
Second Series January, rgz7 Xo. zy, Xo. z

THE

.
~ H YS ICAL REVIEW

ELECTRON DISTRIBUTION IN THE ATOMS OF CRYSTALS.
SODIUM CHLORIDE AND LITHIUM, SODIUM AND

CALCIUM FLUORIDES

BY R. J. HAVIGHURST*

ABSTRACT

Determination of electron density by means of a Fourier analysis. The
application of the correspondence principle by Epstein and Ehrenfest to
Duane's quantum theory of diffraction leads to the conclusion that the electron
density, p(xys), at any point in the unit cell of a crystal may be represented by
a Fourier's series the general term of which is

A nin2n3 sin (2 m'nix/gi 5ni) sin (2 vrn2y/u2 &n2) sin (2 m'nas/+3 Bn3)

A», is proportional to the structure factor for x-ray reflection from the
(n&n2n3) plane, where n&, n2, andn3 are the Miller indices multiplied by the
order of reflection. Considerations of symmetry fix the values of the phase
constants, and the assumption that the coefficients are all positive at the center
of the heaviest atom in the unit cell fixes the algebraic signs. For crystals of the
rock-salt or fluorite types the series becomes a simple cosine series in which

the values of the structure factors previously determined by the author may
be usedas coefficients. If the atoms are assumed to possess spherical symmetry,
the number of electrons in a spherical shell of radius r and thickness dr is
Vdr=47rr'pdr and the total number of electrons in the atom is equal to
the integral of Udr. A. H. Compton has obtained the same expression for
the electron density in a crystal, as well as a series expression for V dr, on the
basis of classical theory.

Results of the Fourier analysis. Application of this method of analysis
to the calculated F curve from a model sodium ion shows that the series con-

verge rapidly when the Ii values are uncorrected for the efl'ect of thermal
agitation, and that reliable results may be obtained after extrapolation of the
experimental Ii curves for light atoms to zero values of I". Curves are given
which show the variation of electron density along the cube edges of the unit
cells of NaC1, LiF, and NaF, and along the cube diagonal of CaF2. . V curves
for the different atoms, showing the variation of V with r, give the following
information: (1) the points of the crystal lattice are occupied by ions (no
a priori assumptions have been made concerning the amount of electricity
associated with a lattice point); (2) the sum of the radii of any two ions in a
crystal is approximately equal to the distance of closest approach as deter-
mined by ordinary crystal analysis; (3) the electron distributions in the Na+

of NaF and NaC1 are markedly different, while the distributions in F from all

three fluorides are practically identical; (4) there is evidence of the existence of
electrons in shells which are in rough agreement with Stoner's scheme of
electron distribution.

* National Research Fellow.
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INTRODUCTION

~ 'HE most direct means in our possession of determining the electron
distribution in atoms lies in the use of experimentalmeasurementson

the scattering powers of these atoms for x-rays. From the Ii curves for
crystals, which represent the variation of the scattering power with

angle of scattering, individual Ii curves for the component atoms may
be obtained, and the problem consists of finding the electron arrange-
ments which will account for the experimental values of I". The experi-
mental data used in this paper have been obtained by a powdered crystal
method' which is free from error due to primary and secondary extinction.

Before considering the method of Fourier analysis which the author
has used, we may mention the method of trial, used by A. H. Compton'
and by Bragg, James and Bosanquet, ' in which the I values for various
assumed distributions are calculated and the distribu'tion giving results
which are in best agreement with the experimental data is taken as
correct. This method as applied by Bragg, James and Bosanquet to the
atoms of rock salt gives distributions which are in rough agreement with
those obtained by the Fourier analysis. However, a direct method has
obvious advantages over a method of trial.

DETERMINATION OI ELECTRON DISTRIBUTION 8Y FOURIER ANALYSIS

The first suggestion of the use of a Fourier's series to express the
distribution of diffracting power in a crystal seems to have been made

by %. H. Bragg, 4 but the method was not put into practice until quite
recently, '~' after the application of the correspondence principle by
Epstein and Ehrenfest' to Duane's' quantum theory of diffraction.
Epstein and Ehrenfest showed that any diffraction grating may be
considered to be made up of a large number of superposed "sinusoidal

gratings, " and that the intensity of the diffracted beam in any order is
proportional to the square of the coeScient of the corresponding term
in the I'ourier's series representing the density of diffracting power.

