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THE HYDROGEN SPECTRUM IN THE NEW
QUANTUM THEORY

BY CARL ECKART*

ABSTRACT

The Born and Jordan matrices representing the "coordinates" of the
hydrogen atom are calculated. The model is that of an electron revolving
without rotation about a positive nucleus. The computation is based on a
method developed independently by the author and by E. Schroedinger.
HaLf quantum numbers appear in the formulas for the matrices. It is stated
without proof, that they also enter into, the formula for the relativistic fine
structure. This will necessitate the consideration of a more elaborate model
for the hydrogen atom (the rotating electron of Uhlenbeck and Goudsmit).
The intensity ratio of the two brighter components of H is calculated and
found to be 10:2.1 in contradiction with the observed 10:8. For Hp the cal-
culated ratio is 10:3.6, and the observed 10:9. The discrepancy is too great
to be accounted for by the incompleteness of the model, and points to a
difficulty in the Born and Jordan theory.

SCHROED INGER' and the author, ' independently, have developed
a method for calculating the Born and Jordan matrices. The method

is based on an equation proposed in two earlier papers by Schroedinger. '
In this paper it is proposed to apply it to the determination of the
matrices which are supposed to represent the hydrogen spectrum.

The simple model of an electron revolving about a positive nucleus

will be the basis for the calculation, in so far as any model is involved.
The possibility that the electron itself may be in rotation will not be
considered, 4 though it is believed that it will be necessary to make this
assumption if a satisfactory account of the fine structure is to be obtained.

The fundamental equation of the theory of the hydrogen atom is,
according to the work of Schroedinger (Ref. I):

h' e'——6'p+ ——g /=0
8~'m r

where rn and e are the mass and charge of the electron and 8'the energy
of the stationary state. Schroedinger has discussed, in a very elegant

National Research Fellow in Physics.
' Schroedinger, Ann. der Physik /9, 734 {1926) (communicated March 18, 1926).

This paper will hereafter be referred to as Ref. II.
' Eckart, Proc. Nat. Acad. 12, 473 (1926) {communicated May 31, 1926); Phys. Rev.

28, 711 (1926). The last paper will be referred to as Ref. A.
' Schroedinger, Ann. der Physik 7'9, 361, 481 (1925), hereafter cited as Ref. I.
' Uhlenbeck and Goudsmit, Nature 11'7, 75 (1926).
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manner, the solutions of this equation which are to be considered as
physically admissable, so that it will be sufficient to quote his results.

These solutions correspond to values of W in (1) which are given by

2m'me 4

/=1, 2, 3,

These values are recognized as the Bohr energy levels. The solutions
themselves are

O'=8 1t( nl, r)P„"(cos0)exp(fm @)

where r8@ are the usual polar coordinates. The functions P„arethe
functions associated to the Legendre polynomials, and m and n are
integers, m ranging from —n to +n.' The quantity 8 is an arbitrary
constant, whose value will be determined later.

The function y satis6es the equation

d dx 8m-'m—"'—+ —()r '+ '
) — ( +1)jx=o

dr dr h'
(4)

and may be represented by the integral

rn i+n g n—l

x(rrl) =—exp (sr) s —— s+-
27ri pl pl

which is to be evaluated along a closed path, in the complex plane, which

encircles the point s= —I/pl. The quantity p has the value k'/4s'me'.

By Cauchy's formula, this integral reduces to zero when n &l, and to

(6)

when n (I. In (6), th e quantity s is to be given the value —1/pl after the
differentiation has been carried out.

