 0' = cos f cos t1+sin lt sin 6 cos X,

in which y, as shown in the figure, increases uniformly from 0 «2~
during the precessional motion of P about H. From this relation we find

1 2 (3 1l
(3cos'0 —1)dx=

(
—cos'1t ——

( (
3cos'6 —1 (,

0 E2 2) E, )
L. Pauling, Proc. Nat. Acad. Sci. 12, 32 (f926); Phys. Rev. 27', 568 (f926)
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and from this on substituting for cos 5 its value»/j

(3 1l r' m2
(3cos 0 1)average=

(
cos P l (

3 1
(2 2& & j' (10)

This equation shows that the eFfective polarization due to one molecule
in the state characterized by the quantum numbers j and m is equal to
(s cos'P —st) times its value in the absence of the magnetic field; i.e.,

(3 1~
Iri(J») =l c» 'p ~pU»)

E2 2&

Since this multiplicative factor is independent of j and m, we may sub-
stitute Eq. (10) in (4) and obtain the result

(3 1i p'E
P& ——

l
—cos'P ——

~

—C,
E2 2p kT

(12)

in which C has the value given by Eq. (9). We can consequently state
that in the presence of a strong magnetic field making an angle tp with the

electric field the polarization due to permanent dipoles will according to the

old quantum theory be (s cos'P —st) tinies its value in the absence of the

magnetic jield
The old quantum theory accordingly definitely requires that with the

magnetic field nearly at right angles to the electric field gases such as
hydrogen chloride should show a negative polarization, and a dielectric
constant smaller than unity; the absolute value of the negative polarization
should be equal to one-half of the usual positive polarization, except for
the relatively small and always positive contribution due to deformation.

In view of the fact that the band spectra do not directly determine
the possible values of the quantum number m, it is to be especially
emphasized that this result regarding the eBect of a magnetic field is
completely independent of the assumption of particular values for this
quantum number. The value of C, as shown in Eq. (9), does depend on
this choice, but the ratio of p& to p (Eqs. 12 and 8) is simply s cos'lb —st, and
so is independent of C. ,

It is of interest to consider the magnitude of the magnetic field strength
necessary to make co/cosr small and so producers this effect. Using for A its
value as determined by Czerny from the pure rotation absorption

"This quantitatively predicted effect is not to be confounded with the effect quali-
tatively predicted by Ruark and Breit, Phil. Mag. 49, 504 (1925), and found experi-
mentally not to exist by Weatherby and Wolf, Phys. Rev. 2'7, 769 (1926), for their
effect involved molecules without a permanent electric moment, such as those of helium,
oxygen, and air.
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spectrum of hydrogen chloride, for p the value found from its dielectric
constant, 9 for p the expression jh/2n, and for x the estimate —1X10 "
E.S.U. ,

n we find from (1a,b) that co/&usr becomes small when

H»F2/10, 000j3
in which H is the field strength in gauss, and I' the electric field strength
in volts/cm. It is at once'apparent that this condition can be easily
achieved experimentally.

II. TREATMENT BY THE NEW QUANTUM MECHANICS

According to the new quantum mechanics, the spatial rotator is
characterized by two numbers j and m, such that j can assume the values

0, 1, 2, 3, ~ ~ Do, and nz the values 0, +1, +2, +3, - ~ +j. The cor-
responding energy values, in the absence of an external field, are

W(j,m) =j(j+1)h'/8n'A. (13)
The energy-levels thus differ from those of the old quantum theory with
half quantum numbers only by a constant additive quantity, and are in

complete agreement with the infra-red spectral data.
The new quantum mechanics leads to a formula for the dielectric

constant of a diatomic dipole gas greatly di6erent from that given by
the old quantum theory, as has been shown both by L. Mensing and
W. Pauli, Jr. ,

"and by J. H. Van Vleck." The average polarization due
to molecules with a given value of j not equal to zero vanishes, and only
those molecules with j=0 produce any polarization under the in8uence
of an external electric field. Hence the new quantum mechanics shows
in this case much greater similarity to the classical theory than did the
old quantum theory; for on the basis of the classical theory only
those molecules with very small rotational energy, namely, less than

pE, contributed to the polarization, " while the old quantum theory
stated that no such molecules were present.