~ Havighurst, Phys. Rev. 28, 869 (1926).
2 A. H. Compton, Phys. Rev. 9, 49 (1917).
3 K. L. Bragg, James and Bosanquet, Phil. Mag. 44, 433 (1922).
4 W. H. Bragg, Phil. Trans. Roy. Soc. A215, 253 (1915).
5 Duane, Proc. Nat. Acad. Sci. 11, 489 (1925).
' Havighurst, Proc. Nat. Acad. Sci. 11, 502, 507 (1925). The electron density curves

given in these preliminary papers give only relative values of the density and in addition
are subject to errors arising from two sources —first, the constant term of the series
was neglected, and second, the experimental P curves were not extrapolated to zero.

~ Epstein and Ehrenfest, Proc. Nat. Acad. Sci. 10, 133 (1924).
8 Duane, Proc. Nat. Acad. Sci. 9, 159 (1923).
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By.the reverse process, we may deduce the density of diffracting power
in a grating by substituting the square roots of the measured intensities
of diffraction as coefficients in the Fourier's series. In a book recently
published, ' A. H. Compton has given a thorough discussion of the
application of Fourier analysis to the problem of electron distribution
on the basis of the classical theory. He derives the equations given
below and applies the analysis to the data of Bragg, James and Bosanquet
on rock salt with results which will be compared with those of the author.

Lineor electron density. Consider a one-dimensional grating which

contains Z electrons within a grating space a. The general term in the
Fourier s series representing the linear density is~ A„sin(2xnx/a —8„),
where n is the order of diffraction and 5 is a phase constant. The linear
density of diffracting power, P„at a point x in the grating is represented

by the series

I', = g A„sin(2+exja —8„)

where A„=F„/a and F„ is the structure factor for the diffraction of the
nth order. Fo ——Z, and the summation is taken over all values of n,
positive and negative.

Volnme electron density. The three-dimensional analogue of the general
term in the Fourier's series given above is

A „„„sin(2xlqxjaq —8„,)sin(2xn2y jaz —8„,)sin(2xm8s ja8 —8„,) . (2)

for the series representing the volume density, p(xyz), of diffracting power
at a point in the unit cell of a crystal. a„a„and a, are the lengths of
sides of the unit cell. Unless we fix the values of the 8's, we find that the
series based on (2) does not give a unique distribution of diffracting

power; that is, an indefinitely large number of distributions will produce
beams of rays of precisely the same intensities in the same directions.
In order to obtain a unique distribution of diffracting power it is necessary
to make two assumptions.

The first assumption is that the distribution of diffracting power con-
forms to the symmetry of the crystal. This symmetry fixes the values
of the 6's. For example, if the crystal has three mutually perpendicular
planes of symmetry and if we take the intersections of these planes as the
axes of coordinates, the terms in the series can contain cosines only, for
they must have the same values when we reverse the algebraic sign of

9 A. H. Compton, "X-Rays and Electrons, " Chap 5. Van Nostrand and Co., 1926.
For the privilege of using the manuscript of this work, the author desires to express
his thanks to Professor Compton.
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either x, y or z. In this case, therefore, the 6's must be odd multiples
of x/2. The symmetry conditions often determine, also, the values of
certain coeKcients A as being equal to one another. If the crystal
possesses such complete symmetry as that of NaC1, all the A's having
the same values of n„n„and n„but interchanged in any manner, must
be equal to each other.

The second assumption has to do with the algebraic signs of the
coefficients A, which, being square roots of measured quantities, are
undetermined as to sign by the diffraction data. In general, the inter-
sections of planes or axes of symmetry in a crystal must be points of
maximum or minimum density, and if there is an atom at such a point,
it is natural to suppose that p(xys) is a maximum there. There may be
other points in the unit cell at which p(xys) has maximum values; it is
probable. that the greatest maximum value of the density corresponds
to the center of the heaviest atom, and that the terms in the Fourier's
series are all positive at that point. We assume, therefore, that if we

take the origin of coordinates at the center of the heaviest atom, all the
coefficients in the Fourier s series have positive values. For the crystals
of high symmetry and simple structure which are considered in this

paper, the effect of these assumptions upon the form of the Fourier's
series is easily worked out. The author has published elsewhere" a
treatment of a more complicated crystal structure by this method.

