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ON THE QUANTUM THEORY OF THE
SPECIFIC HEAT OF HYDROGEN

PART I. RELATION TO THE NEW MECHANICS, BAND
SPECTRA, AND CHEMICAL CONSTANTS

By J. H. Van VLECK

ABSTRACT

1. If in the new quantum mechanics the hydrogen molecule is treated as
a simple rotating dipole like HCI, the a priori probability is 2m, and the
rotational quantum number assumes the values m=4%, 4, - .- . This, how-
ever, gives the old Planck specific heat curve, which rises to a maximum above
the equipartition value, contrary to experiment. The failure of the simple
theory is doubtless due to the non-polar character of the hydrogen molecule
and is probably intimately connected with the alternating intensities found
in the band spectra of certain non-polar molecules.

2. The following ways of removing the specific heat dilemma are con-
sidered: (a) use of whole quanta, (b) exclusion of the state m =%, (¢) exclusion
of every other state in accord with the type of quantization for non-polar
molecules proposed by Ehrenfest and Tolman, (d) ‘‘weak’ quantization of
every other state, (¢) a gyroscopic molecule. Satisfactory curves are obtained
with (e¢) and (), but the theoretical basis on the new quantum mechanics is
obscure. Hypothesis (¢) probably gives too steep a curve and an excessively
large moment of inertia, (d) is questionable, and (¢) is incompatible with the
diamagnetism of hydrogen. The Einstein-Bose statistics do not affect the
rotational specific heat of hydrogen appreciably. Recent experimental work
of Bartels and Eucken and of Schreiner shows the moments of inertia of
Nz, O;, and CO cannot be deduced from existing specific heat data and so
obviates the necessity of the absurdly small moments of inertia previously
required by Scheel and Heuse's measurements for these elements.

3. Recent theories of the hydrogen secondary spectrum give moments of
inertia which are larger than the old values and which are hence more easily
reconciled with specific heats. Ehrenfest and Tolman have suggested that the
angular momentum of non-polar molecules equals only even multiples of
k/2xm, and according to Slater their proposal may be intimately related to the
alternating -intensities sometimes found in band spectra. It is shown that
according to the correspondence principle the angular momentum can change
by zero or &/2w even in a non-polar molecule, provided there are simultaneous
electron jumps. This fact partially destroys the quadrupolar symmetry and
causes serious difficulties for their theory. The alternating intensities, however,
seem difficult to explain otherwise, and may be related to the Heisenberg
extension of the Pauli-exclusion principle.

Croze and Dufour find that, unlike the non-magnetic Fulcher bands, certain
other lines of the hydrogen secondary spectrum are resolved by a magnetic
field into doublets whose displacement is comparable with the normal Lorentz
value and so surprisingly large for a molecule. It is suggested that these
peculiar Zeeman doublets, whose polarization is sometimes anomalous, are
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due to loose coupling of the spin axis of the valence electron in either the
initial or final state, but not in both.

4. The Stern-Tetrode formula for chemical constants must be modified
by including terms involving the a priori probability of the lowest state and
the symmetry number. If the entropy of the solid phase vanishes at the
absolute zero, observed vapor pressures apparently require a whole quantum
specific heat curve for hydrogen and do not allow the specific heat curve (b);
but if we abandon the Nernst heat theorem a more general interpretation of
Simon’s results is simply that in hydrogen the minimum a priori probability
is the same in the gaseous and solid phases. The moment of inertia 107! gm.
cm? often deduced for the hydrogen molecule from chemical constants is
erroneous. Present data on chemical constants are chaotic and the theory
is uncertain owing to inadequate knowledge of the a priori probability in the
solid phase and of the réle of the symmetry number. Possibly this number is
required in the solid as well as in the gas or else in neither.

INTRODUCTION

T IS well known that the behavior of the heat capacity of hydrogen

at low temperatures, where the specific heat falls below the classical
value ¢,=%R is explained by quantizing the rotational motion of the -
nuclei about the center of gravity. This has been done by Reiche
and other writers mentioned later in the article, using a rigid model
of the molecule. An elastic model must be employed at high tempera-
tures, since there the specific heat exceeds Z R because of the acquisition
of quanta of nuclear vibrational motion.. The resulting rotational
and vibrational specific heat has been considered jointly by E. C.
Kemble and the writer, and the present article can in part be regarded
as an extension and revision of their paper! in the light of recent ex-
perimental and theoretical developments. It is now clear that the
quantum theory has been revolutionized by the new mechanics de-
veloped by Born, Heisenberg and Jordan, Dirac, and Schrédinger.?
The bearing of the new mechanics on the specific heat of hydrogen is
considered in Section 1. It is there shown the specific heat data proves
that in the new mechanics the hydrogen molecule cannot be quantized
in the same way as a simple rotating dipole such as HCIl. The failure
of the simple theory is doubtless due to the non-polarity of the hydrogen
molecule. In the absence of an adequate quantum theory of non-
polar molecules, several speculations are given in section 2 concerning
the modifications in quantization necessary to give a satisfactory
specific heat curve. ’

1E. C. Kemble and J. H. Van Vleck, Phys. Rev. 21, 653 (1923).

2 W. Heisenberg, Zeits. f. Physik, 33, 879 (1925); M. Born and P. Jordan, ¢bid.
34, 858 (1925); M. Born, W. Heisenberg, and P. Jordan, 35, 557 (1926); P. A. M. Dirac,

Proc. Roy. Soc. 1094, 642 (1925); 1104, 561 (1926); E. Schrédinger, Ann. d. Physik,
79, 361, 489, 734; 80, 437 (1926); Phys. Rev. in press.
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Sections 3 and 4 consist of a discussion of band spectrum theory
and chemical constants, especially in relation to the specific heat of
hydrogen. Existing theories of alternating intensities in the band
spectra of non-polar molecules are considered at some length as this
phenomenon is doubtless intimately related to the failure of the
simple (HCl type) dipole theory in explaining the specific heat of
hydrogen. A digression is made to consider the unexpectedly large
Zeeman separations found in certain band spectra, which we attribute
to the spinning electron. The discussion in Sections 2—4 is unfortunately
rather void of many definite conclusions but nevertheless represents
the result of considerable labor by the author in endeavoring to cor-
relate and criticize existing evidence and theory. It is hoped that this
will at least serve to acquaint some readers with the uncertain present
status of many points connected with the theory of diatomic molecules,
which makes dogmatic results impossible. '

Graphs of the theoretical curves obtained under various assumptions
discussed in Sections 1 and 2 are deferred to Part II, in which Dr.
Hutchisson correlates existing experimental data on the specific heat
of hydrogen and gives the numerical results of his calculations.

1. Speciric HEAT or HYDROGEN IN THE NEW MECHANICS

By a well-known formula® the rotational and vibrational specific

heat per gram-mol. is
¢=Rp*d4nQ/dp?, 1)

p=1/ET, Q= 5 Tpoeatinm

where
(2)

We denote by W(m, n) and p. respectively the energy and a priori
probability of the stationary state of rotational quantum number m
and vibrational quantum number #. We use the notation p, rather
than p(m, n) inasmuch as the value of # does not influence the a priori
probability. As usual, R and % denote respectively the molar and mole-
cular gas constants. The summation in (2) is to be taken over all
possible values of the quantum humbers m and 7.

Value of W(m, n). Throughout the article, unless otherwise stated,
we shall utilize a non-gyroscopic model of the molecule, as this seems
to be required by the diamagnetism of hydrogen. Up to room tempera-
tures the specific heat can be approximately calculated with the further

8 Eq. (1) has been given for a rigid model by Planck,!® Reiche,” Tolman," and
many others. It is easily seen to be equivalent to Kemble and Van Vleck’s Eq. (10)
or to Eq. (1) of Part II.
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supposition that the model is rigid. The vibrational quantum number
then does not enter,* and the energy is

W(m) = (m2h2/8x)+A4, - (3)
where I is the moment of inertia and 4 is a constant independent of .
According to the new quantum mechanics, the rotational quantum
number 7 is to be given the values %, 3,3, - - - in contrast to the whole
quantum values characteristic of the old quantum theory. In order
to make a closer connection with band spectrum notation we employ
a rotational quantum number 7 one-half unit larger than the number j
sometimes employed so that m2—% occurs in place of j(j+1). This
is, of course only a difference in notation, and our procedure corre-
sponds to the Landé rather than Sommerfeld usage. That Eq. (3),
with half quanta, is the proper value for the energy of a rigid rotator
in the new mechanics has been shown by Heisenberg,? Schrodinger,®
Mensing,® Dennison,” and others.® According to Schrédinger® the
additive constant A4 is —k2/32x2%I, making W=3(j+1)h?/87%[ in Som-
merfeld’s notation. Somewhat different values of 4 have been pro-
posed by Dennison” and others, but such differences are of no concern
to us, as by Eqgs. (1, 2) the additive constant in the energy does not
affect the specific heat in any way.

Above room temperatures we must consider the vibrational specific
heat, and it is then necessary to employ an elastic model. Also at
lower temperatures the centrifugal expansion influences the specific
heat to a certain degree. With an elastic model the energy W cannot
be evaluated numerically until we specify the nature of the restoring
force F(7) for the nuclear vibrations. We have in general no knowledge
concerning the form of F(r) except that it must vanish as 1/72, or more
rapidly, for large values of 7, and must be an approximately linear
function of 7 when the nuclear separation 7 is close to its equilibrium
value 7p. As first noted by Kratzer,® these requirements are con-
veniently met by taking

F(ry=a(r—ry) /3. (4)

4 In the new mechanics there is a half quantum of vibratory energy even at the
absolute zero, but, neglecting centrifugal expansion, this only adds a constant to the -
energy unless the temperature is so high that larger vibrational states are excited.

5 E. Schrodinger, Ann. der Physik 79, 489 (1926); Phys. Rev. (in press).

8 Lucy Mensing, Zeits. f. Physik 36, 814 (1926).

7 D. M. Dennison, Phys. Rev. 28, 318 (1926). Dennison’s quantum numbers
m, n are the same as m— }, ¢ in our notation.

8 L. Brillouin, Comptes Rendus 182, 374 (1926); I. Tamm, Zeits. f. Physik, 37,
685 (1926); O. Halpern, ibid. 38, 8 (1926); J. R. Oppenheimer, Proc. Cambr. Phil.
Soc. 23, 327 (1926).

9 A. Kratzer, Zeits. f. Physik 3, 289 (1920).
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This assumption, which was used in Kemble and Van Vleck’s paper!
on vibrational specific heats, greatly simplifies the calculation and
enables one to determine the energy without resorting to series de-
velopments. We do not pretend that the approximation (4) is valid
for large values of r—7, but this is unnecessary since an accurate
formula for large displacements is not needed in our study of specific
heats. Kratzer,? also independently Kemble and Van Vleck,'showed
that with (4) the energy in the old quantum theory took the very
simple form

W (m ,n) = —2u=2hv;(un-++/1-Fu?m?) 2+ constant, (3)

where # is the ratio »1/v, of the lowest quantum rotational frequency
vi=h/4w%l, to the frequency v, of infinitesimal nuclear vibrations. Itis
easily shown that Iy = Mr¢and v¢=a/4m2Mr.®, where M = mims/ (m1+ms)
and m,, ms are the masses of the two nuclei in the diatomic molecule.
In the new quantum mechanics, too, the assumption (4) (» and 7o
now being matrices) greatly simplifies the calculation, for then the
energy takes exactly the same form (5) as in the old theory, except
that now the rotational and vibrational quantum numbers » and »
are both to be given half instead of whole quantum values. This result
was proved in a recent paper by Fues!® and has also been obtained
independently by the author. We may note that without going through
Fues’ detailed solution of the Schrédinger wave equation, the result
(5) (with half quanta) can be derived in a very simple manner by
comparison of the Hamiltonian function resulting from (4) with that
of a hydrogen atom. As shown by Miss Mensing,’ the calculation
of W in a central field for a given value of m is reducible to a problem
of one degree of freedom by substituting (m2—%)h2/4w? for the square
of the resultant angular momentum. With the simplification (4)
the Hamiltonian function is then
1 ( , = Y) kf)*Lr}_ a1y (©)
! 4722 r 2 r* 2 ro_ ’

where matrices are written in bold-face type. Neglecting the trivial
additive constant a/2r,, Eq. (6) is like the Hamiltonian function for
the hydrogen atom except in the numerical values of the coefficients
of 1/r and 1/r2. On comparing coefficients with those for the hydrogen
atom it is easily seen that the energy W for our problem can be ob-
tained simply by substituting e for Ze? and (m?-+4wnlaroMh~2)}t for k

10 E. Fues, Ann. der Physik 80, 367 (1926). Our Eq. (5) is equivalent to combination
of his Egs. (19) and (39).
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in the energy-formula of the hydrogen atom. Eq. (5) then follows on
remembering that in the new quantum mechanics the energy of an H
atom is still the well-known Balmer expression —2#x2MZ%*/(n-+k)?h2,
except that now both the radial quantum number # and azimuthal
quantum number % are half-integral.