PRELIMINARY FORMULAS

In the next section, we shall require certain integrals, which will be
discussed here, so as not to break the continuity of the later steps. The
first integral is

,
t r'X(~l)x(nA)dr

Jp

I t is readily deduced from (4), by partial integration, that it is zero unless
I =)). In this last case, formula (6), together with the formula

' Cf. Byerly, Fourier Series and Spherical Harmonics, p. 195.
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yields
a) P

x"e "dx= m!/(a "+'),a) 0

1 1 )+It
s —— y ——

r' [x(el) 1'dr =
~0

(2~+2) ~ g~ '—"—'
7 pi

[(i—I—1)!]' »~r (—s —r)'"+'
= [c(ml) ]', (7u)

(
an—r q! g»+& [(f 1)(q ])]s+e

[(p+1)!] ~f'~v (—1' —n) '+'

Using Leibnitz's formula

(
P! 8& 2 88

Bx .=e n!(p—n)! Bx" Bx—

expression (8) reduces to

where both s and r are to be replaced by —1jpl after the differentiations
have been carried out. Substituting p =l—n —2, q = 2n+2, t =ply,

g =pty this becomes

(
Rn—1 (p+q) t g m+1 ~ (!-1)(-~-1)

(v —1)"+'——
[(p+1)!]' ~n ( 1 n) "—+'+—'

The factor involving i is

(0 1)' '— (!.-1)-+ (p+ q+1)
( l. ~) @+q+& ( l. ~) y+ a+&

(10)

Substituting g= —1 in this, since all the differentiations have been
carried out, and the result into (10), we have as the value of the integral

(p+q) 1 Pn+&

(—~+1)"=
[(p+1)!]' ~v "+'

1 1
(2)' '

q
— 2(p+q+1)—
(1—n) (1—n')

To reduce this further, me evaluate

8 &+' (q + 1)&

(1 —n)

for g = —1. By Cauchy's formula, this is

(p+ 1) ' (v+1)"«
—= (p+1)!—(1—n)

2+i (q+ 1)&+'(1 —g) Bg
(12)
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2 '" '2l(l+n)![.(nl)] =—
pl (l—n —1)!

(13)

A second integral which will be needed is

Evaluating this for zl = —1 and substituting in (11) gives as the value of
the integral:

A(n, l)) = f r'x(nl)x(n 1)()d—r
0

which becomes, on substituting (6),

(2n+2) ( B ( n (—B
— & n—

A(n, D) =
(l —n 1)!(X——n)! Bs By

(14)

z —— y ——

( s y) zr&+z

It has not been possible to effect any essential reduction of this expression,
but its numerical value may be obtained from the expansion of (14):

2

" " ' " ' ('( +&+ +(('(I(.4 (n (lX) = (1+n)!(X+n —1) ! P
=o z(=p cz!(X n cz)!(2n 1+cz)!

(—.',)"'"
P!(1—n 1 —P)!(2n+—1+/)!

which is readily obtained by carrying out tl;e differentiation.
The value of the constant 8 is to be determined in such a way that the

matrices are Hermite. The author has shown (Ref. A) this is equivalent
to the condition that

((l(znnl)(l( eizzl)dz(= 1—
J J (1~)'

where the integral is to be extended over all space.
Since this integral may be separated into the product of three, and it is

readily seen that

8 =1/ [~&2z. c(nl)D(nzn)] (16)

6 The appearance of a negative sign in this formula is a consequence of the use of
the function exp(im@) instead of the more usual sin or cos. The former notation has
certain advantages for our purposes, and is permissible if the convention that P ~ =P„~
is agreed upon.
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where c (nl) has the value given by (7a) and (13),while

pn /2 (n+m)! 2
[D(mn) ]'= ! [P„"(cos9)]'sin9de=

r/2 (n —m)! 2n+1

Certain formulas relative to the functions P„will also be needed'.