A further assumption must be made before we can properly speak of
electron distributions obtained from diffraction data. The density of
diffracting power must be assumed to be proportional to the electron
density. This means that all the electrons of an atom are equivalent in

scattering power for x-rays, a statement to which objection may possibly
be raised; for it is not certain that the inner and outer electrons of a
heavy atom are equally effective as scatterers.

We may now write down the Fourier's series expressing the electron
density p(xys) at a point (xys) in the unit cell of a cubic crystal of the
rock-salt or fluorite type, with the origin of coordinates at the center of
the heaviest atom:

p(xys) = g g QA„„,„cos2xe&x/a cos2m. n&y/a cos2xeas/a (3)
Rg fl'2 A3

where n,n,n, are the Miller indices of the different crystal planes multi-

plied by the order of reflection; A „,„,„,=4F,„,„,/a' and Fooo =Z = the
number of electrons per molecule, there being four molecules in the unit
cell. It should be noted that the experimental values of Ii used in this

"Havighurst, J. Am. Chem. Soc. 48, 2113 (1926).
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paper contain the Debye temperature factor, so that in Eq. (3), which

gives the time average of the electron density in the unit cell, the ampli-
tude of thermal agitation is superposed upon the actual distances of the
electrons from their atomic centers.

RaChal dhstrfbutfon of electrons F.rom the determinations of electron

density we may get information concerning the radial distribution of
electrons in the separate atoms. The number of electrons in a spherical
shell of radius r, thickness dr, and density p is

Udr = 4m r'pdr (4)

The area under the curve of U plotted against r gives directly the number

of electrons in the atom. It seems proper to assume spherical symmetry
of the electron density, as is done by this procedure, but the question
will be raised again later.

Compton' has derived an expression for the radial distribution which

does not require the evaluation of a three-dimensional series. The number

of electrons in a spherical shell is represented by a series:

Udr =4'/D P(2NF„/D) sin(2xnr/D) dr
1

where D is the spacing of the set of atomic planes which are perpendicular
to r and F„is the atonuc structure factor for the order u (or for reflection

by planes of spacing D//n). Upon the assumption of spherical symmetry,

any convenient spacing D in the region covered by the atomic F curve

may be used as the first order spacing; but the series becomes negative
when r/D is greater than 0.5, consequently the radius of the atom must

be less than D/2 if the values of LT in the neighborhood of D/2 are to be
considered as dependable. The author's U curves determined for the same
atom by the two different methods of Eqs. (4) and (5) are in satisfactory
agreement.

It is important that we now have a method (the integration of Udr)
of determining the number of electrons grouped about a point in a crystal
lattice without having made any assumption concerning the existence
of ions. Indeed, we have not even assumed the existence of atoms or
molecules in the exact sense that is ordinarily understood by the use of
these terms —we have simply supposed that there are certain maxima of
diffracting power in the unit cell of a crystal. Now that we are in posses-

sion of a method of counting the number of electrons associated with these
maxima, we. find ourselves able to decide what these lumps of diffracting

power are—ions, neutral atoms, or molecules.
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APPLICATION OF FOURIER ANALYSIS TO A MODEL ATOM

Before an adequate idea of the limits of accuracy of the Fourier
analysis can be obtained, it is necessary to know something about the
convergence of the series used. The coefficients of the series come from

experimental P curves which must be extrapolated to zero values of F.
The questions to be answered are: (1) does the actual Fcurve of an atom
fall to zero and remain there or does it maintain appreciable positive and

negative values out to very small interplanar spacings? and (2) do the
series of Eqs. (3) and (5) converge for these values?

The best method of deciding these questions appears to be that of
calculating the F curve for a model atom and subjecting it to the Fourier
analysis. This procedure has been carried through for a model sodium

ion under assumptions designed to make a satisfactory Fourier analysis
more difficult than in the cases of the light atoms to be studied experi-
mentally. The sodium ion is built up of ten electrons on three concentric
spherical shells, as follows:

2 electrons on a shell of radius 0.1A
6 electrons on a shell of radius 0.3A
2 electrons on a shell of radius 0.9A

The F values for this ion may be readily calculated from the expression"

f= g(sin$)/5
where

$=(4wrsin9)/X=2~m/d

TABLE I
F values for sodhum model ion. F=fe '06'"