Value of pm. For a long time there was considerable uncertainty
as to whether p, should have the value 2m or 2m-1, but the new
quantum mechanics indicates very definitely that the value 2m (2741
in the Sommerfeld notation) is correct,!! since in an external field
with axial symmetry the axial component of angular momentum
can assume the 2m values —(m—%), - - -, (m—%). This result is
required by the new mechanics for. molecules (at least if polar) as
well as atoms. In HCI an independent experimental proof of the a
priori probability 2 is furnished by Bourgin and Kemble’s!? recent
data on absorption intensities, and here also the half quantum numbers
m=%,%, -+ are directly confirmed by Czerny’s’® measurements
of frequencies in the “pure rotation” infra-red spectrum.

Failure of the stmple theory. Unfortunately an impossible specific
heat curve is obtained if we use the a priori probability p,=2m and
half quanta* m=%,%, - - - to be expected from the simple theory
of the rotator in the new mechanics. It is easily seen, as noted by
various writers,:1%:17 that these assumptions concerning p. and m
lead to a curve of the same type as that derived by Planck!® with
the old cell (“second”) form of the quantum theory. Instead of rising
gradually to the equipartition value R, the rotational specific heat
with this curve ascends to a maximum about 10 percent above R
and then gradually descend to the latter. No such effect is observed
in hydrogen.!? If the moment of inertia is adjusted to yield agreement

11 The objection cited by Pauling (Phys. Rev. 27, 568, 1926) that an a priori prob-
ability 2m gives the wrong sign to the temperature coefficient of the dielectric constant
in HCl etc., disappears if the calculations are made by the new rather than old quantum
mechanics. This has recently (Aug. 1926) been shown independently by Mensing and
Pauli (Phys. Zeits. 27,509) ; Kronig (Proc. Nat. Acad. 12, 488);and Van Vleck (Nature
118, 226).

12 D. G. Bourgin and E. C. Kemble, Phys. Rev. 27, 802A (1926).

18 M. Czerny, Zeits. f. Physik 34, 227 (1925).

4 The possibility of these half quanta in hydrogen was first suggested by Tolman
(Phys. Rev. 22,470, 1923), but his calculations stressed the a priori probability 2m+1.

1 E. Hutchisson and J. H. Van Vleck, Phys. Rev. 25, 243A (1925).

18 G. H. Dieke, Physica, 5, 412 (1925); also Phys. Rev. 27, 639A (1926).

17 H. Lessheim, Zeits. f. Physik, 35, 831 (1926).

18 M. Planck, Verh. d. D. Phys. Ges. 17, 407 (1915).

19 It would be interesting if measurements could be conducted at sufficiently low
temperatures to see whether the anomalous maximum is found in the specific heat of
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at low temperatures, the maximum would come at about 250°K
whereas the specific heat observed for hydrogen is still below the equi-
partition value at this temperature.

2. EMpPIrRICAL WAYS OF ESCAPING THE SpECIFIC HEAT DILEMMA

We are thus confronted with a serious difficulty. Since we have
abundant evidence for the new mechanics, the failure of the simple
theory is probably because the H; molecule is non-polar and so cannot
be quantized in the same way as a simple rotating dipole such as HCI.
Just what modifications should be made is, of course, uncertain in
the absence of a detailed quantum-mechanical analysis of the electron
orbits in non-polar molecules. We shall list below several specific
ways of crawling out of the specific heat dilemma by assuming more
or less empirically a different quantization than in the simple polar
rotator. Most of the suggestions appear rather artificial and are
frankly only conjectures, but one must at the same time realize that
observed specific heats furnish fairly definite evidence as to what
a priori probabilities and ranges of quantum numbers are legitimate.
For this reason it does not appear altogether unlikely that the true
specific heat curve is of the form (b) given below.

(a) Whole quanta. The most obvious possibility is that we still
have p,=2m but that the rotational quantum number assumes the
integral values m=1, 2, - - - instead of 4,3, ---. We then get a
specific heat curve calculated for a rigid molecule by Bohr?® as early
as 1916, and also independently by several other writers.?2! The com-
putations were extended to the elastic model by Kemble and Van
Vleck.! They show that quite satisfactory agreement can then be
obtained with observed specific heats up to 2000°K provided the mo-
ment of inertia and nuclear vibration frequency are arbitrarily as-
signed the proper values.? A
HCI, for we have abundant spectroscopic evidence that the simple rotator theory can
be applied to HCI even though it fails in Hy. Such measurements, however, would be
difficult, if not impossible, as the maximum in HCI comes at about 12°K.

H. C. Hicks and A. C. G. Mitchell have recently made an interesting attempt to
calculate the specific heat of HCI from spectroscopic energy levels, but unfortunately
use an a priori probability 2m-+1, Journ. Amer. Chem. Soc. 48, 1520 (1926).

20 N, Bohr, Abhandlungen iiber Atombau aus den Jahren 1913-1916. (Vieweg,
1921). .

21 E, C. Kemble, Doctor’s Dissertation, Harvard University, 1917 (unpublished);
F. Reiche, Ann. der Physik, 58, 657 (1919); S. Rotszajn, ibid. 57, 81 (1918).

22 Kemble and Van Vleck used integral values for the vibrational quantum number,
but Hutchisson shows in Part II of the present paper that the introduction of the

half-integral vibrational quantum numbers characteristic of the new mechanics (cf.
Section 1) does not alter the specific heat curves materially.
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The great difficulty with the introduction of these whole quanta
is that it is very doubtful whether they are allowable in the new
quantum mechanics for a non-gyroscopic rotator, although Born,
Heisenberg, and Jordan? have shown that in general the resultant
angular momentum of an isolated dynamical system can be either a
half or whole multiple of %#/27. By examination of the characteristic
values of his partial differential equation, which is allied to the matrix
theory, Schriédinger® is lead unambiguously to half quanta for the
rotating dipole in three dimensions. Also Dennison claims that with
whole quanta the transition probabilities do not fulfill the proper
boundary conditions, i. e., do not vanish when the final state is im-
possible.?® At the same time we must keep in mind that the hydrogen
molecule is non-polar and that the low frequency part of its electrical
field is that of a quadrupole rather than of a dipole (see Section 3)
so that the amplitudes of the type considered by Dennison and others
do not enter in radiation. It is barely possible that a quantization of a
non-polar molecule with the same amount of electronic symmetry as
hydrogen will yield whole quanta when the internal degrees of freedom
are carefully considered. Against this possibility is the general rule
advanced by band-spectrum spectroscopists?* that whole or half
quanta are to be used according as the number of electrons is odd or
even.

(b) Exclusion of the state m=%. Another possibility is that the
a priori probability is 2m, but that the rotational quantum number m
only assumes the values 4, 3, - - -+ . We then get a specific heat curve
of the type calculated independently by various authors!®:16:17 for the
rigid molecule, and extended to the elastic model by Hutchisson.
This curve is in quite satisfactory agreement with observed data.
Graphs of the curves obtained for the elastic model under the assump-
tions (@) and (b) are given by Hutchisson in Part II, to which the reader
is referred for detailed comparison of the theoretical curves and ex-
perimental values. Hutchisson shows the preference between the
curves for cases (¢) and (b) depends largely upon what experimental
data are accepted as most accurate.

We shall see in Section 3 that some plausibility is lent to the sug-
gestion (b) from a study of the Fulcher bands of hydrogen, but on
the other hand it will be shown in Section 4 that the observed chemical
constant of hydrogen is hard to reconcile with the idea that the hydrogen
molecule has an a priori probability 3 (i. e., three different positions)

2 Dennison, l.c. 7, p. 326.
2 R. S. Mulliken, Proc. Nat. Acad. 12, 148 (1926).
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in its state of lowest energy. It is hard to imagine any theoretical
basis for the complete exclusion of the state m =% without diminishing
or otherwise affecting the a priori probabilities of the remaining states,
though it is barely possible that some such surprising result may ensue
when a detailed analysis of electron orbits in non-polar molecules is
made with the new quantum mechanics and. especially with the ex-
tension of the Pauli exclusion principle which is used by Heisenberg
in explaining the helium spectrum, etc., and which will be briefly
described on p. 1003. Use of the a priori probability 2m —1 instead
of 2m would automatically exclude the state m =%, but Hutchisson
shows in Part II that the resulting specific heat curve is unsatisfactory.
(¢) Exclusion of every other state. Ehrenfest and Tolman?® have
shown that in a non-polar molecule the rotational quantum number
can change only infrequently and only by even multiples of %/2m,
unless there are simultaneous electron jumps. For this resaon they
suggest that every other value of the rotational quantum number must
be excluded in a non-polar molecule. The discussion of the theory
for such a procedure will be deferred until section 3, where it will be
shown that the necessity of including electronic as well as nuclear
transitions raises some serious difficulties, but that there is nevertheless
quite possibly some analogy to the Pauli-Heisenberg exclusion principle.
Irrespective of the theory we must note with Mecke?® that there is
some very strong experimental evidence in the helium band spectrum
for successions of states in which every other value of the rotational
quantum number is wanting, for otherwise it would be necessary to
introduce the unreasonable “quarter quanta,” which will be criticized
in Section 3 in connection with the hydrogen and helium band spectra.
If we assume that = has the values %, 5, 3, - - - we are led to an
impossible specific heat curve, as this supposition gives a ratio 1:35
between the probabilities of the two lowest state, whereas Schrédinger?
has shown that observed specific heats demand this ratio to be about
1:2. Better results are obtained with m=%, %, 4, - - - but even
then the curve is probably too steep, as it is easily shown to be inter-
mediate in form between the impossible Planck curve and the curve
obtained under assumption (¢), and Hutchisson shows that even the
latter is rather too high at room temperatures. If we use only alternate
values of it is very likely that the state m =% is wanting, as it is not
found in the Curtis classification of the helium band spectrum or the
% P, Ehrenfest and R. C. Tolman, Phys. Rev. 24, 287 (1924).

26 R. Mecke, Phys. Zeits. 26, 217 (1925); Zeits. {. Physik, 31, 709; 32, 823 (1925).
27 E. Schrédinger, Zeits. f. Physik, 30, 341 (1924).
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Takahashi-Dieke interpretation of the hydrogen Fulcher bands (see
section 3). We might therefore try taking m =%, %, 4%, - - -, although
this would not appear as likely as m=%, %, 2L, . . . . With pn=2m
we would then get a very good specific heat curve, as it is not difficult
to show that it would be intermediate in form between the curves
obtained under the assumptions (¢) and (b) and these curves fall on
opposite sides of some of the experimental values (see Part II). The
a priori probability 2 —1 would have the advantage of automatically
excluding the state m =%, but the corresponding curve would prob-
ably be too steep.

If we exclude alternate values of the rotational quantum number it
is necessary to employ rather large moments of intertia, viz., about?®
7X107% gm. cm? with m=%, %, - - - and 9X10~4 withm=%,%, - - -.
These values appear rather large; the latter, especially is larger even
than the moments of inertia deduced spectroscopically by Dieke for
excited hydrogen molecules (Section 3). Also the difficulty with
chemical constants mentioned under (b) still must be considered.

(d) Diminished a priori probability for every other state. We shall
see in Section 3 with Slater?? that the alternating intensities found in
the hydrogen band spectrum furnish some evidence that every other
state has a diminished a priori probability (to be contrasted with the
complete exclusion of every other state under assumption ¢). Schro-
dinger? has shown that with the half quanta m=%,%,3,- ., a
satisfactory specific heat curve can be obtained by assuming the a
priori probabilities of the three lowest states to be in the ratio 4: 7 : 17
(or possibly 1:2:4) instead of the theoretical ratio 4:12:20 for
the HCl-type rotator. Schrodinger’s probabilities seem to have no
theoretical justification, but his curves will not be very materially
modified is we assume the ratio to be 4:7:20 (or 4:8:20). This
might be interpreted to mean that the states m=%,%, - - - had an
a priori probability 2am differing by a factor a= 1% (or %) from those
of the remaining states. This, however, does not appear likely as
we have already noted that the state m=4% is usually wanting in the
bands with alternating intensities. Another, more likely possibility,
suggested to the writer by Dr. Mulliken, is the complete exclusion of
the state m =%, and diminished a priori probabilities for m=4%, 4, . . . .

28 Without calculating the specific heat curves in detail we can deduce the approxi-
mate moments of inertia because observed specific heat data fix quite definitely the
difference in energy between the two lowest permissible states. See Schriédinger.?”
If we excluded alternate states this energy difference would be increased unless we made
an offsetting increase in the moment of inertia.

20 J. C. Slater, Nature, April 17, 1926.
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We should then have virtually a combination of (b) and (d). A satis-
factory specific heat with this hypothesis does not appear altogether
impossible, but calculations have not been attempted since they would
be extremely arbitrary without anything to guide us on the numerical
values of the ratios in the alternating sequence of probabilities. Theoreti-
cal difficulties connected with the weak quantization of every other state
will be mentioned in Section 3.