The dielectric constant of a diatomic dipole gas. As shown by Mensing
and Pauli and by Van Vleck, the polarization excited in a molecule by
a static external electric field can be calculated by means of the Laden-
burg-Kramers dispersion formula, derived on the basis of the Heisenberg

"This estimate is substantiated by the fact that Professor O. Stern has recently
shown by a very sensitive adaptation of the experiment determining the bending of a
molecular stream in a strong inhomogeneous magnetic field that a molecule of water
vapor at around O'C has a magnetic moment of the order of magnitude of 0.001 Bohr
magnetons, which corresponds to a quadrupole moment of the order of that assumed
for hydrogen chloride.

~ L. Mensing and W. Pauli, Jr., Physik. Zeits. 2'7, 509 (1926); also C. Manneback,
ibid. 2/, 563 (1926). .

'3 J. H. Van Vleck, Nature, August 14, 1926."Alexandrow, Physik. Zeits. 22, 258 (1921).
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quantum mechanics by Born and Jordan" and of the wave mechanics

by Schrodinger, "by placing the frequency of the impressed disturbance
equal to zero. Placing the Z-axis parallel to the electric lines of force,
corresponding to spatial quantization with respect to the electric field,
we obtain for the polarization of a molecule characterized by the quantum
numbers j and m the expression

, z'(j, m; j', m')
p(j, m) =2ii'F. Q;,„hv(j,m; j', m')

in which z(j,m; j',m') represents the term in the matrix z corresponding
to the transition j~j', m —vm', and v(j,m; j',m') represents the correspond-
ing frequency, considered positive in absorption and negative in emission;
the summation is to be extended over all values of j' and nz' for which

z(j,m; j',m') does not vanish. The values

(j—m)(j+m)
z'(j, m; j',m') = for m'=m, j'=j—1 (15s)

(2j—1)(2j+1)
(j—m+1)(j+m+1)

for m' rl, j='=j+1 (15h)
(2j+1)(2j+3)

= 0 otherwise

have been derived by Mensing' and by Dennison. " On substituting
these values, together with the values of kv obtained from the energy-
levels given by Eq. (13), we find for j/0 the equation

Sx'A p'E 1 ns2

p(j m) =
h' (2j —1)(2j+3) & j(j+1)

(16)

For j=0, however, only the jump with absorption can occur; from (15h)
we accordingly find

p(0, 0) = 8x'Aii'E/3h' .

Since m does not occur in the energy expression (13), the probability of
every value of m, with j constant, is the same. We may consequently
find the average contribution to the polarization of molecules in the jth
state by simply averaging p(j,m) as given in Eq, (16) over all values of m.
On doing this zero is obtained for every state with j not zero:

1 +j
r(i ) = Zi U—,.m) = 0,

2j+1
"Born and Jordan, Zeits. f. Physik 34, 858 (1925).
"Schrodinger, Ann. d. Physik 81, 109 (1926).
'7 L. Mensing, Zeits. f. Physik 30, 814 (1926)."Dennison, Phys. Rev. 28, 318 (1926).
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so that only molecules with j=0 are effective. From Eq. (5) the prob-
ability of this state is

(18)

in which o, as before, is h/z8zrzAhT. We thus obtain the result that the
total polarization of X molecules is

p, 'E
zz, = ift zz&(0, 0) p(0, 0) =—.

3kT
o Q(2j+1)e ~'&'+'&

j=o

For small values of 0; i.e. , for high temperatures, this reduces to the
classical equation of Debye.