0 10.
1 9.53
2 8.42
4 5.90
6 ' 4.45
8 3.01

10 1.14
12 0.20
14 .14
16 .14

10. 18
9.48 20
8.22 22
5.33 24
3.55 26
2.01 28
0.61 30

.08 32

.04 34

.028 36

.51
1.17
1.24
0.98

~ 69
.01
.53
.73
.83
.82

.066

.093

.059

.025

.010

.000

—.0011

—.00022

38 —.34
40 —.08
44 —.02
48 —.44
52 —.47
56 —.07
60 .40
70 .02
80 .29

100 —.Oi

and the summation is taken over each of the electrons. As a convenient
first order spacing we shall choose 5.628A. The f values are given in

Table I, along with F values which have been obtained by applying a
temperature factor to f asfollows:

» Hartrce, Phil. Mag. 50, 289 (1925).
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P f& (bs(0—28) l(2)2) «f& .2 n2—(d3
f&—.00—63n2

This evaluation of the Debye factor is based upon W. H. Bragg's figure

for rock-salt, I)/(2)(2) =2.06, which will at least give the order of mag-

nitude of the temperature effect. In Fig. 1 are shown the f and F values

plotted against sin 0 for ) =0.1126A. This wave-length was chosen

because it makes sin 0=0.01 for d/n = 5.628 and allows the F values for

100 orders of reHection to be plotted. The author's measurements with

) =0.710A would stop at a point equivalent to sin 0=0.12 in the figure.

Of the series in Eqs. (3) and (5), the sine series of (5) will converge

the more slowly because the coefficient I' is multiplied by n. Let us

consider the question of its convergence. It is evident that the series

10
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Fig. 1. F curves for a model sodium ion.

when evaluated with the f's of Table I is probably not convergent, for
in some instances f„)f0/n The app. lication of the temperature factor
to f introduces a negative exponential 232, consequently the F values of
the table undoubtedly satisfy the conditions for convergence. Looking
at the question from another point of view, we see that the series of
Eq. (5), if used with the f values of Table I, would have to give a radial

distribution showing infinite values of U at the r values of the three
shells, and zero valu'es of U at all other points. The e8ect of thermal

agitation, however, is to spread out the shells into what is a more or less

continuous distribution of electrons and the series representing U for
this case should converge rather rapidly.
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The series of Eq. (5) has been evaluated with the f and F values of
Table I and D=2.814A. U is plotted against r in Fig. 2. In the heavy-
line curve in the upper part of the figure, which was obtained by using
the first twenty f terms, down to n = 40 in the table, the three shells are
beginning to emerge as predominant peaks. The broken-line curves,
representing the series when cut off at the end of five and eleven terms,
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Fig. 2. Radial electron distribution in model sodium ion.

help to indicate the unsatisfactory nature of the analysis when used upon
an atom which has its electrons arranged on a few stationary shells.
When evaluated for 12 terms, down to n=24, with the Ii values of
Table I, the series gives the lower curve of the figure. Its area is 9.6
electrons. The effect of thermal agitation has smoothed over the shells
distinctly. When the series is cut off at the end of the sixth term, which
would be the limit of the author's measurements, the curve coincides so
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nearly with that of the figure that it was impossible to draw it in separ-
ately. Now ellipticaland in terpenetrating orbits aid thermal agitation
in producing a practically continuous electron distribution, hence it
seems reasonable to extrapolate the experimental P curves rather quickly
to zero values of Ii. The value of the retention of the temperature factor

TABLE II
F values used as coegcients in Fourier's series expressing electron density