(e) Gyroscopic molecule. If the molecule is gyroscopic due to an
electronic angular momentum ¢%/27w about the axis of figure, then,
as shown in fine print below, a formula for the specific heat is obtained
which is the same as for a non-gyroscopic model of like moment of
inertia and elasticity, except that in summing over the various states
in Eq. (2) the rotational quantum number 7 must be given the values
o+%, o+3, - - -, instead of 4,5, --. That this is the proper
range of values for m can be seen from examination of the Hénl-
London amplitudes®® for gyroscopic molecules or more directly from
Dennison’s matrix calculations” for the rigid gyroscopic molecule
(his “symmetrical rotator”). The minimum value of m is greater
than in the non-gyroscopic case, of course, simply because the resultant
angular momentum cannot be less than the axial component thereof.
It is immediately seen that a simple and tempting explanation of the
ranges of values of m used in (a) and (b) is obtained if =% in case
(a) or 0=1 in (b), but unfortunately this is probably not the solution
of the specific heat dilemma, as a gyroscopic molecule is incompatible
with the diamagnetism3! of hydrogen or with the absence of an ap-
preciable Zeeman effect in the Fulcher bands. The latter, in fact, are
not ordinarily susceptible to magnetic fields, despite the fact that
according to Takahashi or Dieke (Section 3) their minimum m-value
is probably &, indicating that the absence of the state m =% is not
due to the existence of a ¢>0. Of course, as long as the ratio of mag-
netic moment to angular momentum for the internal spins of the elec-
trons is twice the corresponding ratio for the orbital motions,? it is
possible to have a zero magnetic moment without the logical necessity
of a vanishing resultant electronic angular momentum, but a study
of atomic Zeeman effect levels indicates that this situation is alto-
gether unlikely in hydrogen. Irrespective of the diamagnetism, strong

30 H. Honl and F. London, Zeits. f. Physik, 33, 803 (1925).

3t Hydrogen is about twice as diamagnetic as helium. Cf. A. P. Wills, and L. G.
Hector, Phys. Rev. 23, 209 (1924); L. G. Hector, <bid. 24, 418 (1924).

2 E. H. Kennard, Phys. Rev. 19, 420A (1922); also especially Uhlenbeck and
Goudsmit, Naturwissenschaften 13, 953 (1925); Nature 117, 264 (1926).
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evidence that the hydrogen molecule is non-gyroscopic is furnished by
analogy with atomic spectral terms. There is increasing evidence
that there is a considerable similarity in the structure of spectra of
atoms and molecules with equal numbers of valence electrons.®
Since the hydrogen molecule contains two electrons, its spectral terms
should thus show some resemblance to those of alkaline earth atoms,®*
and the normal states of the latter are always S-terms without either
magnetic moment or angular momentum.

Theory of specific heat of gyroscopic molecule. For a rigid model the equivalence of
the specific heat of a gyroscopic molecule to that of a non-gyroscopic one in which the
rotational quantum number is given artificially by the values o+3%, o+3, - - - (instead
of 4,4, - -+)isobvious. Forin the new? as well as the old quantum mechanics the rigid
gyroscopic rotator has an energy of the form B(m?—o?)+ C, where B and C are constants.
In specific heat calculations we are interested only in the minimum value of ¢ and need
not sum over states with larger ¢ since they are occupied by only a negligible fraction
of the molecules at ordinary temperatures. Because o can thus be treated as fixed, the
gyroscopic effect in a rigid molecule, besides increasing the minimum value of m, only
introduces an additive constant — Bo? in the energy, and such a constant has no influence
on the specific heat.

In the case of elastic molecules the equivalence mentioned in the preceding paragraph
can be easily established by a simple calculation. Since the exact orbits of the electrons
are unknown we may allow for their gyroscopic effect by imagining a fly-wheel to be
mounted on the axis joining the nuclei. If we neglect terms involving the ratio of
electronic to nuclear mass no particular difficulty is introduced if we assume the moment
of inertia 4 of the fly-wheel to be a function of 7, in accordance with the fact that the
size of the electron orbits doubtless depends on the nuclear separation. The nuclear
restoring force is then the r-derivative of V(r)-+0%h2/8x%4 (r) rather than of the ordinary
potential energy V(r), and our model of the molecule may be characterized as an elastic
top with masses m; and m. at the two ends and with variable moment of inertia 4 (r).
It is found that in either the new or old quantum mechanics the energy formula is of the
same form as for a non-gyroscopic model with similar radial force, except that m? must
be replaced by m?—¢% We omit the details of the calculations inasmuch as the hydrogen
molecule is probably non-gyroscopic. If in particular we make the simplifying assump-
tion (4), the expression for the energy still takes the form (5), except that the constant
under the radical is 1—o22 instead of 1. This alteration is inconsequential since the
energy can still be thrown into the form (5) by replacing # by #’ =u/(1-—a2u2)% and
»1 by »1’ =p1/(1—02?)?. Such a change in the constants is of no importance for specific
heats as here # and »; are regarded as perfectly arbitrary. Also the difference between
u, v1 and %', v’ is negligible since %2 is the square of the ratio of the lowest rotational
to the vibrational frequency, and hence 1—o%? is nearly unity.

It is interesting to note that in the ordinary mechanics the elastic gyroscopic mole-
cule is a problem which can be treated by separation of variables, even when the moment
of inertia A4 (r) of the fly-wheel is constrained to vary with 7, provided we neglect terms

¥ s R, T. Birge, Nature, 117, 300 (1926); F. Hund, Zeits. f. Physik, 36, 657 (1926);
R. Mecke, 7bid. 28, 261 (1924) ; Naturwissenschaften, 13, 698, 755 (1925); R. S. Mulliken,
Phys. Rev. 26, 1, 561 (1925); Proc. Nat. Acad. 12, 144 (1926); J. W. Nicholson, Phil.
Mag. 50, 650 (1925).

% Cf. Mulliken, Proc. Nat. Acad. 12, 338 (1926).

¥ M. Born, die Naturwissenschaften, 10, 677 (1922).
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involving the ratio of the electronic to nuclear mass. The coordinates to be used are the
nuclear separation 7 and a set of Eulerian angles 6, ¢, ¥ giving the position of the axis
of figure and amount of rotation of the fly-wheel about same. By setting up the Lagran-
gian function one finds that the angular momentum py =4 (y+¢ cos 8) =oh/2x of the
fly-wheel is constant. Because of this and the fact that the angular momentum of the
nuclei is perpendicular to that of the fly-wheel, the interesting result is obtained that
the axis of figure precesses regularly about the invariable axis of angular momentum
and there is no nutation despite the oscillations in the nuclear separation and radius
of the fly-wheel. This is also true in the new mechanics.

The crossed-orbit model of the hydrogen molecule. At this point we may note that in
the old quantum theory we would have ¢ =1 if we assumed a model of the hydrogen
molecule proposed by Born3 which is the natural analog of the Bohr-Kemble crossed-
orbit model of the normal helium atom (to be contrasted with the early Bohr circle
model which had ¢=2). This crossed-orbit model® has a good deal of dynamical sim-
plicity and symmetry, but is incompatible with the diamagnetism of hydrogen.?” A cal-
culation of the energy and moment of inertia of the crossed-orbit model of the hydrogen
molecule has been made by E. Hutchisson with the old quantum theory and will be
published in the PHYSICAL REVIEW. His calculationsyield a much greater work of ioniza-
tion than is observed, and a moment of inertia 4.9 X107 gm cm? which is larger than
the estimates 1.98X107% and 2.99 X10* deduced from specific heat curves with
assumptions (@) and (b) respectively. These discrepancies are, of course, not surprising
since the results with the new mechanics are doubtless different. We had originally
intended to make the crossed-orbit model the central point of the discussion in the
present article but have now relegated it to a subordinate position since in the new
mechanics the normal hydrogen molecule is probably non-gyroscopic, although in other
respects it may show a limited amount of resemblance to the crossed-orbit model of
the old theory.

Einstein-Bose statistics immaterial. In a conversation with the writer,
Dr. Kramers raised the question whether the rotational specific heat
might not be modified at low temperatures by employing the Einstein-
Bose statistics, %8 for which the evidence is ‘accumulating. It is well
known that according to this new statistics the Maxwell distribution
of translational velocities is modified at very low temperatures, and
Jordan % has indicated that there is a corresponding departure from
the Boltzmann distribution formula for determining the distribution of
atoms or molecules among a discrete succession of quantized states, as
a factor 1/(e4*%/*T—1) occurs in place of e=4~W/*T, The specific heat
equation (1) based on the Boltzmann distribution formula is then no
longer applicable. This fact, however, cannot be the solution of the
specific heat difficulty, for the corrections to (1) are entirely insigni-

3 For further description and discussion of this model, with references, see J. H.
Van Vleck, ‘““Quantum Principles and Line Spectra’” (Bull. Nat. Research Council
No. 54), Chap. VII, especially p. 90.

37 Cf. Van Vleck, l.c.,* p. 99.

38 We shall not attempt to explain the theory of the new statistics. See N. Bose,
Zeits. f. Physik 26, 178 (1925); A. Einstein, Berlin Acad., 1924, 261; 1925, 3, 18; also

summary in A. Landé, ‘‘Die Neuere Entwicklung der Quantentheorie,” 2nd Ed., p. 126.
39 P, Jordan, Zeits. f. Physik 33, 649 (1925).
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ficant except at temperatures which are so low that the rotational spe-
cific heat has dropped to practically nil in hydrogen. The reason why
the ordinary statistics can be employed in calculating specific heats is
simply that the temperature and pressure range is such that two or
more molecules seldom crowd into the same cell of the phase space, so
that the Einstein-Bose interference effcts do not enter appreciably. A
simple calculation #° indicates that the modifications will first become
appreciable when the quantity x= (2wmkT)¥2V/h*N (which is of the
order of magnitude of ¢# unless 4 is very small) is comparable with unity.
Here m is the mass of the molecule, and N/V is the no./cc. Now even
at a temperature as low as 30°K, at atmospheric pressure we still have
x >10%so that the modifications are very small. This as what we should
expect since no large “degeneration” of any gas has yet been observed
experimentally.

Specific Heats of Nj,0,,CO. We now digress to revise a previous
attempt of Kemble and Van Vleck ! to calculate the moments of inertia
of N»,0s, and CO from specific heat data. In Scheel and Heuse’s original
paper the conclusion was reached that the specific heats of these gases
fell appreciably below the equipartition value ¢,=%R at 92°K. Kemble
and Van Vleck found that absurdly low moments of inertia were neces-
sary to explain this result. Consequently they suggested as one possi-
bility that the values given by Scheel and Heuse #! for specific heats
in the ideal gas condition might be too low because of an incorrect
reduction to zero pressure of the measurements made at one atmos-
phere. Investigations of Bartels and Eucken *? on the equation of
state of nitrogen at low temperatures, of which Kemble and Van Vleck
were not aware, indicate that this is indeed the case. Bartels and
Eucken find the Berthelot equation of state employed by Scheel and
Heuse is inaccurate at low temperatures, and they conclude that the
specific heats of Nj;,0;, and CO are probably normal at 92°K. This
is substantiated by recent experiments of Schreiner # who finds that

40 Cf., for instance, Land§, l.c.,3 p. 132. Because the internal vibrational and rota-
tional degrees of freedom must be added to those of translation, our phase space is
12 instead of 6-dimensional. However at low temperatures and also in calculating the
order of e4 at higher temperatures, we may consider all molecules to be in their lowest
rotational and vibrational state. We then have virtually a 6-dimensional problem,
except that the a priori probability of the lowest state and Ehrenfest-Trkal symmetry
number will enter as factors (cf. §4) but these factors will clearly not change orders of
magnitude.

4 Scheel and Heuse, Ann. der. Physik 40, 473 (1913).

4 R. Bartels and A. Eucken, Zeits. f. Phys. Chem. 98, 70 (1921).

4 E. Schreiner, ¢bid. 112, 1 (1924).
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the specific heats of these gases conform to the classical theory even at
60°K. The moments of inertia of N3,0;, and CO thus cannot be calcu-
lated from existing specific heat data.

3. RELATION TO BAND SPECTRA

It is essential that the theoretical interpretation of the specific heat
of hydrogen be consistent with that of its band (secondary) spectrum.
This requirement of consistency may furnish some light on what values
for the moment of inertia and nuclear vibration frequency can legit-
imately be assumed in calculating specific heats and also whether half
or whole quanta should be employed.

Moments of inertia. Here we must remember that excited states have
larger orbits and hence ordinarily greater moments of inertia that
normal states. Consequently we may expect the analysis of visible band
spectra to set only an upper limit to the moment of inertia which it is
permissible to use in specific heats.

Whole quanta were employed in Lenz’s* early interpretation of the
Fulcher bands of hydrogen, yielding a moment of inertia about
1.85X107%' gm. cm.2. After the advent of half quanta it was shown by
Allen® and Curtis* that better results could be obtained if the rota-
tional quantum number m were also given the values 4,3, * - . In
consequence of this and especially of the well-known success of half
quanta in HCI it has been commonly supposed that the values %,
%, * -+ should be used in the specific heat of hydrogen, but we have
seen that this is not consistent with experimental data unless we assume
the rather unlikely a priori probabilities given in (d), Section 2.
Irrespective of this fact, another difficulty confronting the Allen-Curtis
interpretation of the Fulcher bands is that it gives a smaller moment of
inertia than does specific heats. The moment of inertia 1.4X1074!
deduced from specific heats by Tolman!* and Schrédinger?” under the
assumption m=%, &, 3, - -+ is considerably smaller than the value
1.98 X 10-*! obtained with whole quanta (case a, Section 2) or 2.99 X 10—*
obtained with exclusion of m =% (b, Section 2). This fact has frequently
been cited ¢’.as an argument favoring the half-quanta m=%,%, ‘- - in
specific heats, but even the value 1.4X107! is larger than one of

“ W. Lenz, Verh. d. D. Phys. Ges. 21, 632 (1919). See also M. Kiuti, Proc. Phys.-
Math. Soc. Japan (3) 5, 9 (1923).