The dielectric constant in the presence of a magnetic field We s.hall next
calculate the polarization produced when the electric lines of force are
parallel to the X- (or Y-) axis, and the characteristic direction Z of
quantization is determined by some other inHuence, such as a strong
magnetic field. We again use Eq. (14), except that for s'(j,m; j',m')

we substitute xz(j,m;j ',nz') or y'(j, m; j',m'), with the following values,

given by Mensing and Dennison:

(j +nz+1) (j+m+2)
xz(j, nz;j ', m') = y'(j, m; j', m') =—

4(2j+1)(2j+3)
(20a)

fol m =m+1,j =j+1
(j-m)(j-m —1)

4(2j—1)(2j+1)
(20h)

for m'=m+1, j'=j—1

(j+m —1)(j+m)
4(2j—1)(2j+1)

for m'=m —1,j'=j—1

(20c)

(j—nz+1)(j—m+2)
20d

4(2j+1)(2j+,3)
for m'=m —1,j'=j+1= 0 otherwise.

From 20a, b, c, and d we find for jWO

p, (j,m) =p„(j,m) =—4m'2 p, 'E 1 i m'

(2j—1)(2j+3) & j(j+1) j '

and from 20u and d for j= 0

p, (0 0) =p (0 0) = gzrzAtzzE/3hz (22)
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The polarization resulting when F. and H are inclined at an angle P
to each other may be found by taking the resultant of the polarizations
produced by the components of F parallel and perpendicular to H, given

by Eqs. (16), (17) and (21), (22). On doing this we find for all molecules
with j/0 the result

(3 1i
pt, (g, m) =

~

—cos'P ——
( p(g, m),

E2 2&
(23)

in complete agreement with the classical expression. For j=0, however,
we find

p~(0, 0) =p(0, 0). (24)

The previous result regarding the influence of a magnetic field on the
polarization does not follow, for on summing over m we find again that
only those molecules in the lowest state, with j=0, contribute to the
polarization. From the similarity of (17) and (22) it then follows im-

mediately that the polarization p& is still given by the expression on the
right-hand side of (19), and is consequently independent of the direction
of quantization. Since for small values of electric and magnetic field

strengths the only effect of applying a magnetic field to the gas will be to
change the direction characteristic of the spatial quantization, we thus
see that on the basis of the new quantum mechanics a magnetic field should

not inftuence the dkelectnc constant of a gas such as hydrogen chloride

Since this paper was submitted for publication, a note by Kronig" has
appeared in which it is stated that according to the new quantum
mechanics a magnetic field should be without eRect on the dielectric
constant of a diatomic dipole gas.

III. CoMPARIsoN wITH ExPERIMENT

The experiment suggested by the foregoing considerations was under-
taken by Dr. L. M. Mott-Smith and C. R. Daily" in the Norman Bridge
Laboratory of Physics of the California Institute of Technology, with
the following results, which have been published in detail in the PHvsIcAL

REvIEw. Measurements were made on hydrogen chloride at pressures
varying from 2 to 350 cm, using a sensitive heterodyne beat method
of measuring the dielectric constant, and using the gas-handling tech-
nique described by Zahn. " The magnetic field strength was about
4800 gauss, and the electric field strength only a few volts/cm, so that
the quantization was very closely with respect to the magnetic field.
At each pressure the dielectric constant was measured with the fields

'9 Kronig, Proc. Nat. Acad. Sci. 12, 488, 608 (1926).
2' Mott-Smith and Daily, Phys. Rev. 28, 978 (1926)."C. T. Zahn, Phys. Rev. 24, 400 (1924).
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both mutually parallel and mutually perpendicular. In no case zvas any
change in the dielectric constant detected, within a limit of error of about
one part in 100,000 in e; i.e., about 2 percent in the polarization for a
pressure of 20 cm. The same result was also obtained with nitric oxide,
NO.