(2n+1)cosep„"= (n —m —1)P „"+,+(n m)P—„+,

(2n+ 1)sinH'„"= —(n m—+1)(n—m+2)p„+,+(n+m 1)—(n+m)P",'

(18)
p ~pl pmy &

These functions also constitute an orthogonal set:

~

~

m/2

P„P„sined0=0;n~v.
n/2

CALCULATION OF THE MATRICES

(19)

Since three quantum numbers enter into the function f, the matrices
will have six indices, three, rnnl, for the initial state, and three, @vs, for
the final state of the atom. There will be a matrix for each of the rec-

tangular coordinates x, y, and z. However, it will be more convenient
not to calculate these matrices, but rather those corresponding to
x+iy, x —iy and s. These will be denoted by R(mnl, yves), and S(mnl,

yves), and Z(mnl, @vs), respectively.
The calculation of R will be carried out in detail. It is defined by

(Ref. A and II)

R(mnl, ljvX) =J'J J'r'(x+iy)p(mnl)p(@vs)dv (20)

where the integral is to be extended throughout all space. Since x+iy
=r sin 0 exp(i$), this integral is the product of three:

1 2

expi(m+1 p)ydi-
27l p

1 +".
sin20I'„ I'„4d0 (21)

D(mn)D(pv) 3
and

QO

r'x(nl) x(vX) dr
c(nl) c(vt ) p

The first integral is zero except when p, =m+5 and then has the value
unity. Hence the second need only be evaluated for @=m+1, and its

~ I am indebted to Professor Epstein's notes for these formulas. They are due to
C. Neumann, but the reference is not available.
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value is readily obtained by multiplying the third of (18) by sin 8 P„+'
and integrating. From (19) it follows that it is zero except when v =n+ 1

and from (1'7) that it is equal to

when v =n+1
and

when v =n —I.

1 D(m+1 n+1)
2n+1 D(mn)

—1 D(m, +1 n —1)

2n+1 D(mn)

(22)

Hence the'third need only be evaluated for v=n+1 and is readily seen

to be

whenv=n —1

when v =n+1.

A(n, D,)

c(nl) c(n —1,X)

A (n+1,Xl)

c(nl) c(n+ 1,X)

(23)

where A is the integral (14). The conclusion is that R(mnl, @vs) is zero

except in the cases included in the formulae

1 D(m+1 n+1) A(n, lX)
R(mnf m+ 1 n+ 1 X) =——

2n+1 D(mn) c(nl)c(n —1,X)

—1 D(m+1 n —1) A(n+1, Xl)
R(mnl m+ 1 n —1 X) =

2n+1. D(mn) c(nl)c(n+1, ) )

(24)

.The matrices S and Z may be computed in the same manner. Writing

A (n, flj.)
Z(nn) =

c(nl) c(n —1,X)

and substituting for D its value, the result is that all the terms of the
matrices are zero except the following, in which the-substitution k =n+ &

has been made:

R(mnl, m+ 1n+ 1 X) = (k+m+3/2) (k+m+-,')
—',J(k+-,', Xl)

k(k+1)

R(mnl, m+1n —1X)=— (k —m ——',) (k —m —3/2)
—,'X(k ——', , 9,)

k(k —1)
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S(mmf, m 1e—+1 X) =—

S(mef, m —1e —1).) =

Z(mef, mN+1 k) =

(k —m+3/2) (k —m+ —',)—. -,'J(k+x„hf)
k(k+1)

(k+m —-', ) (k+m —3/2)
-,'Z(k —-'„f)

k(k —1)

(k+m+-', ) (k —m+ —',)

k(k+1)

(26)

(k+m —-', ) (k —m ——,')
Z(mal, m e 1X—) = s — — —,'J(k —-', ),1&)

k(k —1)

Were the half quantum-numbers not used, the symmetry which

is very evident in (2'I) would be quite obscured. This notation also
brings out the Heisenberg "square, " $'=k(k+1), which is so character-
istic in the description of the Zeeman effect.

DISCUSSION OF THE MATRICES

According to the original definition of the matrices, each term of the
matrix represents the amplitude of a partial oscillation of the electric
moment of the atom. The matrix term Z(mud, @vs), for example, repre-
sents the s-component of the amplitude of a partial oscillation of fre-

quency (1/k) (lf x —W&). Using a somewhat mixed terminology, it is the
amplitude of the oscillation due to a transition from the state mal to the
state iv).