4% H. S. Allen, Proc. Roy. Soc. 1064, 69 (1924).

“ W. E. Curtis, ¢bid. 107A, 570 (1925). Like Allen, Curtis uses both half and whole
quanta. The main difference between their interpretations is that the half and whole

quantum states are transposed.
47 Cf., for instance, Tolman, Schrodinger,?” Lessheim.!?
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the moments of inertia 1.25X107*! deduced from band spectra by
Curtis*.

An interpretation of the Fulcher bands totally different from that of
Lenz, Kiuti, Allen and Curtis has been proposed by Takahashi*® and
also independently by Dieke.*®* With the latter authors the roles of
vibrational and rotational quantum numbers are interchanged, the
latter being indentified with Allen’s “vertical” rather than “horizontal”
series. The most important bands become “Q” rather than “P” or “R”
branches,’® and the rotational quantum number is given only the values
4, 3, '+ -, excluding the state m=% and suggesting possibility
(b), Section 2. The interpretation proposed by Takahashi and Dieke
is probably preferable to the other viewpoints mentioned in the pre-
ceding paragraph. In the first place it is most natural to identify suc-
cessive rotational quantum numbers with the “vertical” series and
vibrational quantum numbers with the “horizontal,” rather than vice
versa, for the frequency differences between successive terms of the
vertical series are smaller than those of the horizontal. Also moments
of inertia are obtained which are larger than the values used in specific
heats, as should be the case. Dieke derives the moment of inertia
8.2X107%! for some of the excited states, while Takahashi gets the
even larger value 2 X104,

The classification of lines in the hydrogen secondary spectrum has
been greatly extended through the researches of Richardson and
Tanaka,’! Sandemann,’? and Curtis.®® Most of the moments of inertia
deduced by Richardson and Tanaka are smaller than the values re-
quired by (a) or (b), Section 2, and one, at least, of their moments of
inertia is smaller even than that with (d), Section 2. This may be a
serious difficulty, for Richardson’s classification includes a large number
of lines not comprised in the Fulcher bands and so not included in the
ordinary Takahashi-Dieke scheme. Fortunately, however, Richardson
has just published another paper® in which he gives a large numer of

48 Y. Takahashi, Jap. Journ. of Phys. 2, 95 (1923).

4 G. H. Dieke, Proc. Amsterdam Acad., 27, 490 (1924). Dieke’s interpretation of
the relations between the constants in the band spectrum differs from Takahashi’s
in some respects.

50 We use the terminology of band spectroscopists, who call a spectral series of the
“P" or “R" type if the rotational quantum number increases or decreases by unity in
emission, and of the Q" type if it is unaltered.

51 Richardson and Tanaka, Proc. Roy. Soc. 107A, 602 (1925); also Richardson,
ibid. 108A, 553; 1004, 35, 239 (1925).

52 [, Sandemann, <bid. 1084, 607 (1925); 1104, 326 (1926).

5 W. E. Curtis, Phil. Mag. 1, 695 (1926).
% O. W. Richardson, Proc. Roy. Soc. 1114, 714 (1926); Nature, 118, 116 (1926).
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important new series relations which are intimately related to those of
Takahashi and Dieke, and which can, in fact, partly be regarded as
extensions of the latter. Previously missing P and R branches are sup-
plied, etc. Richardson gives a new method of estimating the moment
of inertia which is perhaps more accurate than those of Takahashi
or Dieke. It gives moments of inertia mostly between 3X107*! and
4X107*L, or larger than any of the values deduced from specific heats
in Section 2 except in case (¢), in which every other rotational state
is excluded. These recent developments are perhaps especially favor-
able to a curve of the type (b), Section 2, which yields a moment of
inertia 2.99 X 1074!. The new Richardson series relations seem to require
at least a partial abandonment of some of the rotational classifications
given in previous articles by Richardson®! and Tanaka,’! and possibly
the revision is so complete that the difficulty of low moments of inertia
is entirely avoided. At any rate the hydrogen secondary spectrum is
so complicated and difficult to interpret that it does not as yet appear
to furnish any conclusive evidence against any of the various specific
heat curves enumerated in Section 2 except that case (¢) probably
requires an excessively large moment of inertia.

Nuclear vibration frequency. It is quite probable, however, that
spectroscopists of the ultra-violet will soon be able to supply the moment
of inertia of the normal state of the hydrogen molecule and so definitely
determine the correct value for use in calculating specific heats. Ultra-
violet measurements made by Witmer® have already furnished the
value 1.277X10% sec™! for the normal nuclear vibration frequency
which agrees almost exactly with that used in curve (b). The relation
of this value to that deduced from specific heats is discussed by Hutchis-
son in Part II.
lo . Alternating intensities and the correspondence principle. A curious
phenomenon encountered in the band spectra of non-polar molecules
is that consecutive lines of series generated by varying the rotational
quantum number are sometimes alternately weak and strong in inten-
sity. Such anomalies are apparently found in the “vertical” series of
the Fulcher bands. As noted by Dieke,’® this fact must be regarded as a
strong argument for the Takahashi-Dieke interpretation of these
bands, since the alternations in intensities are always a rotational
rather than vibrational effect. An adequate theoretical explanation of
the alternating intensities has yet to be given. Very likely, as suggested
by Slater,?® this phenomenon is ultimately ascribable to the fact that

5% E. E. Witmer, Proc. Nat. Acad. 12, 238 (1926).
% G. H. Dieke, Zeits. f. Physik 32, 180 (1925); Phil. Mag. 50, 173 (1925).
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nuclei in non-polar molecules radiate like a quadrupole rather than a
dipole. Slater’s suggestion is intimately related to a modification in
the quantum conditions for non-polar molecules suggested by Ehren-
fest and Tolman,? whose theory is based on the correspondence prin-
ciple and is explained in the following paragraph.

In the classical theory the electric field at a large distance R from
the molecule is shown by Page®” and others to be

E=— [{%( S+ o S M }><M]><M )

Re?
where M is a unit vector in the direction of the radius R and where =
and v are respectively the position and velocity vectors of the charge g.
The summation is to be taken over all the charges in the system. If we
wish to consider only the rotational motion of the electrons and do not
attempt to analyze the motion of the electrons, we may use the so-called
“dumb-bell” model of the molecule, which consists of two rigidly-con-
nected point charges rotating in a common plane about their center of
gravity. The summation ) in (7) then consists of only two terms. In
polar molecules,such as HCI, the two ends of the dumb-bell are different.
The first order term » gv then does not vanish and has the same’
frequency w., as a rotation of the molecule or dipole through 360°.
In a non-polar molecule, however, the two ends of the dumb-bell are
identical and the two nuclei make equal and opposite contributions
to D_qv. The molecule may then be termed a “quadrupole” and a
rotation through 180° will give a configuration indistinguishable from
the initial one. Since Y gv vanishes, the nuclear radiation is to a
first approximation zero in a non-polar molecule. If, however, we con-
sider terms in E of the order 1/¢3, there will be a small amount of
radiation whose frequency is that of a rotation through 180°. This
follows since in the symmetric dumb-bell the term ), (gr* M v) does not
vanish and is easily seen to have the frequency 2w,. Consequently the
effective frequency is twice that for the polarized molecule and
identified with a change in angular momentum of amount %/m rather
than #%/2w, since by the correspondence principle the octave of a
frequency is associated with a change of two units in the corresponding
quantum number. Therefore Ehrenfest and Tolman tentatively
suggest that in a non-polar molecule the fundamental period is 1/2wm,
and that correspondingly the proper quantized values for the angular
momentum are 0, k/mw, 2h/w, 3h/7 instead of O, /2w, h/m, - - - so
that compared with a polar molecule every other rotational state is

57 L. Page, Phys. Rev. 20, 18 (1922).
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missing.’® Here and elsewhere in the following discussion we assume for
brevity that the lowest allowed value of the angular momentum is zero.
Actually because of the half quanta characteristic of the new quantum
mechanics it is likely either 3%/27 or $%/27 (in the Landé notation),
but can fictitiously be made zero through changing the origin for
measuring angular momentum. This is legitimate for our purposes
as the inclusion in the angular momentum of an additive term %k/27
or $4/2m common to all stationary states does not affect the essential
nature of our conclusions.

Miscellaneous considerations relating to Ehrenfest and Tolman’s suggestion. In order
for the nuclear radiation to vanish to a first approximation, it is essential that the two
nuclei have equal masses as well as equal charges, for otherwise the center of rotation
is not equidistant from both nuclei. Hence we may have a pure rotation spectrum
emitted by a non-polar molecule whose two nuclei are different isotopes of the same
element. Such a spectrum, however, would obviously be faint even though it arises
from the first order terms in (7).

In Ehrenfest and Tolman’s paper it is assumed that the nuclei rotate in one and the
same plane. Thisassumption is not valid in a gyroscopic molecule, for here the invariable
axis of angular momentum is no longer normal to the line joining the nuclei. Hence a
rotation through an angle 360° rather than 180° about the invariable axis is required
to bring the nuclei back to a configuration indistinguishable from the initial one. So
we see that in the second order radiation from a gyroscopic molecuie the angular mo-
mentum can change by %/2r as well as 2/x. In fact, it is not difficult to work out the
Fourier expansion of the nuclear part of the second term of (7) for gyroscopic molecules.
It contains trigonometric terms in both 27wmt and 47wt and of comparable amplitude
for low values of the rotational quantum number m. For high temperatures and large
values of m the invariable axis is nearly normal to the line joining the nuclei. Then the
term in 47wt has much the larger amplitude and changes in angular momentum of
amount &/ should be more common than those of amount %/27. In this connection
it may be noted that every other state appears to be wanting in certain series of the
oxygen band spectrum,? though the experimental evidence is somewhat uncertain.
In view of the above, this result is rather surprising, for the oxygen molecule is para-
magnetic and so likely gyroscopic. Alternations might, however, arise from the low
amplitude rather than complete absence of the terms in 27 wms.

It may be noted that when the angular momentum changes by % /7 due to second-
order effects, the radiated wave-train cannot have the ordinary circularly-polarized
structure associated with radiation from a rotating Hertzian dipole. In fact Rubinowitz
and Bohr have shown that the angular momentum of any ordinary elliptically polarized
spherical wave-train of energy hv cannot exceed %/2w (Cf. Sommerfeld, Atombau,
Eng. Ed., App. 9). Instead we have a spherical wave of an entirely different type
whose structure can be worked out with classical electrodynamics from the second term

in (7).
The writer believes that a serious objection to the above conclusions
of Ehrenfest and Tolman is the fact that they do not consider the effect
88 We assume a diatomic molecule throughout the discussion. Ehrenfest and Tolman
show that in the more general case of any polyatomic molecule the analogous proposition

is that the angular momentum changes by ¢%/2x and equals only integral multiples of
oh/2w, where o is the Ehrenfest-Trkal symmetry number to be explained in Section 4.
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of the electronic motions on the multiple Fourier expansion of the
electrical moment of the atom. Although the electrical moment of a
symmetric molecule is zero when averaged over the periods of the
electrons, it is not instantaneously zero. It may, for instance, happen
that one electron rotates about the axis joining the nuclei in a larger
orbit than the “inner electrons”, which presumably form some sort of
“closed configuration”.’® There is then an instantaneous electrical
moment which rotates rapidly about the line joining the nuclei. In
fact we may expect that in general the multiple Fourier expansion of
the electrical moment p=_gr of a diatomic molecule is of the form

potipy= 24 (r1,+ -+, 77, 7) exp. 2mi (rr w1 - - - +waf+'rwn-}—wm)(t8,)
p= Z B (r1, -+, 17, 7) €xp. 2wt (Taw1+ - - - F 1wt ron)t,
where wi, - - - , wy are the electronic frequencies, w, is the frequency of

vibration along the line connecting them, and w,, is the frequency of a
complete (360°) rotation of the molecule about its axis of resultant
angular momentum, which we take as the z-axis. We shall denote by
#1, + + +, N5, #w, m the quantum numbers associated respectively with
the frequencies wy, - - - , Wy, Wn, Wm. The summation in (8) is with
respect to the integers 74, - - -, 75, 7 and extends in general from —
to 4+ o for each integer. In non-polar molecules the terms are to be
excluded for which 7i=7,= - .. =7,=0, for in such molecules the
average electrical moment in any direction is zero on averaging over the
electronic periods. Hence in non-polar molecules there cannot be an
appreciable vibrational or pure rotational spectrum in which the
electronic quantum numbers 74, - - - , n; are unaltered, though there
is, of course, still the second-order quadrupolar radiation discussed in
the preceding paragraph. The amplitudes in (8) associated with
combination overtones involving the electronic frequencies need not,
however, vanish, and therefore there can be an “electronic spectrum”
due to alterations in the electronic quantum numbers #4, - - - , %y
along with which there may be a change in the vibrational quantum
number # and a zero or unit change in the rotational quantum number
m. Hence even in a non-polar molecule the angular momentum may change
by either O or h/2w provided there are simultaneous changes in the electronic
quantum numbers. This point has been mentioned in connection with

8 Several examples of “one-valence-electron emitters of band spectra’ have been
given by R. S. Mulliken, Phys. Rev. 26, 561 (1925).
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the hydrogen molecule-ion by Niessen®® and Pauli,®! neither of whom,
however, introduce the Ehrenfest-Tolman type of quantization.’?