Are. ENDlx

The motion of a diatomic dhpole molecule in crossed fields according to

the old glantgm theory. The equation of motion of the idealized

diatomic dipole molecule in an electric field E and a magnetic field H
may be written vectorially as

d K

a —[rv] =u[rE]+ [r[vH]-],
dt C

(25)

in which z represents a unit vector in the direction of the axis of the
molecule, and with the same sense as the electric moment. The velocity
dr/dt is denoted by v. By means of this equation we shall now determine

the perturbing inHuence of the fields to the first approximation.
The unperturbed motion is characterized by four constants of

integration. For our purposes it is desirable to choose as these constants
the direction and magnitude of the total angular momentum vector (three
constants) and the absolute phase of the motion. The perturbing fields

produce changes in these quantities, the determination of which con-

stitutes the perturbation problem. In order to find the perturbations for
the angular momentum vector let us average each term of (25) through
a length of time equal to the period of the unperturbed motion. If we

define P as the angular momentum vector averaged through the period
of the unperturbed motion, the left side of Eq. (25) becomes dP/dt, and

we have
dP

u[r—Z]+=[r[v HI-J.
C

(26)

The egect of the magnetic field. In order to evaluate the magnetic term

in Eq. (26) we note that on account of the identity

and the relation

we may write

[r [v H] ]+ [ H [rv] ]+ [v [ Hr] ] = 0

/

—[r [Hr] ]= [v [Hr] ]+[r [Hv] J.
dt

d
2 [r [vH]) = —[H [rv]] ——[r [Hr] ].

(27)
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To the first order of approximation we may now take the average value
of these quantities through a period of the osculating unperturbed motion.
The second term then becomes zero; and on substituting for [rv] its
value P/A we obtain the equation

K K—[r [vH]] = [—H—P].
c 2Ac

(28)

On substituting this result in (26) we observe that the effect of the
magnetic field is to produce precessional motion of P about H, with the
angular velocity —«H/2Ac, in which H= ~H~.

It can further be shown, by determining the Hamiltonian function in
the way given by Schwarzschild, that the energy added by the magnetic
field as it is increased adiabatically from zero to H is

«(HP)/—2Ac. (29)

The effect of the electric field It is. found that the average value of [rE]
taken through a period of the osculating field-free motion is iero; for the
electric field produces only a second-order effect. In order to determine
the perturbations due to the electric field it is accordingly necessary to
consider not the osculating motion in the absence of both the electric
and the magnetic field, but rather that in the presence of the electric
field and the absence of the magnetic field." In this case the Hamiltonian
function is '

p
3C =—' —

] p«'+ i
—pEcosH,

2A E sin'0)
(3o)

in which @ and 0 are the polar coordinates of the axis of the molecule,
8 being measured with reference to Z and @with reference to an arbitrary
zero-point. E is equal to ~Z~. The coordinate $ is cyclic; hence we may
write

p~ =Asin'8@=0.2, a constant. (31)
Substituting this result in (30), and placing P, =AO and ~=n&, the
energy constant, we obtain

dt, =AI2Auq —a«'cosec'0+2ApEcos9] &d8. (32)
~2 I am indebted to Prof. J. H. Van Vleck for the observation that the justification

for this procedure may be deduced by a different method developed by Bohr, Born, and
others for perturbed degenerate systems. The electric term in the Hamiltonian function
is much larger than the magnetic one, and so the former may be considered of the first
order and the latter of the second. The former, however, gives only a second-order
effect because its average value is zero to a first approximation. Born notes on p. 302
of his A/omtnechunik that in such cases it is 'possible to determine the secular perturba-
tions by first averaging over the rapidly fluctuating first-order terms in the absence
of the second-order perturbing terms, and hence it is legitimate for us to use the
Hettner expressian (36) even in the presence of a magnetic field.
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Inasmuch as the old quantum theory required that the energy of the
lowest quantum state be b'/32s'A in order to account for the pure
rotation spectrum of hydrogen chloride, the quantity pE/n& can be
treated as very small in comparison with unity. It is accordingly per-
missible to expand the radical in the denominator and neglect higher

powers of pZ/n~.
We may use for the period 7 of the variable 0 the value corresponding

to zero field; namely,
r = s (2A/ng)l (33)

In order to determine the motion of the vector P, we note that from

Eqs. (31) and (32) we may write

dP= (n,/A sin'8)dt

In the time ~ in which 0 goes through a complete libration P progresses
from Qp to P„an angle given by the equation

no (" dt d0
4.—4p=— )

