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THE FLOW OF LIQUIDS THROUGH CAPILLARIES

BY N. ERNEST DORSEY

ABSTRACT

A simple theory of the flow of a liquid from a reservoir, through a capil-
lary, into a second reservoir is developed, and the conclusions from it are shown
to accord with the observations of Bond and of Poiseuille, and with a quali-
tative study of the flow by means of colored streams. It is shown that, for
viscosimeters of this type, the common interpretation of that term (with
coefficient m) in the viscosimeter equation which is frequently called the
kinetic energy correction is entirely incorrect. That term is an inertia correc-
tion; it does not arise from any loss of head attendant upon the imparting of
kinetic energy to the liquid, but solely from a progressive change in the dis-
tribution of the flow in the exit reservoir. It is not the correction which was
considered by Hagenbach. For ideal conditions, m is probably equal to
unity. At very low velocities, the distribution of the flow in each reservoir is
independent of the velocity, and consequently the inertia term vanishes;
at this stage the Couette correction is 2e, twice what it is when the distribution
in the exit reservoir is changing. From Bond's data, it is found that e =0.573r.
At a certain velocity, simply related to e, the distribution of the flow in the
exit reservoir begins to change, the inertia term appears. Bond found that this
occurs when the Reynolds number is 10. Under certain stated conditions,
the initial distribution of flow can be retained to a much higher velocity;
in these cases the inertia correction does not enter, and pt is independent of the
velocity. There are indications that for very short tubes pt ceases to be linear
in the velocity before the flow in the tube becomes turbulent. An explanation
is offered. Changes in the terminal configurations affect both the Couette
correction and the inertia correction, and the second may be markedly affected
by changes in the size and form of the exit reservoir. As commonly used, the
subdivided tube method for determining e is entirely unreliable.

~HE problem to be considered is the nature of the How of aliquid from
a large reservoir, through a cylindrical capillary of circular cross-

section, into a second large reservoir. It will be assumed that the free
surface of the liquid in each reservoir is great as compared with the
sectional area of the capillary, that the edge at each terminus of the
capillary is sharp and smooth, that at each end of the capillary the
terminal face is normal to the axis of the capillary, and that the radial
extent of this face, in every direction, and all other distances from the
terminus to the wall of the reservoir are severally so great that the dis-
tribution of the fiow of the liquid is essentially the same as if they were
infinite.

This problem is of much interest in itself, and it is also of prime
importance in the theory of the capillary viscosimeter. The equation
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for the How in such viscosimeters is usually written in one of the following
equivalent forms.
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where p, is the coeS.cient of viscosity, p is the over-all driving pressure
(the algebraic sum of the hydrostatic pressure, arising from the elevation
of the free surface of the liquid in the entrance reservoir above that in the
exit reservoir, and the excess of the pressure just below the free surface
of the liquid in the entrance reservoir over that just below the free surface
in the exit reservoir), t the time required for the volume V to How through
the capillary of length l and radius r, p the density of the liquid, e the
Couette correction, m a numerical factor (usually taken as 1.12), and
v the average velocity of the liquid at any cross-section of the capillary.

The term involving m is generally called either the kinetic energy
correction or the Hagenbach correction; and it is interpreted as a sub-

tractive correction to be applied to pt to cover a loss of head arising from
the imparting of kinetic energy to the liquid. Such interpretation is

entirely wrong, for it is evident that the conditions of the problem are
such that all of the work done by the pressure is expended against
viscous forces; there is no loss of head due to other actions. The liquid

starts from practical rest at the surface of one reservoir, and reaches the
surface of the other with a velocity which is essentially zero; if the areas
of the two free surfaces are the same, then at the end of its journey the
liquid has exactlythe same kinetic energyas it had at the beginning.
This has been pointed out by several writers, but its truth has not been

generally recognized, probably because no satisfactory explanation of
the origin of the term has been offered and no satisfactory picture of what
actually occurs has been proposed.

For any given velocity of eIIIux, the total work expended against
viscous forces may be conceived as made up of three terms: One repre-
sents the work which would be performed in the capillary if throughout
its length the fiow were exactly the same-as that at the central section
of a very long capillary of the same sectional dimensions; another repre-
sents the amount by which the actual viscous work performed between
the surface of the entrance reservoir and the central section of the tube
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exceeds half the work done in the capillary, computed as in the preceding
case. This may be called the entrance work, or entrance correction. The
third represents the corresponding term for the exit reservoir, and may
be called the exit work, or exit correction. Each of these corrections may
be expressed in terms of the length of the capillary within which the
same amount of work will be done in the same time. Let these lengths be
denoted by 8; and S„respectively. Then

8p, V
pt = 1+8;+8,

err'