n~n2n3 NaC1 NaF

111 4.55 1.27 S2O )
644 J

3.31 1.41

S22 )
660 J

3 08 1 33

1 +38 0.18751 $

4.61

200 20.80 14.25 6.73

220 15.75 10 F 80 4.70

2.40 1.39 1,96

LiF n~n2n3 NaC1 NaF LiF n~n~n3 NaC1 NaF LiF

s64
ip 40 0 97 44

4"
1O 42 .S5 .4O

.3O „„,» .OO
775

222 13.30 8.39 3.70

400 11.60 6.59 2.64
662 2.75 1.26 .41 880 .65 .26

331 2.25 1.46

420 10.20 5.51

840 2.64
1.34

753 $

1.22

O. 10

.35
9/1 I .60
955 J

.00

422 8.95 4.75 1.93 842 2.35 1.03
882 L

.28 10 44J .57 .20

511)
333J 2. 18 1.06 0.89

440 7.18 3.46 1.37

531 2.00 0.63 0.70

600)
442/ 6.69 3.04 1.13

620 6.03 2.55 0.96

533 1.87 0.48 .58

622 5.62 2.38 .87

444 5.05 2.14 .79

551 1.73 0.43 .47
711

640 4.60 2.00 .73

642 4.20 1.86 .70

553 1.56 0.39 .41

800 3.54 1.57 .58

733 1 46 0 29 .35

844 1,80

771 ]
755 ) 1.13
933 J

s6o )
10 OOJ

862 i
10 20J

773 $ 1.03

.74

.00

.68

.62

.00

666 )
ip 22f 1 25

953 1.00 '00

664 2.23 0.92

931 1.23 0.00

.22 866 $ 4510 60J

.14
9/3 ~ 4011 33J

10 62 .39
.09

884 &

12 opf

777 )
11 51j

12 20 .30

10 64
12 22'

975 &
11 53f

12 40 .10

.14
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in the experimental F curves as a means of securing a rapidly convergent
series and therefore of obtaining a more trustworthy Fourier analysis
is clearlydemonstrated. In an effort to determine the error due to the
extrapolations which have been made for the purpose of this analysis,
the author plans to continue the investigation of F curves out to smaller

interplanar spacings by the use of radiation of shorter wave-length, and
of apparatus which permits the measurement of reflections out to |I=90'.
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Fig. 3. Electron density in crystals.

ELECTRON DISTRIBUTION IN CRYSTALS

We may now calculate electron distributions from Eq. (3), and on the
basis of the author's F curves extrapolated to zero, with considerable
confidence in the results. The Fvalues to be used as coefficients, given in
Table II, are, as a rule, identical with the measured values given in the
previous paper, although in a few cases where measured points fell

noticeably off a smooth curve, interpolated values are substituted.
Interpolated values are given for the reflections which were not measured,
while below the dotted lines the points were all taken from extrapolated
curves.
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The electron density, p(x00), along the cube edge of the unit cell of
the crystals here considered is

p(x00) =4ja' g g QF„,„,„,cos2xeqx/a
fig Qg

The curves of p(x00) plotted against x/a are given in Fig. 3. Going out
from the center of an atom, they all show the same rapid decrease of
electron density at the start, followed usually by a rather sharp change
of slope which produces a hump on the U curve. One. feature of these
curves cannot be observed clearly, because the scale of the figure is too
small; for each curve there is only one very narrow region between the

ZZO& l I l l I l l l
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l

200-
CaFp

a'= 9.46A
~ i80

@~' 160

ld

& 140

~ 120

~ 100

80
ll

OC

~ 50

I I I I I

~ 0.0 0.1 0.2 0.3 04 0.5 O.b 0.7 0.8 0.9 1.0

Fig. 4. Electron density in CaF&.

atoms where the density becomes practically zero. In other words, "the
atoms extend physically well out into the unit cell, almost touching each
other, although the electron density over a large part of the region is very
small. There is a sharp drop to zero density at the limit of the atom,
which is much more evident in the U curves, where p is magnified by
multiplication by r'. The electron distributions in other directions
through the unit cell have been calculated from Eq. (3), giving curves
similar to those of the figure.

, The p(x00) curve from CaF2 has no peak at its middle, for there is
merely a series of Ca atoms along the cube edges of the unit cell. In order
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to get evidence of the existence of fluorine peaks, it is necessary to work
out the curve for p(x=y=s), the density along the cube diagonal. Not
only is the three dimensional series, required in this case, a much more
labo'rious one to evaluate than the one-dimensional series of Eq. (5), but
also the I" curve for Ca falls rather slowly toward zero, so that the
extrapolation would have to be made out to very high values of the n's,
still further increasing the labor of evaluating the series. Consequently
an indirect method of determining p(x =y=s) was adopted. The F curve
for Ca was extrapolated and the values for the higher orders of the (111)
planes determined. LTdr values were determined from Eq. (5) on the
basis of the F(111)data, and, from the curve of U against r, p(x=y=s)
was calculated for the desired values of r by Eq. (4). By a similar pro-
cedure with the U curve of fluorine from CaF2, the p(x =y =s) values for
fluorine were obtained. The two sets of data have been united in the
curve of Fig. 4. There is, of course, no data to cover the middle of the
curve, which is a region of zero density. Incidentally, the fact that the
Ji curves for heavy atoms fall rather slowly to zero indicates that they
are not very suitable for this Fourier analvsis.