It is seen that Ehrenfest and Tolman’s suggestion that the angular
momentum be only even multiples of %/27 can be accepted as valid only
if the second-order nuclear transitions have a much more important
effect on the quantization that the first order electronic transitions.
We call the transition of the first or second order according as it results
from the first or second termin (7). It is obviously impossible for all elec-
tronic levels to have angular momenta which are even multiples of %/,
for the rotational quantum number can change by unity in the emission
or absorption of electronic spectra. It is, however, conceivable that
certain electron levels might have only even angular momenta, others
odd angular momenta and still others perhaps both even and odd
angular momenta. Here for brevity we measure the angular momentum
in multiples of the quantum unit %#/2x. We would then have only
“P” and “R” branches connecting even and odd levels, and only a
“Q” branch connecting two even or two odd levels.?® In passing from
an initial state with both even and odd angular momenta to an even
final state, the “Q” and “P, R” lines would alternate as the initial
rotational quantum number becomes progressively even and odd.

60 K. F. Niessen, Zur Quantentheorie des Wasserstoffmolekul-Ions (Dissertation
Utrecht, 1922).

61 W. Pauli, Jr., Ann. der Physik 68, 238 (1922).

62 Qur discussion is based on the multiple Fourier series of the classical theory rather
than the matrices of the new quantum mechanics because this is simpler and does not
affect the general trend of our conclusions if we use the correspondence principle as our
guide. However, we must note that sometimes the electrons in the molecule might
classically be so symmetrical that all the amplitudes in (8) vanish, making the electrical
moment even instantaneously zero. This situation would be particularly likely to occur
in the normal state. A simple example is furnished by the old Bohr circle model of the
helium atom, in which the two electrons are at opposite extremities of a diameter.
At first thought we might think that there would then be no electronic combination
overtones to complicate the Ehrenfest-Tolman method of quantization, but we must
take into account the fact that in employing the correspondence principle we must
consider both the initial and final states (as well as intermediate orbits) and excited
orbits will in general be less symmetric than the normal one. It is thus probably legiti-
mate in the old quantum theory to take the electronic angular momentum of the crossed-
orbit model of the hydrogen molecule or helium atom to be %/2x rather than an even
multiple of %/2x despite the fact that in these models a rotation of the two electrons
through only 180° about the axis of symmetry brings the system back to a configuration
indistinguishable from the initial one.

In the new quantum mechanics it is still more apparent that the electron transitions
will disturb the quadrupolar symmetry even in the most symmetric models. For when
matrices are employed there will always be terms (matrix elements) of finite amplitude
involving zero or unit changes in the rotational quantum number since there are always
possible transitions to excited electron states.
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This seems decidedly hard to reconcile with the correspondence
principle, as with any simple application of the latter the “P”, “Q”,
and “R” branches should by (8) occur simultaneously, whereas with
the scheme just indicated it has been necessary to rule out either
“P” and “R” or “Q” branches to avoid transitions to non-existent
states. Nevertheless we shall see that the helium band spectrum fur-
nishes evidence for this peculiar type of structure in which alternate
rotational states are missing. Similarly the oscillatory intensities found
in certain band spectra can be heuristically explained by assuming that
because of the Ehrenfest-Tolman effect the statistical weights or
a priori probabilities of even states are less than those of the odd, or
vice versa. This is the essence of the suggestion recently made by
Slater.?® How this procedure is to be reconciled with the correspondence
principle is not clear because of the considerations mentioned above,
and Slater’s idea would scarcely appear probable were not the experi-
mental evidence so difficult to explain otherwise. As mentioned to the
writer by Professor Bohr, a serious difficulty is the fact that if initial
even and odd states are equally probable, but if the final even and odd
states are of unequal weight, then the transition probabilities would
have to be alternately large and small, scarcely in line with the simple

correspondence principle.
At the absolute zero all the molecules may be assumed to have
‘zero angular momentum (with our normalization of additive constants).
As the temperature is increased states of larger angular momentum
can be reached by (@) collisions with other molecules or atoms, () sec-
ond order absorption of pure rotational quanta, or (¢) first order ab-
sorption of electronic quanta, followed by a similar emission in which
the change of angular momentum is not the reverse of that in absorption.
Here the quanta associated with the frequency w. in (8) are termed
“pure rotational”, while the quantum numbers associated with w,
-, wy are termed “electronic”. The mechanism () is probably the
most important at ordinary pressures, for here collisions between
molecules are frequent compared to the average time intervals be-
tween the absorption of quanta of radiation. Ehrenfest and Tolman
suggest the mechanism (b), whereby molecules can reach only states
whose angular momenta are even multiples of %/2w. A simple cal-
culation may be made to estimate the relative importance of (b) and (c).
This shows® that the second order rotational transitions are about
63 The calculation is considerably simplified by Tolman’s observation (Phys. Rev.

26, 431, 1925) that absorption probability coefficients are approximately determined
by the size of the orbit rather than the frequency, and so have approximately the same
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v (Vm)/c?o(v,) as probable as first order electronic transitions, where v is
the nuclear velocity, p(v) is the energy density, and pn, p. are respec-
tively the frequencies associated with the rotational and electronic
transitions. Using the Planck value of p(»), and taking the moment of
inertia I=2X10"%! gm. cm? and Av.=11.1 volts, one of the resonance
potentials in molecular hydrogen, we readily find that a temperature of
about 3,000 degrees must be reached before the number of first order
electronic transitions (¢) is comparable to that of second order rotational
transitions (b), while at a temperature of 100° K, such as enters in the
study of specific heats, the process (b) is 105°° more probable than (c).’
The relative preponderance of the second order rotational transitions
suggests that they exert the dominating influence on the quantization
at low temperatures, where it might be asumed that the electron
transitions are ineffective in so far as the quantum conditions are
concerned. We might then have a case of “weak quantization”®
whereby the a priori probability of the states of odd rotational quantum
number is diminished at low temperatures. This, however, is question-
able. We have seen in (d), Section 2 that the complete exclusion of every
other state probably does not give a good specific heat curve and re-
quires an excessively high moment of inertia. Also an a priori probabil-
ity invariant of the temperature is basic to the Einstein derivation of
the Planck radiation formula, and if there were a variation of the
a priori probability, there would have to be a change of the transition
probability coefficients with temperature, which is hard to reconcile
with the correspondence principle. In bands with alternating inten-
sities, the intensity ratio of the strong to the weak lines is found
experimentally to be a small number (always less than ten), whereas
with the weak quantization hypothesis in its most naive form one
would presumably expect this number to very large (or infinite in
case alternate terms are entirely excluded). Nevertheless there seems
to be experimental evidence that the oscillating intensities are due to
(I) alternations in statistical weights, for otherwise it would be neces-
sary to attribute them to (II) alternations in transition probabilities
or to (III) overlapping of two distinct bands which give respectively
the weak and strong lines. Against the possibility (II) Slater?® notes

value for first order rotational transitions (when present) and first order electronic
transitions. The factor v2/c? results from the fact that the second order transitions are
of this order compared to the first order ones, while the factor p(vn)/e(v) comes from
the fact absorption is proportional to the energy density.

% For theoretical discussions of “weak quantization,” see ref. 25; also Ehrenfest and
Breit, Zeits. f. Physik, 9, 207 (1922); J. C. Slater, Phys. Rev. 26, 419 (1925).
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that lines with a common initial state are either all weak or all strong,
presumably indicating that paucity of molecules in the original state
(i.e. low statistical weight) rather than low transition probabilities
are the cause of weakness, unless one makes the hypothesis that all
transition probabilities associated with certain initial states are
weakened. The hypothesis (I1I) has been made by Bury® in the Fulcher
bands of hydrogen, but appears objectionable because it leads to
quarter quanta in the helium band spectrum, which we shall see are
untenable.

Relation to the Pauli-Heisenberg exclusion principle. It appears
quite certain that the oscillations in intensity are somehow ascribable
to the quadrupolar symmetry of non-polar molecules. Definite experi-
mental evidence is furnished by the often-noted fact that the alter-
nating intensities are found only in non-polar molecules. Slater’s
suggestion must thus be regarded as correct in a general way, even
though we have seen that there can scarcely be a “weak and strong”
quantization of the ordinary type proposed by various authors in the
old quantum theory. As suggested to the writer by Professors Bohr,
Kramers, and Born, and also by Heisenberg himself, it appears likely
that the alternating intensities are in some way connected with the
extension of the Pauli exclusion principle which has recently been
developed by Heisenberg in applying the new quantum mechanics to
the spectrum of neutral helium and to the differences between singlet
and triplet spectra. Pauli’®® showed that it is necessary to exclude
stationary states in which two or more electrons have identical sets of
quantum numbers. Heisenberg®” finds it is also necessary to exclude
all stationary states which can combine spectroscopically with those
excluded by Pauli. Heisenberg’s extension of the Pauli rule debars
complete spectral systems, as for instance a parhelium triplet system and
orthohelium singlet system, neither of which have ever been observed.
Possibly application of the Heisenberg procedure to non-polar mole-
cules will exclude alternate rotational states in the cases (such as the
helium band spectrum) where every other line is observed to be missing.
At any rate one may tentatively assume that anomalous intensities
are found in non-polar molecules because their high degree of symmetry

6 C. R. Bury, Phil. Mag. 50, 1139 (1925). Bury uses whole quanta, whereas the
half quanta used by Takahashi and Dieke are probably more satisfactory. The half
quanta appear to remove the oscillating deviations in frequency noted by Bury and
so may destroy perhaps the main argument for the hypothesis (III).

8 W. Pauli, Jr., Zeits. f. Physik, 31, 765 (1925).

67 W. Heisenberg, 7bid. 38, 411 (1926).
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necessitates exclusions by the Pauli-Heisenberg rule. It is to be hoped
that the exclusion principle will lessen the intensity of every other line,
rather than obliterate it entirely, in the more common instances where
alternate lines are found experimentally to be weak instead of entirely
missing. It is not clear whether this effect is more likely to result
through the exclusion principle cutting down the statistical weight of
every other state or through its diminishing the transition probabilities
of all lines having a common origin at such a state. Definite answers
cannot, of course, be given until a method is found for applying the new
quantum mechanics to the general non-polar molecule.

Quarter quanta and the Kramers-Pauli Model. A quite different
attempt to explain alternating intensities is found in the quarter quanta
hypothesis of Dieke.®® It is based on the formula (m +€)?h?/872I which
Kratzer®® and also Kramers and Pauli’® have derived for the energy
of a molecule possessing an electronic angular momentum e//27 normal
to the axis of figure. The sequence of energy levels for the ordinary
rotator with e=0 and half integral values of the rotational quantum
number is obviously the same as that given by the Kramers-Pauli
formula when in the latter we take e to be 4, 7 to be integral, and the
moment of inertia I to be one fourth as large as in the simple rotator.
The effective quantum number m +e€ is then a “quarter integer.”” The
values ¥, Z, - - -, correspond to parallel nuclear and electronic angular
momenta, and 4, &, - - -, to anti-parallel. The alternating intensities
are attributed by Dieke to the fact that the statistical weights are
different in the parallel and anti-parallel cases, but this effect probably
does not give as pronounced alterations as are observed experimentally.”

It is altogether probable that quarter quanta must be discarded for
a variety of reasons. In the first place it requires half rather than whole
unit changes in the effective quantum number 7 +e¢ in the emission
of the “P” and “R” branches, and this is hard to reconcile with the
correspondence principle.28 Another difficulty is that Kramers and
Pauli’® have shown the motion is unstable in the anti-parallel case.

There are, furthermore, serious dynamical objections to the Kramers-
Pauli model with €>0. In such a model it is assumed that when the
nuclei are at rest there is a stationary component ek/2w of electronic

88 G, H. Dieke, Zeits. f. Physik 31, 326 (1925).

69 A, Kratzer, Miinchener Akad. p. 107 (1922).

70 H. A. Kramers, Zeits. f. Physik 13, 343 (1923); H. A. Kramers and W. Pauli,
Jr., ibid., 13, 351.

7t This is noted by Dieke himself in connection with Hulthen's data in nitrogen
(Zeits. f. Physik 33, 167, 1925, footnote). :
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angular momentum which is normal to the axis of figure. Miss Men-
sing’? shows that actually, except with unlikely special orbital arrange-
ments, the forces exerted by the nuclei will cause the normal component
of angular momentum to precess” rapidly about the axis of figure.
There is, in fact, a rough similarity to the familiar precession of a
gyroscope in a gravitational field. Owing to the precession, the average
electronic angular momentum in any direction normal to the axis
of figure vanishes on the average, and from this it is easily shown that,
neglecting additive constants, the energy -due to nuclear rotation is
very approximately m2h2/8m2I instead of (m + €)?h2/8w%I. Miss Mensing
used the conventional mechanics, and Hund® states that in the new
quantum dynamics there are not even special solutions in which es0.
Consequently in the discussion of quantization and specific heats in
Sections 1 and 2 we have not introduced an electronic angular mo-
mentum e%/27 normal to the axis of figure, even though such an addition
obviously introduces no particular difficulty in the calculation, at
least with a rigid model. Dieke! has already calculated a specific
heat curve with quarter quanta, but this is not as satisfactory as some
of the other curves. .