The formulas (26) therefore show that only those transitions in which

m changes by +1 or 0 and k by +1 actually occur. When ns does not
change, only the matrix Z has a non-zero term, and the oscillation has
therefore no x or y component —the light emitted is linearly polarized,
in the usual sense of the term in spectroscopy. When nz changes by 1 the
R matrix has the non-vanishing term, and since R corresponds to x+iy,
this represents emitted light which is circularly polarized. The change
of m by —1 results in light which is also circularly polarized, but in the
opposite sense.

These polarization rules correspond to those for the three components
of the normal Zeeman effect, and a preliminary treatment of this effect
shows that the separation is also given, in this theory, by the usual

formula, the number m playing the usual role. There are still several
fundamental questions to be answered before the discussion of this
problem can be completed, however.

The quantum number k which changes only by + 1 is evidently the
azimuthal. This identification is rendered certain by a calculation of the
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relativistic fine-structure (subject to the same uncertainty of theoretical
interpretation, however, as the Zeeman effect). The additional term-
value is

Rn' l 3
Av= ————,R=Rydberg constant,

l4 k 4

which is identical in form with the expression given by the Sommerfeld

theory. Since k in that theory takes on the values 1,2,3. . . . , while in

this theory it takes the values -'„-.. . . , however, the levels will not
coincide. This difference is apparently just that which is required by
the theory of the rotating electron. s

Thus much for the identification of the quantum numbers. Since the
intensity of the light emitted by an oscillating dipole is proportional to
the square of the amplitude, the expressions (26) furnish the means of
calculating this quantity. Since the atomic system under consideration
is degenerate, the total intensity of the light of a given frequency emitted
will be proportional to

1~l 1
2 2 (28)

The factors —,
' appear because the R and S terms represent circularly

polarized light.
An approximation to the relative intensity of the components of the

relativistic one structure may also be obtained. The intensity of the line

corresponding to a transition from ~) to kl will be

I(kl, xX) = Q (-'8'+-'5'+Z') (29)

Carrying out the summation, it is found that

I(k —1 l, kX) = (k ——,') [J(k——',Xl) I'
I(kl, k —1 X) = (k ——',) [J(k —-', lX) j'

all others being zero. On calculating the quantities I for II„(t= 2, X = 3),
the intensities of the three components are given as proportional to

I(1/2 3, 3/2 2) = 879p'

I(3/2 3, 1/2 2) = 9.42p'

I(5/2 3, 3/2 2) = 45.2

These values are not in accordance with observation. According to
experiments of W. V. Houston, the actual ratio of the intensities of the
two brighter components is more nearly 8:10 than 2:10. For H~

' Note added Oct. 23, 1926. Cf. Schroedinger, Ann. d. Physik 81, 132 (1926).
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I(1/2 4, 3/2 2) = .146p'

I(3/2 4, 1/2 2) = 1.64p'

I(5/2 4, 3/2 2) =5.88p'

whereas observation yields 9:10for the ratio of the two brighter.
In how far this lack of agreement is to be laid to the general theory,

and how far to the model on which the calculations are based, is not
certain. The model is certainly incomplete, as is shown by the energy
levels of the fine-structure predicted by this theory. The rotation of the
electron, which is expected to remove this discrepancy, is also expected
to predict a fourth component whose intensity is included in that of the
fainter of the two components observed. It does not appear likely,
however, that its intensity will be sufficient to account for all the differ-

ence.
This theory, so far as its determination of the energy levels and

selection principles is concerned, is unimpeachable. It must be em-

phasized, however, that the identification of the matrix terms with

dipole amplitudes constitutes an independent hypothesis.
It is a pleasant duty to acknowledge my indebtedness to Professors

P. S. Epstein and H. Bateman for much valuable assistance, and to
Mr; H. Hicks, who very kindly checked the numerical computations.
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