TABLE II I
Atomic F values for use irf, Fourier's series

Plane
CaFg

++ F—g
NaCl NaF LiF Mean

Na+ Cl Na+ F Li+ F Fluor-
ine
F—gg

lii
222
333
444

15.90
10 ' 75
7.32
5.30

7.35 8.80 13.60 8.35 7. 15 1.26 5.89
3.20 5.46 7.84 4.90 3.49 0.88 2.72
1.75 3.05 5.15 2.65 1.59 0.41 1.30
1.05 1.60 3.40 1.30 0.94 0.14 0.65

7.35
3.32
1.62
0.86

555

666

777
888
999

200
400
600
800 .

10 00

12 00
14 00
16 00

3.97

2.80
~ ~ ~

2. 10
1.22
0.30

15.00
9.80
6.15
4.55
2.95

2. 15
1.10
0 ' 10

0.65 0.72 2. 10 0.72

0.27 0.10 1.15 0.28

0.31

8.58
4.62
2.23
1.00
0.20

0.53 0.06 0.37 0.55

0.27

1.25
0.73
0.24
0.11

0.02

* Values taken from Fp curve with D(111)= 2.67A.
*~ D(111)=2.67A.
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RADIAL ELECTRON DISTRIBUTION IN ATOMS

We have seen that the radial distribution may be determined by the
use of Eq. (4) or Eq. (5). In most cases the writer has used both methods,
and the results have always been in satisfactory agreement. Table III
contains atomic F values for use in Eq. (5), for the different orders of the
(100) and (111) planes, the values being taken from smooth curves and

those below the dotted lines being extrapolated.
The U curves invariably show humps which seem to indicate the

existence of definite electron shells. While the evidence for and against
the actual existence of these humps will be considered later, it is interest-
ing on the assumption of their reality to compare the electron arrange-
ments which they give with Stoner's" scheme for the distribution of
electrons in atoms.

Stoner's arrangement for the argon atom (chlorine or calcium ion)
is as follows:

2 K electrons with n 1,
2L 2,
2L 2

4L 2,
2M 3
2M 3,
4M 3

ji, ki
1

2

2, 2

1

1, 2

2, 2

The neon atom (Na+ or F ion) corresponds to the a,bove arrangement
without the M electrons. The inner quantum number, j, need not be
considered here.

Sodhmm and chlorine. The full-line curve in Fig. 5 represents U for Na
in NaC1. The curve is almost identical with one obtained by Compton'
by a similar analysis of the results of Bragg, James and Bosanquet. "
The area under the curve is 10.4 electrons, indicating that we have here
a positive Na+ ion. The area of the hump 8 is approximately 2, while

that of A is 8. Upon the basis of Stoner's scheme, we should interpret
these humps as follows: A contains the 2 K electrons and the 6 circular
L electrons; 8 contains the 2 L electrons with elliptical orbits.

There was some difficulty in obtaining a LT curve from Eq. (5) for
chlorine, as Cl occupies much more space than Na. The U(111) curve
does not extend to the limit of the atom, as it is based upon too small a
spacing. Compton solved this difficulty by extrapolating the Ii curve
for Cl toward sin 8=0, upon the assumption that Iio=18, and using a

"Stoner, Phil. Mag. 48, 719 (1924).
"W.L. Bragg, James and Bosanquet, Phil. Mag. 42, 1 (1921).
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larger spacing for D in the series. This requires the assumption, which

we wish to avoid, of an ionized chlorine atom, consequently we must
rely chielly upon the U values obtained from p(x00) which are in agree-
ment with the U(111) values as far as the latter may be used. The area
under the curve of Fig. 6 is 17.85 electrons, indicating the existence of
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Fig. 5. Radial electron distribution in Na .

the Cl ion. The hump A contains 10 electrons, which are probably those

belonging to the K and L levels, leaving us with 8 M electrons to account

I

Cl
o 4~~'q(xoo)

U (111)

OQ
I I I I I.