Until recently half as well as quarter quanta were often ascribed to
the existence of an €0, for in the absence of a basis for half quanta in
the old quantum theory it was commonly supposed that # was integral
and that e=%. This was done even in bands not susceptible to mag-
netic fields, regardless of the fact that with an €0 there should be
an observable Zeeman effect (of the order 1/m times the normal sepa-
ration). Fortunately the new quantum mechanics has furnished a
natural basis for half quanta (cf. section 1) and thus made unnecessary
the assumption € =% in most cases. As noted to the writer by Dr. Mulli-
ken, the facts of band spectra still sometimes demand an €520, but this
effect is probably not due to a rigidly fastened electronic angular momen-
tum of the Kramers-Pauli type, but rather to loose coupling of the spin
axis of the electron, which makes this axis orient itself relative to the
combined nuclear and orbital angular momentum rather than relative
to the orbital alone. We then have coupling of Hund’s® type (), which

72 Lucy Mensing, Zeits. f. Physik, 34, 602 (1926). Miss Mensing also shows that in
any case it is impossible to have simultaneously a stationary normal component e4/2m
of angular momentum and a component o /27 parallel to the axis of figure. She does not
consider explicitly angular momentum due to internal spins of the electrons, but it is
not likely that its inclusion will modify the conclusions.

78 This precession is intimately connected with the existence of doublets in band
spectra. See O. Klein, Phys. Rev. 25, 109A (1925) ; also Hund, l.c.3
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gives an expression for the energy in some ways analogous to the Kratzer
or Kramers and Pauli formula.

In an important recent paper Curtis and Long™ have classified a
large number of lines in the helium band spectrum with the aid of quar-
ter quanta. The initial states for a given branch are represented either
by the series of numbers 3, %, - - -, or else by 2, %, - - -, but not by
both series simultaneously. Because of the difficulties mentioned above,
it is probable that the quarter quanta should be replaced by half quanta,
as suggested by Mecke.? This has just been done in Mulliken’s significant
new analysis™ of the electronic states and band spectrum of the helium
molecule. In each band initial (or final) states are then wanting for
every other value of the rotational quantum number, as §, %, - - -,
is replaced by ¥, %, - - - ,etc. We thus get a limiting case of alternating
intensities, in which now every other line is completely missing. Some
of the rotational quantum numbers required for the numerical representa-
tion of observed spectral terms are not exactly half integers, as € is not
always 4 in the Curtis-Long formulae, but the slight deviations are
probably due to loose coupling of the spin axes of the electrons relative
to the rest of the molecule. (cf. Hund®).

Owing to centrifugal expansion the rotational energy is not given
accurately by the formula (3) based on a rigid model, but instead can
be developed as a power series in m?. The main correction term to
Eq. (3) is thus of the form am* It can be shown that theoretically’®
a=—h1/1287 Py, and hence the nuclear vibration frequency can be
deduced from observed values of the coefficient « if the moment of
inertia I is known. The value thus obtained for v, is twice as large
with quarter as with half quanta since I and m? are four times as large
with the latter as with the former. Mecke® notes that for this reason
the use of quarter quanta destroys the regularity in his correlation of
vibration frequency with moment of inertia. More specifically, Birge””
finds that in nitrogen the vibration frequency deduced from a with
quarter quanta is twice too large to be reconciled with estimates by

‘other methods. Birge observes that this fact must be regarded as a
conclusive argument against quarter quanta.

Zeeman effect. We shall now digress to consider the Zeeman effect

“ W, E. Curtis and R. G. Long, Proc. Roy. Soc. 1084, 513 (1925).

% R. S. Mulliken, Proc. Nat. Acad. 12, 158 (1926); also especially Phys. Rev.,
Dec., 1926.

76 This is a well-known result in the old quantum theory, and the work of Fues or
series expansion of (5) shows that it also holds in the new quantum mechanics.

77 R, T. Birge, Phys. Rev. 27, 107 (1926).
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of molecules, especially hydrogen, as this subject is of some interest
itself and also may throw some light on the structure of excited states.
If there is “rigid coupling” of the spin electrons, the change in
energy produced by a magnetic field is
MOy
=D ©
where p is the magnetic moment of the molecule in the direction of the
axis of figure, ok /2w is the combined spin and orbital electronic angular
momentum in this direction, and #g is the magnetic quantum number,
which is proportional to.the component of total angular momentum in
the direction of the external field. By “rigid coupling” we mean that
the spin axes are so firmly bound that their orientations relative to the
orbital angular momentum or axis of figure are uninfluenced by the
nuclear rotation or by the applied magnetic field. Our formula (9)
differs from those given by Kramers and Pauli,”® Kemble,”® and others
in having (m?—%) in place of m2. That this is the modification re-
quired by the new quantum mechanics can be seen from the amplitude
matrices for gyroscopic molecules given by Dennison.” In Eq. (9) we
have, following Hund,? included only the contribution of the magnetic
moment parallel to the axis of figure, because the normal component
will doubtless precess very rapidly about this axis and make only a
negligible contribution to the Zeeman separation, unless perchance
there is a stationary angular momentum e%/27 normal to the axis of
figure. The existence of an €0 is very unlikely because of dynamical
difficulties previously mentioned, but would give rise to a term in the
energy proportional to eHnp/(m?—3%)Y? (if’? ¢=0) and a Zeeman
separation of the order 1/m instead of 1/m? times the normal separation.
Since by the selection principle m and ny cannot change by more
than one unit, it follows that according to (9) the spacing of Zeeman
components should be of the order 1/m? times the normal separation.
The number of components should increase and their spacing decrease
with increasing values of the rotational quantum number. Actually
no Zeeman effect is observed by either Dufour’ or Croze?® in the
Fulcher bands of hydrogen. This can only mean that the excited states
involved in the emission of these bands have no magnetic moment;
i.e., are non-gyroscopic. The question, of course arises whether the
theoretical separation might be too small to be observable since it is

78 E. C. Kemble, Phys. Rev. 27, 799A (1926).
7 A. Dufour, Ann. de Chim. et Physique 9, 361 (1906) ; J. de Physique, 8, 258 (1909).
80 F. Croze, Ann. d. Phys. 1, 63 (1913).
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of the order 1/m? times the normal. The experimental error in Croze’s
experiments, however, is only about 1/50 of the normal separation,
and so a magnetic moment could perhaps be detected unless 7 exceeded
about 7, whereas actually m is smaller for most lines observed in the
Fulcher bands. Richardson notes® that the central line of one of the
bands shows traces of a slight effect.

In contrast to the Fulcher bands, certain other lines emitted by
the hydrogen molecule have a pronounced Zeeman separation of a
quite remarkable type.” 80 In such lines the Zeeman pattern sometimes
consists of a doublet whose width is approximately (to 25% or so)
‘equal to the distance between the outer components in the normal
Lorentz triplet. The two components of the doublet are circularly
polarized, but occasionally the sense of the polarization is the reverse
of the usual, giving a positive apparent value of e/m. Lines of a similar
Zeeman structure have also been observed for a few other molecules,
notably BaCl, CaF, etc.” As mentioned by Kramers and Pauli,’®
a Zeeman pattern of this character must be due to loose coupling,8!
for we have seen in the preceding paragraph that with rigid coupling
there would be more components and smaller separations. Until the
advent of the spin electron, it was hard to see how there could be the
proper loose coupling, since electron orbits would have to be enormously
large compared to the nuclear separation in order to orient themselves
freely in magnetic fields, and even then it would be difficult to account
for the peculiar type of pattern and polarization. It is now, however,
quite certain that the electron has an internal degree of freedom,
probably due to spinning, as proposed by Compton8? and by Uhlenbeck
and Goudsmit.’? Consequently we suggest that the peculiar Zeeman
doublets found in molecular spectra are to be attributed to loose
coupling of the axes of spin rather than of the orbits themselves, since
spectroscopic data shows that the intra-molecular forces which orient
the spin axes are much weaker than those which orient the orbit. The
loose coupling may be expected only in excited states, for the force
orienting the spin axes varies as the inverse cube of the radius of the
orbit.%®

Let us assume the molecule has one valence electron with an orbit
so large that its spin axis is negligibly coupled to the molecule and so

8 J. W. Nicholson has recently discussed the pronounced Zeeman effect in some
hydrogen lines and also notes that it indicates a quite different type of structure or
coupling than in the Fulcher bands. Monthly Notices, R.A.S. 85, 449, 656 (1925).

8 A, H. Compton, J. Frankl. Inst. 192, 145 (1921).

8 Cf. L. H. Thomas, Nature 117, 514 (1926); F. R. Bichowsky and H. C. Urey,
Proc. Nat. Acad. 12, 80 (1926); J. Frenkel, Zeits. f. Physik 37, 243 (1926).
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orients itself freely in a magnetic field. The theory of the anomalous
Zeeman effect® shows that there are then two possible orientations
for the spin axis, viz., parallel or anti-parallel to the field, and that the
energy is

W=W,+2P, hoy, (10)

where wy is the normal Lorentz Zeeman separation, W is the energy in
the absence of the field, and P,= +% is the axial component of the
valence electron’s spin angular momentum, measured in multiples of
the quantum unit #/2w. The factor 2 in (10) arises from the doubly
large ratio®? of magnetic moment to angular momentum for internal
spins. We have omitted the term contributed by the part of the mag-
netic moment which is rigidly coupled to the axis of figure and which
arises from the orbital motion of the valence electron and from the spin
and orbital motions of the other, firmly bound electrons. This neg-
lected term is of the form (9) and hence much less than the contribution
2P,hwyg of the spin of the valence electron unless the rotational quan-
tum number m is small.

If there is loose coupling in both the initial and final states, then
by (10) the frequency should be approximately the same as without the
field, ar else displaced by twice the normal Lorentz value, according as
AP, is 0 or +£1. The unit changes in P, involve a semi-somersault of
the spin axis, and do not appear to be found experimentally, as in atomic
spectra a doubly large Zeeman displacement is not found in the Paschen-
Back effect, where the spin axis is oriented relative to the applied field.
This is probably because radiation is from the orbital rather than spin-
ning motion, and the precession frequency 2wy of the spin axis does not
appear in the Fourier development of the orbital motions if the coupling
between the spin and orbital motion is negligible.® It is thus probable
that we can only have AP, =0 and if this is the case there is only a small
Zeeman separation of the order wy/m?, even with the loose coupling in
both the initial and final states.

To avoid this difficulty the writer wishes to suggest that there is
loose coupling in the initial state, but not in the final, or vice versa,
so that the term 2P,hwg= +hwy in (10) is absent for one of the two
states. This hypothesis is attractive, as it gives a Zeeman displacement
having the normal Lorentz value wg, and with the central undisplaced

8 We are concerned with the theory for strong rather than weak fields. For sum-
mary, cf., for instance, J. H. Van Vleck, l.c.,* p. 241. Effects previously attributed to
the atom-core are now to be ascribed to internal spins.

8 This is probably the solution of the difficulty mentioned in note 370 of the writer’s
Bulletin.%
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component entirely wanting, as it is experimentally in Dufour’s measure-
ments on the fluorides of the alkaline earths. The observed displacements
in the doublets are not exactly wg and in certain molecules the doublets
are resolvable into quartets, but departures from the value wy must
be expected because there may be a rigidly coupled magnetic moment
in addition to the loosely bound spin moment, and also especially
because we cannot neglect entirely the coupling between the spin of
the valence electron and the remainder of the molecule. A mathe-
matical theory of this interaction will be necessary to ascertain whether
the suggestion of a loosely coupled spin in one state will explain the
anomalous polarization of some of the lines and the exact quantitative
values of the doublet separations. Our suggestion is only tentative.
It assumes one loosely coupled electron, and so appears more likely for
the bands emitted by the halides of the dlkaline earths than for those of
molecular hydrogen. The hydrogen molecule contains an even number
of electrons, whereasﬁMulliken337ascribes the alkaline earth halide bands
to odd, one—Valence-electroniwmoleculesjofithemitypeb‘}BaCl,LCaF, etc.,
instead of to the common even structures BaCl,, Cal,, etc. b EE*}?:F

If the spin axis is so loosely coupled that it can orient itself freely in
an applied magnetic field of ordinary magnitude, it is probable that in
the absence of the field its orientation is influenced by the nuclear
rotation. We then may have coupling of a type considered by Hund?®
(case b, p. 662 of his article) in which the spin axis is quantized relative
to the combined angular momenta of the nuclei and orbit rather than
relative to the orbital angular momentum alone. A sufficiently weak
field, would not, of course, be adequate to destroy this coupling and the
Zeeman separation in such a field has been calculated by Hund.®®* He
finds the spacing of components to then be of the order 1/m times the
normal Lorentz separation or considerably smaller than the distance
between the doublet components observed by Croze and Dufour. There
must therefore be a sort of Paschen-Back effect whereby the internal
coupling is overpowered and the closely spaced components merged into
a wide doublet. This transition has apparently not been observed
experimentally, but as noted by Hund, may be difficult to detect since
the internal coupling may be so weak that it breaks down completely
in any field strong enough to give a measurable’Zeeman effect.