A J sin'8 sin'8 j 2Am& n'cosec—'8+ 2A pEcos8 j '

or, to the first approximation,

p
Q, —Qp= 2m. —

'12 A&i
(34)

The system has undergone a pseudo-regular precession about the electric
field, with a velocity which to the first approximation is found from

Eq. (34), using the value of r given by (33) and introducing for n& the
value p'/2A and for n& the value p cos 0', we thus find the velocity of
precession to be —(3y'E'A/2P')cos O. Since in the absence of the mag-
netic field this angular velocity provides a measure of the magnitude of

dP//dt, and hence of p[rE], we are now able to write

y[rE] =3p'A(PE) [PEJ(2P' (35)

The contribution of the perturbing field to the energy function can be
shown, as has been done by Hettner, to have the value

p'E'A
—(1—3cos'-O~) .

4p2
(36)

dP 3p'A K

(PE) [PE] [HP], ——
dt 2p4 2Ac

(37)

The combined egect of an electric and a magnetic field. Substituting
(28) and (35) in (26), we obtain the result
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which shows that the average angular momentum vector P undergoes
simultaneously precession about both the electric and the magnetic field,
with the indicated velocities. The magnetic term of this equation diBers
from that of Klein and Lenz only in the replacement of —e and nz by
f~: and A; the electric term is, however, completely different. For the
first-order effect of the electric field is in our problem zero, and we have
used the second-order term, corresponding in the case of the hydrogen
atom to the quadratic Stark effect, which was neglected by Klein and
Lenz.

Our differential equation is easily soluble &n the scalar form. The Z-axis
is chosen along E, and the X-axis in such a way that H lies in the XZ
plane, making the angle f with E. Purely kinematically the following

equations are then obtained from Eq. (37):

d4/dh = —(ocosO~ —to~+ ppgcotO~cos@, (38)
and

in which
dO/dh =~,sin 4, (39)

&o, =a&pr sin P and co, =copr cos P.
As shown in Fig. 1 the angles 0+ and C are the polar coordinates of the
vector P. Dividing (38) by (39), we obtain

cosO~cosC —sinO'sinC d4/dO~ = (pp/~, ) cosO~ isue+( p,p/pp)sinO~,

which on integration gives the equation

cosC sinO~ = —(pp,/o&,) cosQ~ —(pp/2', )cos'Q~+8, (40)

showing the relation between and C during the perturbed motion.
On substituting the value for cos C given by this equation in (39) and

integrating, we obtain

—co,(h-hp) = (apP+4ar)'+6apP+4ap)+a4)
g

0

in which

and

x = coso~

ap= Q) /448~

a, = —~~,/4~.
i & o) o),2~

a, = —
~

1— a+ —
)6 &. o), co~'j

GD„-

g 83
2Mg

a = i —8'

Here xo is one of the roots of the equation

ao)4+4@~('+6a2)'+4a3(+u4= 0; (42)

namely, it is the smaller of the two real roots lying between —1 and +i,
between which x performs librations.
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If we now make the substitution .

Eq. (41) becomes

A2 A3 A2 A3
0'=—+ —r s=—+

2 (—xp 2 x—xp

—co ~(t tp) =—t (4e —
gp p —gp) 'tEo

Js
(43)

in which gp and gp are the invariants of Eq. (42) and have the values

g2= 8084—48103+382

g3 ~0~2~4+2~1~2~3 &2 ~0&3 ~1 ~4)

while A2=Qpxp +281xp+82

c4 3 = Gpxp +381xp +382 xp+ 83.

Now let e, e', e// be the roots of the equation 40' —g20 —g3=0, and such

thai e&e'&e//&$& ~. We can then write

4p' —gpp —
gp

——4(p —e)(e—e')(p —e") .

If we now make the substitution

e —e//

Sill P=-
a.—e

e —e//

sin2$ =—
s —e

e —e/

)
e —e//

Eq. (43) becomes the following:

r~
co,(t tp) =(—e" e)—l

I
—(1—t'p'sin'P) id&.