04 0.6 0.6 1.0 1.2 j.6 1.6
r (angatf'orna Prom center of atom)

Fig. 6. Radial electron distribution in Cl .

for. The areas of 8 and C are more nearly 5 and 3 than 6 and 2, although

the latter values might be taken to indicate the presence of six 32 electrons

in orbits of moderate eccentricity, and two 3& electrons in orbits of

greater eccentricity. Hartree's" calculations, however, indicate that the

effective radii of the 32 and 3& electrons are practically the same. In this

connection it should be stated that according to calculations by both



ELECTRON DISTRIBUTION IN ATO3IIS OF CRYSTALS

Hartree and Compton, an electron in an interpenetrating orbit spends
much the larger part of its time in the outer portion of its orbit, so that
its effective radius for the purpose of x-ray scattering and its maximum
radius are very nearly the same. Compton's curve for Cl, based upon
the data of Bragg, James and Bosanqnet which are very nearly identical
with those of the author, but also based upon an P curve extrapolated
toward sin 0=0, shows an extra hump, while the radius of the atom is
2.0A. This discrepancy throws some doubt upon the reality of these
humps.

Calcigm. The U curve for Ca given in Fig. 7 is strikingly similar to
that for Cl, except that the electrons are contained within a radius less
than two thirds that of the chlorine ion. Almost a positive proof of the
existence of the Ca++ ion in the lattice is to be seen in the fact that the
area under the curve is exactly 18 electrons, for the neutral atom would
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Fig. 7; Radial electron distribution in Ca++.
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contain 20 electrons. The area of hump 2 is 10 electrons, while 8 and C
contain 6 and 2 electrons respectively.

SOChumiu soChumguoride The bro. ken-line curve of Fig. 5 is the V
curve of Na from NaF. A very interesting difference exists between the
sodium ion in the two compounds, an apparent compression of the whole
ion having taken place in NaF. As the area under the curve is only
9.2 electrons, the analysis is not particularly satisfactory in this instance,
but the addition of sufhcient area to bring the electron content to 10
would not make the two distributions alike. One is brought to the con-
clusion that the forces acting upon the ion in the two crystals are of
rather different magnitudes.

Lithium. The U curve for lithium, given in Fig. S, . is the least satis-
factory of the group, because we meet the same absolute amount of error,
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due to deficiencies of the experimental data and of the analysis, in electron
densities which are very small, so that the percentage errors are large.
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Fig. 8. Radial electron distribution in Li+.

There is a noticeable difference between the U curves obtained in

different ways, and these curves can be changed considerably by different
methods of smoothing out the experimental Fcurve for Li. The difference
between the results obtained from Eq. (5) and those from Eq. (4) is

undoubtedly due to the fact that the experimental F values were used

without change in the determination of p(x00), while the Ii curve of Li,
upon which is based the U(111) curve, being determined by subtraction
of rather large and nearly equal (F+Li) and (F Li) values—, showed

considerable irregularity and was smoothed out. However, the area
under the full-line curve is 2.0 electrons, ' and there is no reason to believe
that we are dealing with anything but the Li+ ion with two K electrons.

F/Norine. As has been pointed out, the F curves for fluorine from all

three Huorides are very closely similar, hence it was not considered

necessary to reproduce separate U curves for each crystal. The values
used in obtaining Fig. 9 were taken from the mean F curve of fluorine,
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Fig. 9. Radial electron distribution in F .

given in the previous paper, D for the first order being 2.67A. U curves
from the individual F curves have also been worked out, and they show
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only unimportant differences at large values of r. Corresponding to the
F ion, the area under the curve is 9.95 electrons. The striking thing
about this curve is the existence of the A' hump. We should, of course,
assign 8 to the two L electrons in elliptical orbits, as in the case of Na+,
but there is nothing in the sodium curve to correspond with A'. Whether
in the spreading out of the electron atmosphere which takes place during
the formation of a negative ion the inner electron groups separate some-

what, or whether the A' hump is merely due to a deficiency of the
analysis, is uncertain.

DISCUSSION OF RESULTS

The results of the foregoing analysis may be grouped into two classes:
those which allow an unambiguous interpretation, and those which do
not. Let us consider the first class.