4. ABSOLUTE ENTROPIES AND CHEMICAL CONSTANTS

The theory of specific heats is intimately related to that of chemical
constants, as both must involve the same a priori probability, moment
of inertia, etc.
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Chemical constant of a thermally monatomic gas. The formula for the
entropy of a gram-mol of thermally monatomic gas is

S=34RInT— RInp+§R+CRIn10, (11)

where R is the gas constantand C is the so-called ‘‘chemical constant”
which appears in the vapor-pressure equation and which determines the
absolute value of the entropy. We denote natural and common loga-
rithms throughout by In and log respectively. By a ‘‘thermally mona-
tomic”’ gas we mean one whose specific heat ¢, at constant pressure has
the classical equipartition value 3R for a perfect monatomic gas.
Here and elsewhere we neglect the possibility of a ‘‘degeneration”
of ¢, below the value %R, as this can take place only under extreme con-
ditions (cf. end of Section 2). The theoretical value of C determined
from quantum statistics is '

C=log[(2xm)*/2k5/2/ k3P |+log po—logo= —1.587+log(M3/2po/ o) (12)

where m is the mass of a molecule, M is the molecular weight and
P=1.0132X10°% is the value of atmospheric pressure in dynes/cm?.
The factor P~!is included in order that the pressure ¢ in (11) may be
expressed in atmospheres. po denotes the a priori probability of the
stationary state of lowest energy. In a monatomic molecule (atom)
this state is simply the spectroscopic normal state, while in a diatomic
molecule it is the state of minimum rotational quantum number, which
is occupied by practically all molecules near the absolute zero. ¢ is
the Ehrenfest-Trkal symmetry number, defined as the ‘“‘number of
orientations in space in which the molecule is statistically equivalent”,
and is not to be confused with the spin quantum number for gyroscopic
molecules used in Section 2, which was also denoted by ¢. In monatomic
molcules we may neglect the term —logo, as here ¢=1. For a ‘“‘non-
polar’; symmetrical diatomic molecules such as H, the value of ¢ is 2,
while =1 in polar, asymmetric molecules such as HCI.

Our expression (12) for the chemical constant differs from the ordin-
ary Stern-Tetrode®” formula by the presence of the additional terms
log poand —logo. These terms are not usually included, but seem to be
demanded with any rational application of quantum statistics. The
theoretical necessity of adding the term log p, appears to have been
first suggested by Shottky3® and especially R. H. Fowler,®® and its

87 H. Tetrode, Ann. der Phys. 38, 434 (1912); O. Stern, Phys. Zeits. 14, 629 (1913).

88 W. Schottky, Phys. Zeits. 22, 1 (1921); Ann. der Physik, 68, 481 (1922); also
particularly Phys. Zeits. 23, 9 (1922).

8 R. H. Fowler, Phil. Mag. 45, 32 (1923); 1, 845 (1926).
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possible utility in explaining experimental results has recently been
stressed by Simon,?® Eucken and Fried,®! and others. This term is
probably required even in the Einstein-Bose?®® statistics, although it
has ordinarily been omitted in the latter. If the temperatures are so
low that practically all atoms are in the lowest quantum state, we need
consider only the translational degrees of freedom, but the number of
cells between two given values of the translational energy is presumably
po times that assumed by Einstein (if ¢=1) and the application of
the Einstein-Bose theory with this modification yields the extra term
log po. The Einstein-Bose gas degeneration then does not make the
entropy of a monatomic gas vanish at the absolute zero, as ordinarily
stated. Instead the degraded value of the entropy becomes Rlnp,
at T'=0 in the absence of external fields. The Nernst heat theorem
would thus not be applicable even to a monatomic gas (where o=1)
except for the fact that sufficiently near 7'=0 the application of an
infinitesimal external field makes practically all the molecules select
the one particular orientation of minimum energy, rather than all
po orientations, so that the effective a priori probability might then
be 1 instead of po. The term due to the symmetry number o is less
easily deduced than log po, but its necessity can be seen from the
statistical work?? of Ehrenfest and Trkal, Partington, and R. H. Fowler.

In monatomic gases there is as yet no exact quantitative experi-
mental evidence for the additive term log:$, in (12). For discussion
of the data, and references, the reader is referred to a very complete
recent paper by Simon.?® Some of the most satisfactory data confirming
the Stern-Tetrode formula is for He, A, and Hg,? and here the addi-
tive term vanishes since the normal states of these atoms are S-terms
with po=1. This perhaps explains why the Stern-Tetrode formula is
so often given and accepted in unmodified form. In the alkalis there
are two orientations for the normal state in a magnetic field, so that
the additive term has the value log 2=.3. Simon®° shows that revised

9 F, Simon, Zeits. f. Phys. Chem. 110, 572 (1924).

91 A. Eucken and Fried, Zeits. f. Physik 29, 36 (1924).

92 P. Ehrenfest and V. Trkal, Proc. Amsterdam Acad. 23, 162 (1921); J. R. Parting-
ton, Phil. Mag. 44, 988 (1922); 46, 329 (1923) ; R. H. Fowler, 7bid. 45, 1 (1923), especi-
ally p. 32.

These writers do not express their results in the form (12). Instead they deduce
Eq. (15), but (12) is easily derived from (15), as we show after (15).

% The values for Hg, however, are rather high, as Simon (Zeits. f. Phys. Chem.
107, 279, 1923) finds C to be .08 larger than required by theory and Rodebush and
Dixon (Phys. Rev. 26, 851, 1925) find C to be .19 larger. The latter state the discrepancy
is within the experimental error but Simon claims an error of only .06.
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data of Ladenburg and Minkowski for Na and K and of Scott for Rb
and Cs give chemical constants very nearly .3 in excess of the Stern-
Tetrode value. On the other hand Rodebush and Devries* recently
find a constant for Na only .08 in excess, and estimate their experi-
mental error to be but .1. Simon shows that the chemical constants
for several other elements, notably Woh!l’s values for Cl, Br, and I,
are .5 or more higher than the Stern-Tetrode values, indicating a
po#1 in these substances, but the data are scarcely adequate for
quantitative inferences concerning the magnitude of . .
Chemical constant of hydrogen at low temperatures. Eqgs. (11) and
(12) can be applied to a diatomic gas only if the temperature is so low
that rotational quanta are not excited. This condition is realized
experimentally only in hydrogen. Here the most accurate experimental
value of C is probably that of Simon,% who finds C=—1.114.03,
which agrees® within the limits of error with the unmodified Stern-
Tetrode value —1.59+3 log 2.016=—1.13. This is consistent with
(12) only if the terms log po and —log o cancel. Since o=2 in H,,
such a cancellation would require that the a priori probability of the
lowest rotational state be 2, as emphasized by Fowler.?? Also as the
a priori probability is in general 2m, the whole quantum values 1, 2, « - -
would needs be assigned the rotational quantum number 7, yielding
a specific heat curve of the type (¢) discussed in Section 2. Unfor-
tunately we have seen in Sections 1 and 2 that it is doubtful whether
such whole quanta are allowable in the new quantum mechanics.
It is notable that the Nernst heat theorem applies if we use whole
quanta in non-polar molecules and half quanta in polar, as then
po=0=2 in the former and py=0c=1 in the latter, so that in either
case the additive term log (po/o) vanishes but this may well be only
a spurious argument for the whole quanta. If in hydrogen we assumed
the half quanta m=%,3%, - - - (case d, Section 2) we would have
po/o=% and C= —1.43 if the symmetry number ¢ is retained,®” while
with half-quanta commencing at m=3% (cases b and ¢, Section 2),

9% W. H. Rodebush and T. Devries, J. Amer. Chem. Soc. 47, 2493 (1925).

% F. Simon, Zeits. f. Physik, 15, 307 (1923).

% Eucken, Karwat, and Fried,197 on recalculating Simon's data and using somewhat
different heats of vaporization find C=—1.09+.02 which does not agree with the
Stern-Tetrode value —1.13 within their estimate of the experimental error. There has
been considerable controversy between these writers and Simon?® regarding whose
value of Cis more accurate. In his last paper Simon claims to find a numerical error in
Eucken’s calculations.”

97 F. Simon, Zeits. . Physik 33, 946 (1925).
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po becomes 3 and C= —.95. Neither of these values for C agrees at
all with Simon’s.?8

At this point it must be emphasized that the experimental value
C= —1.11 is deduced from vapor pressure measurements on the as-
sumption that the Planck extension of the Nernst heat theorem can
be applied to the solid phase, so that the entropy of the latter can be
taken to be zero at T'=0. This assumption is, however, scarcely
more or less admissible than the unmodified Stern-Tetrode formula
for the gaseous phase. Instead, it appears more satisfactory to assume
that at 7'=0 the entropy of the solid phase is

S=RInp,— Rlne, (13)

where p, is the a priori probability associated with the normal state
in the solid. The need of the term R In p, was first suggested by
Shottky?® and has also been mentioned by Simon,*, Eucken and Fried,®!
and others. None of these writers introduce a symmetry number o,
for the solid phase, but I see no reason why there may not be such a
number for solids as well as gases, since solid molecules subject to
inter-molecular forces can probably to some extent, at least, be re-
garded as limiting cases of gas molecules subject to strong external
fields. Of course there can be no free rotations in a true solid, but
nevertheless there may be degrees of freedom and quantum numbers
corresponding to those associated with rotations in a gas.

If we admit (13), the effective chemical constant appearing in the
vapor pressure equation is not the constant C appearing in the absolute
entropy of the gas according to (11, 12), but instead can be shown to
be Cett=C—log(ps/os). Then according to Simon’s data Ce:, not C,
has the Stern-Tetrode value in hydrogen, and this simply means that
the symmetry number and minimum a priori probability have the

98 On the basis of his theory of ultimate rational units, G. N. Lewis has proposed the
value
C =log[k /?m3 *8x5 ] 15 %’ /2P] = — 1.66+log M? /2 (129)
for the chemical constant. (See, for instance, Lewis and Randall, Thermodynamics,
p. 456. Lewis does not give his result in the form (12’), but (12’) is readily deduced
from his expression for the absolute entropy and his relation connecting ¢, %, and c.
Cf. Dushman, Phys. Rev. 21, 623, 1923. We here denote the electronic charge by e,
not e, as e=2.718 in 12’.) In hydrogen Eq. (12’) gives C=—1.20 which does not agree
with experiment nearly as well as the Stern-Tetrode value —1.13. In getting (12'),
Lewis assumes that an undetermined numerical factor has the value unity. He mentions
that this factor might possibly be some other ‘‘simple number.” If his theory is to be
reconciled with (12), this number must be 15pye®/2/23 277 /26 which is not particularly
simple but is nearly unity if po/e=1. This coincidence perhaps explains why (12')
is often in approximate accord with experiment.
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same ratio in the gaseous and solid phases, making Cess equal the
first log in (12). Since it is not unlikely that in hydrogen ¢=0,=2,
we can thus have po=1 (case d, Section 2) without contradicting
vapor pressure measurements if also p,=1. Similarly the effective
chemical constant Cess of sodium might have the unmodified Stern-
Tetrode value if there are two equally probable orientations for atoms
in the solid state, but this seems unlikely in view of the magnetic
moment or polarity of alkali atoms.

We have seen in Section 2, cases b and ¢, that there is some evidence
for half quanta in hydrogen commencing with the value . According
to the above, this is consistent with Simon’s data if p,=3. It is easy
to grant two configurations of equal energy in solid hydrogen, as con-
figurations obtained from each other by rotation through 180° are
statistically equivalent owing to non-polarity. It is, however, hard to
imagine the three positions of sensibly equal energy which are required
if p,=3. Their energies would have to agree to within less than 103
volt to secure virtually equal probabilities at Simon’s lowest measured
temperature 7’=11°. Only one or two configurations might be oc-
cupied at the absolute zero, and, as noted by Simon,®® there would then
be an unobserved anomaly in the specific heat of the solid between
the T=0 and T=11° since the specific heat would show a sharp
maximum at the temperature of transition from one or two to three
configurations. In support of the possibility p,=3, we may cite a
very interesting recent paper by Pauling and Tolman,® in which
several orientations of equal energy are considered possible in a super-
cooled liquid but not in a crystalline solid, in accord with Lewis and
Gibson’s!%! observation of larger entropies for the former than the
latter. On the other hand the solid hydrogen produced experimentally
is probably to some extent crystalline, and Professors Darwin and
Fowler inform the writer that for the crystal as a whole the symmetry
number is unity. Of course it may be different for a single molecule,
but it is uncertain how far individual molecules can be quantized in a
crystal. Unit symmetry number in the solid would destroy all agree-
ment with experiment if po=3 unless the symmetry number is omitted
in the gaseous phase. It is, however, not certain how far symmetry
numbers should be employed in statistical problems, although in
some cases their necessity is unavoidable. We have already in Section 2
seen the difficulties connected with Ehrenfest and Tolman’s attempt

9 F. Simon, Zeits. f. Physik, 31, 224; 33, 946 (1925).

100 1., Pauling and R. C. Tolman, Journ. Amer. Chem. Soc. 47, 2148 (1925).
101 ] ewis and Gibson, #bid. 42, 1529 (1920).
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to introduce the symmetry number into the quantization. At any rate
any inferences about the chemical constants of gases made from vapor
pressures seem rather uncertain until we have a clearer insight into
the exact significance of symmetry numbers or a more complete
statistical theory of the a priori probabilities of molecules in solids.
On the whole, the most conservative interpretation of the experimental
situation in hydrogen is probably simply that the minimum a priori
probability is the same in the solid and gaseous phases.