0

This is the Legendre normal form of the elliptical integral of the first
kind. We may accordingly write as the solution of our problem

—pp, (t—tp) = (e" e) &F(y, 0). — —

This last equation gives the relation between @ and t, and hence between
O~ and t, for @ was obtained from 0 by means of the transformations given
above. On substituting this expression for 0 in Eq. (40), a similar

equation giving the relation between C and t is obtained.
Since the same elliptic function is thus shown to occur in the relations

between both 0 and C and t, these two variables have the same period.
Accordingly the secular perturbations are characterized by only one

period, and the entire system by two, that of the unperturbed system
and that due to the perturbing forces. If we represent by v' the time
required for one cycle in the precessional motion of P, we can evidently
write —pp (e"—e)& ~ r'=2F(pr/2, t'p) =2E,
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in which X is the complete elliptical integral of the first kind. The cor-

responding frequency of precession is

v = 1/r ' = ie—,(e" e)—&/2K (44)

The determination of the quantum aft-ouied states of motion T. he per-

turbed system is now non-degenerate, and two quantum conditions are
required to determine a given state of motion. Bohr has shown that to
the first order of small quantities one of these conditions is that character-
izing the unperturbed motion; in this case v

We=I'/8 irA =j'ti'/8s'A.

Moreover, he has remarked that to the same approximation the average
contribution 0' of the perturbing forces to the energy function must
remain constant throughout the secular motion.

Reference to the kinematical relation between C' and 0 (Eq. 40)
verifies that%' is not a function of the time, for from (29) and (36) we find

'0 =0'z+"kM= 6~P —~xP~ ~ (45)

The second quantum condition can now be obtained; for the second action
variable I2 must satisfy the relation

8+=v0I2.

There are, however, only two constants which determine the secular
perturbations; one is the quantity B given by (40), and the other is a
constant fixing the absolute phase of the motion of P. The second
constant is of no significance with regard to the quantum conditions;
so that the only variation that I2 can experience must result from a
variation in B. Hence we can write

8@=v(dI2/dB)8B,

or, collecting terms involving 8 and integrating,

8
I2 ——,' = ~ —+constant.

88 v

The constant can be included in the quantity I2, which can then assume

only the values allowed in case either the electric or the magnetic field

is present alone. We are thus led, with the use of (44) and (45), to the
following equation giving the second quantum condition:

2p (e" e) 'KdB=Ie=mh—, (46)
I

in which I2 has been placed equal to its quantum-allowed value mh, rn

being the directional quantum number.
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By substituting these values in (46), using the well known series develop-

ment for E, and integrating, neglecting powers higher than linear in

ai/tost, there is obtained the equation

mh mh
2m posing =mh 1+—3 sin'p ——sin'p+ —-cos'p

8m.p 4mp

m'h' m'h'
+— -'4 V— '

Vt (47)
16m'p2 8~2p2

Furthermore, the quantity 8 sin P is given by the relation

rising = costs + (id/2~sr) cos'0, (4g)

in which 6 is the angle between P and H. Hence we have proved that
except for corrections proportional to and of the order of magnitude of
the first power of co/cess the spatial quantization with crossed fields is

the same as with the magnetic field alone; namely, that the component
of angular momentum in the direction of the magnetic field must be
equal to mh/2sr.
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It can easily be shown that in case only one field is present or the fields

are parallel or anti-parallel this equation leads to the spatial quantization
obtained in the usual way by the separation of variables.

The system in the presence of an electric field small relative to the magnetic
field. If the electric field is so small relative to the magnetic field that the

quantity te/&vsr is small compared with unity, the expression determining

the action variable I2 may be evaluated. In this case the two quantities

uo and aI may be treated as small, and it is then possible to determine the
three roots e, e', and e" of the equation 4o' —g2a —g3=0 by the method

of successive approximations. On doing this there result as a second

approximation the expressions

as 4aiag aQa4 —(12aQag(3aga4 2a3 ))e=——
2 1202
au 4aias —aoa4+(12aoa~(3a2a4 2as'))~e'=———
2 1282

6GIC283 —GPG32
8 = —G2+

9a22