(1) It appears to be definitely proven that. the lattice points of the
crystals are occupied by ions. Commencing with no a priori assumption
as to the amount of electricity associated with a lattice point, we have
found in each case that the number of electrons was almost exactly the
same as the number in the ion which might be expected to reside at that
point.

(2) The Fourier analysis determines definitely the radius of the ion.
The volume density curves fall quite accurately to zero over a small

region between the ions, while the U curves determine sharply the radii.
Comparison of the distance of closest approach of ions as determined by
ordinary x-ray analysis with the sum of the radii of the ions determined
in this analysis shows that the sum of the radii is in every case very
slightly less than the distance of closest approach. We accordingly are
led to form the usual picture of the unit cell of a crystal: one which

contains a number of spherical electron systems practically in contact
with each other and distributed regularly over the lattice points, each
system having a dense electron atmosphere near its center which becomes
extremely rarefied at its outer limit. Whether the valence electrons
remain between ions all the time, rotate about pairs of ions, or pass
completely over to the negative ions, is not decided; all we may be
certain of is that the diffracting power of a valence electron unites with
that of a negative ion.

The ionic radii of Wasastjerna, "discussed in a recent paper on inter-
atomic distances by W. L. Bragg, "and which are based upon a theoretical
consideration of atomic force-fields, correspond exceedingly closely with
the radii determined in this analysis.

"Wasastjerna, Soc. Scient. Fenn. Comm. Phys. Math. 38, 1 (1923).
~6 W. L. Bragg, Phil. Mag. 2, 258 (1926).
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(3) The electron distribution of an atom may be modi6ed by the
external forces which act upon it in a crystal. The Na+ ion is found to
possess different electron distributions in NaF and NaC1, probably
because of a combination of differences in chemical, crystal lattice and
thermal forces. On the other hand, the electron distributions of F are
practically the same in LiF, NaF and CaF2.

Turning now to results which are- somewhat ambiguous, we are met
at once with the question of the reality of the humps in the curves of
radial distribution. There is reason to believe that a shell-like electron
structure exists in atoms, and the results of this analysis are in rough

agreement with the predictions of Stoner's scheme. The persistence of
the humps in both Ca++ and Cl, although one ion has only two-thirds

as large a radius as the other, is evidence of their reality. On the other
hand, we have the discrepancy between Compton's U curve for Cl and
that of the author, the two curves being obtained from practically the
same data by slightly different methods of analysis. Also there is a
subsidiary hump in the U curve for F which is not readily explained.
Perhaps the best method of investigating this question of shell structure
would be to study a model argon atom in the manner of the investigation
carried out above for the sodium ion.

Although we have assumed spherical symmetry of the electron dis-

tributions for the purposes of a part of this analysis, such an assumption
cannot be completely justified. Probably the atoms in crystals of low

symmetry are not spherically symmetrical, but the nearest approach to
this condition would be expected in a cubic crystal of high symmetry.
It is impossible to decide from existing experimental data upon intensity
of reflection that spherical symmetry does not exist, the irregularities of
the Ii curves being in general so small that they could be ascribed to
experimental error. Any lack of symmetry mould be expected to show

on the U curves at large values of r, and there are differences between
these curves when they are evaluated for reflections in different
directions through the crystal, but these differences' also may be at-
tributed to deficiencies in the analysis.

A further point which has been raised in connection with the use of
experimental F curves for the determine;tion of electron distributions
has to do with the effect of the Compton scattering. Since the amount
of radiation scattered with a change of wave-length increases with the
angle of scattering, it might be supposed that this increase takes place
at the expense of the energy scattered with unmodified wave-length.
That is, the Ii curve might drop off at large angles for two reasons —first,
because of the spatial distribution of electrons in the atoms, and second,
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because an increasing fraction of the secondary radiation is being
scattered with a change of wave-length and hence is not subject to
interference. This idea seems not unreasonable, yet, on the other hand,
there is reason for the belief that the two scattering processes take place
side by side without influencing each other. It seems that the foregoing
analysis, which gives electron distributions containing the proper number
of electrons and of the dimensions to be expected from the results of
ordinary crystal analysis, is a strong argument for the reliability of the
experimental Ii curves and speaks definitely in favor of the idea that the
Compton scattering is a separate and distinct process from the ordinary
scattering.

In conclusion, the author wishes to express his appreciation of the aid
and advice of Professor William Duane, who suggested this problem.
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