Chemical constant for diatomic gases at high temperatures. If the tem-
perature is high enough so that the rotational, but not the vibrational,
degrees of freedom are excited, the specific heat of a perfect diatomic
gas is ¢,=%R and its entropy per gram mol is

S=%RInT— Rlnp+%R~+C'RIn10. (14)
The corresponding chemical constant C is
C’'=log[(2mm)3/2k7 /2872 / h5Pc | = 36.81+log(M3/2I/s)  (15)

where I is the moment of inertia. Eq. (15) was obtained independently
by various authors, and differs from an early formula of Sackur!0?
in the inclusion of the symmetry number. Egs. (14) and (15) may be
obtained in a simple manner from'(11) and (12), or vice versa, by
noting that the total entropy (14) is the sum of the entropy (11) for a
thermally monatomic gas and the rotational entropy

T
Sr=f ¢ dInT. (16)
0

This integral is easily-evaluated by a method given by Tolman and
Badger.1® We shall assume a rigid molecule so that the specific heat
given by Eq. (1) is all rotational. We substitute in (16) the value (1)
for ¢, change the variable of integration from T to p=1/kT, and
integrate by parts. Thus it is easily found that

Sv=R(nQ— pdlnQ/dp)} (17)

At the lower limit the expression in parentheses is simply 1% R In p,,
while at sufficiently high temperatures we may find the value at the

102 O, Sackur, Ann. der Physik, 40, 67 (1913).

18 R. C. Tolman and R. M. Badger, J. Amer. Chem. Soc. 45, 2277 (1923). A some-
what similar procedure has also been given in papers by Planck, (Verhd. d. D. Phys.
Ges. 17, 418, 1915) and Rotszajn.2!

104 The calculation is most simply made by assuming the additive constant in the
energy to be so normalized that the energy vanishes at T'=0. This is legitimate as we
have seen in Section 1 that this constant does not affect the rotational specific heat.
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upper limit by replacing the summation in (2) by an integral in a
well-known way. Under very general assumptions!® this procedure
gives

O(T) =8x2TkT/ 12, S,/R=1+In(8x2Tk T/ h?po) (18)

from which (14) and (15) readily follow. Special instances of the formula
for S, have been given by Tolman and Badger and others.

Chemical constant of hydrogen at high temperatures. Vapor pressure
measurements cannot be employed to test directly the validity of
Eq. (15) for hydrogen, as rotational quanta are adequately excited
only far above its critical point. The value of

C'—C=(S,—R—RIn T)/RIn10
can be calculated from observed specific heat data by graphical evalua-
tion of the integral in (16) with Eucken’s values of ¢,. This has been
done by Eastman!% and by Eucken, Karwat, and Fried,!” who thus
find C’—C= —2.60. On the other hand the theoretical value of C'—C'is

C'—C=log(8w2Ik/h?po) = 38.40+1log(I/ po), (19)

as is seen on subtracting (12) from (15). Substitution of the value
C'—C=—2.60 in (19) gives I=1.0poX 1074 gm. cm.? Unfortunately
in comparing theoretical and experimental values of C’—C, Eucken,
Karwat, and Fried use the Sackur formula!®? for C’ and the unmodified
Stern-Tetrode formula for C. They thusget I=1.0X10"*". This value
of I is quoted by Schrédinger?” in support of his type of specific heat
formula (d, Section 2) which yields a lower moment of inertia 1.4 104!
than most of the other theoretical specific heat curves. The value
I=1.0X10"*! appears to me clearly erroneous because the factor p
is omitted. The theoretical calculation of C or C’ involves some
rather abstruse statistical questions, but the determination of C'—C
is relatively simple for it involves only the evaluation of (17) with Q
defined by (2). The result is (19) regardless of whether whole or half
quanta are used, provided only the molecule be considered rigid.
Lessheim!” suggests that there is an uncertainty log 2 in the theoretical

106 The asymptotic formula (18) for Q(T) is valid equally well with whole or half
quanta and either with or without exclusion of the state m =0 or m=%. It holds with
any a priori probability of the form 2m--a, where a is any number independent of the
rotational quantum number m. In the new quantum mechanics a is zero at least in
polar molecules such as HCI, but the value of a is immaterial as regards Q(T) since it
givesi® only a term proportional to T¥/2which can be omitted. If every other state is
excluded (case ¢, Section 2) our formulas, however, must be modified, asa term —RIn 2
must then be added to Sy and —log 2 to C’.

108 Eastman, J. Amer. Chem. Soc. 44, 1008 (1922).
107 Eucken, Karwat, and Fried, Zeits. f. Physik, 29, 1 (1924); 32, 150 (1925).
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formula for C’—C, but with this I cannot agree, as Eq. (19) is based
only on simple specific heat theory and so the question of a symmetry
number, etc., cannot enter. The comparison of theoretical and ex-
perimental values of C’— C in hydrogen consequently does not furnish
any new criterion for determining the moment of intertia other than
that already found in specific heats.® With whole quanta the minimum
a priori probability is 2 and then the moment of interia deduced from
C'—C is 2.0X107*! gm. cm? (not 1.0X107*! as usually stated), which
agrees closely with Reiche’s value 2.10X 104! or Kemble and Van
Vleck’s value 1.98X10*! deduced from a specific heat curve of type
(@), Section 2. With the half quanta m=%, 3, - - - (case b, Section 2),
we have po=3 and Eucken’s value of C'—C then gives I=23.0X107%},
while Hutchisson finds that I=2.99X10%! gives the best specific
heat curve of type (b). The agreement of the two methods of estimating
I is not a particularly crucial test, as the ability to give the proper
value of C’—C and hence the integral in (16), i. e., the proper area
under a curve, is not nearly as exacting a test as the representation
of the specific heat curve itself.

In distinction from the above considerations, accurate measurements
of the dissociation equilibrium of hydrogen would furnish an in-
dependent method of determining C’ and hence the moment of intertia.
Existing dissociation data does not appear adequate to warrant any
definite conclusions, although Simon?®® has discussed some of Wohl’s
explosion experiments in a preliminary way.

Chemical constants of other diatomic gases. Except for hydrogen,
the specific heat of a diatomic gas is generally %R, or more, even below
the critical point, and Eq. (15) can then be tested directly by vapor
pressure measurements in cases where the vibrational specific heat is
negligible. Comparisons of the theoretical values of the chemical
constant or of absolute entropies with experiment have recently been
given for several gases by Urey, %8 by Tolman and Badger,® by Cox, 1
and by Eucken, Karwat, and Fried,%” all using in the theory the mo-
ments of intertia deduced from band spectra. The paper by Eucken
and colleagues in particular surveys the experimental data very care-
fully. We shall not discuss the numerical results, for they do not yield
any definite conclusions, except that Eq. (15) does not hold if solid
phases are assumed to have zero entropies at T=0. As emphasized
by Cox, the one case of really satisfactory agreement is that of nitrogen.
Eucken and colleagues conclude that the best experimental value

108 This is also noted by Urey, J. Amer. Chem. Soc. 45, 1445 (1923).
109 R, R. S. Cox, Proc. Cambr. Phil. Soc. 21, 541 (1923) ; 22, 491 (1923).
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of C’ for nitrogen is —.114.05, while Cox, on making an independent
calculation from Eucken’s data concludes that experimentally ¢’ = —.13.
Assuming that nitrogen has the moment of inertia 14.2X107%° de-
duced from band spectra, the theoretical value of C’ given by (15)
is —.16. Omission of the symmetry number =2 would entirely
destroy this excellent agreement.

It may perhaps be well to call attention to minor revisions in the calculations of the
various authors which are necessary if we accept the statistical theory of Ehrenfest
and Trkal, Partington, and R. H. Fowler, all®? of whom agree on the value (15) for the
chemical constant.

Urey, also Badger and Tolman assume that at very low temperatures the chemlcal
constants of diatomic gases conform to a formula?® of Lewis which is nearly the same as
the unmodified Stern-Tetrode formula, instead of to (12). The main revision for their
calculated entropies is thus the addition of the term Rln(po/s). From this it can be
shown that Urey’s entropies Sugs, also those calculated by Tolman and Badger for their
cases V and VI must be increased by RIn2+.3 =1.7 for polar molecules but by only .3
for non-polar molecules. Here the term .3 is merely the difference between the Lewis
and Stern-Tetrode absolute entropies. Tolman and Badger endeavor to draw conclusions
concerning the form of the a priori probability #» in (2) from a study of chemical con-
stants at temperatures at which rotations are fully excited. According to the statistical
theory of Ehrenfest, etc., this cannot be done, as p, does not enter in Eq. (15). If their
calculations for their cases I and III are given the proper corrections, the numerical
results are the same as for their cases V and VI, modified as above. Cases II and IV
are probably untenable.

Eucken, Karwat, and Fried use the Sackur formula for C’ in which the symmetry
number is absent, although they mention the possibility that such a number should be
included. Consequently according to Ehrenfest, etc., the logarithms of moments of
inertia calculated from chemical constants on p. 34 of their paper should be increased
by log 2=.3 for non-polar molecules. This is indicated in their discussion, where it is
noted that the symmetry number does not in general improve the agreement with
experiment.

Cox’s treatment is based on Fowler’s statistical theory, and so contains a full allow-
ance for symmetry numbers, etc.

.

A difficulty perhaps even more serious than the conflict between
moments of inertia deduced from chemical constants and those de-
duced from band spectra is the fact that chemical constants calculated
from vapor pressure measurements do not agree with those calculated
from dissociation equilibrium. ‘This has been particularly emphasized
in a recent paper by Eucken and Fried,®! as well as in the article by
Cox. To avoid this disagreement Eucken and Fried suggest that the
Nernst heat theorem is not of universal validity and that at =0 the
entropy of a solid may equal R In p, instead of zero (cf. Eq. (13)).
Here, as previously, p, denotes the a priori probability of the normal
state in the solid phase. The experimental values of the chemical
constants C’ or C for the corresponding gaseous phases are then to
be increased by log p, in order to leave unaltered the effective chemical
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constant appearing in the vapor pressure equation. We have already
briefly discussed on p. 1014 the possible theoretical justification for such
a procedure. Eucken and Fried find that most of the discrepancy be-
tween vapor pressure and dissociation measurements can be removed
by assuming that p,=2 for H,, N,, I, NO, CO, CH,, but that p,=1
for O,, HCI, HBr, HI, CO,, H;O, NH;. They also indicate one or two
other possible schemes. These empirical values for p, yet await an
adequate theoretical justification, as there is no obvious reason why
some of the gases belong to the category p,=2 and others to p,=1.
Also Eucken and Fried’s conclusions have been questioned by Simon??
on the ground that the experimental evidence is inadequate. We may,
however, note that most of the gases for which they suggest p,=2
are of a non-polar character, and this may possibly have something
to do with the fact repeatedly emphasized in Section 2 that the simple
rotator theory used in HCI, etc., cannot be applied to non-polar mole-
cules. We have seen that there is some evidence that in such molecules
the minimum value of the rotational quantum number is$ instead of %,
and this'might imply a larger value of p,, possibly p,=3. Also Pauling
and Tolman!? have noted that in supercooled liquids there may be
several configurations of sensibly equal energy, giving a large p,,
and we may add that more configurations might perhaps be expected
with non-polar molecules because the orientation has less influence
on the energy. If a symmetry number ;=2 is introduced for non-
polar molecules in the solid phase, the larger a priori probability would
in part be offset by the term —R In 2 (cf. Eq. 13) and we would then
require p,=4 instead of p,=2 to make So=R In 2 for H,, N, etc.
as in Eucken and Fried’s scheme given above. According to this scheme
we would have for hydrogen gas C=—1.114log2= —.81. This can
be reconciled with Eq. (12) only if the minimum a priori probability g
for the gas is 4, or if the symmetry number o is omitted. The value
po=4is scarcely conceivable (much less so than p,=4) and the omission
of the symmetry number in the gas is questionable since the statistical
theory for this number is much more firmly founded in gases than
solids. We have seen in Section 2 that there is some evidence for po=3,
but this would increase C by log £ =.18 instead of by .3 as proposed
by Eucken and Fried. Their increased value of C’ for nitrogen is
consistent with (15) only if the symmetry number o is omitted or
if the moment of inertia be given an unlikely value considerably greater
than that obtained from band spectra, whereas we have seen that
without Eucken and Fried’s modification there was excellent agreement
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in this particular case. In short the correlation of experimental and
theoretical chemical constants is at present in a decidedly chaotic
state.

The writer wishes to thank Professors Bohr, Darwin, and R. H.
Fowler, and also Dr. G. Breit, for the opportunity of discussing with
them certain parts of this paper.
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