Eq. (4) has exactly the same form as Eq. (3).
The amounts of work corresponding to 8; and S.depend solely upon the

relative velocities of adjacent portions of the liquid, and the same is
true of the work done in the capillary. If the How is steady, the entire
volume of the liquid may, in imagination, be divided into a large number
of elementary tubes of f1ow; and, so long as the distribution of these tubes
remairis unaltered, the relative velocities of the adjacent portions of the
liquid throughout the system will depend solely upon v, and will vary
proportionally to it. Hence, se long as the distribution of the tubes re-
main unaltered, the values of 8; and 8, will remain unaltered, and Pt will

remain constant no matter how great v may become. But if either 5; or 8,
vary, then Pt will vary. It is such variation that gives rise to the m term
in Eqs. (1), (2), and (3). The changes which occur in the distribution of
the tubes of How in the exit reservoir can be readily followed if a colored
liquid is allowed to discharge into clear water. When the How is exceed-
ingly slow, the colored liquid oozes out of the capillary, and Rows away
in all directions, forming a slowly growing, nearly hemispherical cap
seated against the end of the tube. As the velocity is slowly increased,
this condition persists for a time; but presently, while the velocity is
still very low, the cap is seen to move bodily from the end of the tube,
developing a stem. As the velocity continues to increase, the stem
lengthens, the cap increases in size and takes on a mushroom form, the
rim of the cap acquires the appearance of a vortex ring, the whirls become
more and more pronounced, until further regular development is inter-
fered with, either by the surface of the liquid or by the walls of the
reservoir. By using clear water in the entrance reservoir, and introducing
colored liquid by means of a capillary pipette, the tubes of flow in that
reservoir also were studied. There was no indication that the distribution
of these tubes changed as the velocity was increased from a very low
value to one corresponding to a long jet in the exit reservoir. The change
appeared to be exclusively in the exit reservoir.
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The m term does not arise from any loss of head resulting from an
imparting of kinetic energy to the liquid, but solely from the inertia of
the liquid, from its tendency to preserve the direction of its velocity.
The term is much more properly described as an inertia correction, than
as a kinetic energy correction. Certainly it should not be called the
Hagenbach' correction, because the case he was considering was quite
different. In that, the liquid discharged into a gas, and the pressure
which entered into the equation similar to Eq. (1) was that between the
entrance reservoir and the outlet of the tube. In that case, the kinetic
energy of the issuing stream was actually thrown away; that portion
of the work done by the pressure was not expended in viscous work done
between the boundaries at which the pressures were measured. - But in

the case here considered, there is no such discarding of kinetic energy,
but merely a temporary storage of energy in that form. The correction
considered by Hagenbach does not apply to the present case.

1Vlost of the attempts to determine the quantity e in Eqs. (1), (2),
and (3) are of little value, largely on account of assumptions based upon
the false interpretation of the nz term. In fact, only Bond's' data appear
to be at all satisfactory for the purpose, though he did not so use them.
Using very carefully made, thick walled, cylindrical tubes having circular
lumens and square-cut ends with sharp edges, Bond determined the
value of 5;+6, for tubes of different radii and for a wide range of velocity
and of kinematic viscosity (p/p). He found that below a certain velocity,
corresponding to Reynolds number P(=2psr/p) =10, 5;+h, is inde-

pendent of v, and equals 1.146r. He does not state explicitly how the
sum varies at higher velocities, but by scaling the figure reproduced in

his paper, it is found that from 8= 10 to, about, R = 700, the sum

increases linearly with v, d(6;+5,)/ds being 0.98pr /8p, with an un-

certainty of perhaps 2 percent. The numerical factor, 0.98, corresponds

exactly to m in the viscosimeter equation. For R )700, the slope de-

creases, at first rayidly and then more slowly, finally approaching asymp-
totically the value corresponding to no=0. 735.

Poiseuille' also worked most carefully with thick walled tubes which

had square-cut ends, and of which at least the exit terminals had sharp
edges. He divided his observations into two classes. Into one he placed
those for which pt seemed to be independent of the velocity; into the
other, he placed those for which pt varied markedly with the velocity.
For the latter, the variation is linear in v, except for the presence of

' Hagenbach, E., Pogg. Ann. 109, 385-426 (1860).
Bond, %'. N. , Proc. Phys. Soc. London, 33, 225 (1921);34, 139—144 (1922).

~ Poiseuille, Mem. des Savants Strangers, 1'Inst. de France, 9, 433—543 (2846).
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certain abnormal observations. The values of nz deduced from Poiseuille's
observations are collected in Table I. The C-tubes are plainly abnormal,
and the observations with tubes D"', D'", E", and F' are very erratic.
For the others the average is m=1.04; The differences between the
values for the several tubes, as well as the difference of the mean from
Bond's, appear to be real; they probably arise from slight differences in

the configurations of the terminals of the capillaries and of the reservoirs.
It seems probable that for the ideal case of truly circular, thick walled,
cylindrical tubes with square-cut ends and sharp edges, rn = 1. The high
values of m (averaging about 1.12) usually found for capillary vis-

cosimeters, and the high value for the C-tubes are probably to be ex-
plained by irregularities in the edges, or by some other departure from
the ideal conditions.

Some of the observations which Poiseuille placed in the first class
actually belong in the second, but as l+e was very large as compared
with pr'v/8p (cf. Eq. (3)) the percent change in pt was small, and was
overlooked by him. It is customary to assume that the same is true of
all the observations of this class, but the recorded data do not warrant
such a conclusion. The observations for some of these tubes are shown

in Fig. 1; in each case the dotted line indicates the slope of the graph
which mould have been obtained had they varied in the manner generally
assumed. It is obvious that the values do not lend themselves to this
assumption. True, in each case, even the extreme variation required by
the dotted line is small, but the erratic variations are much smaller.
For these tubes, we are forced to conclude that the observations do not
follow the dotted lines, but that, to a high order of precision, pt is in-

dependent of the velocity to the very highest velocity represented by the
observations. In each case, the velocity corresponding to R=10 is
marked; it will be noticed that the constancy of pt extends to considerably
higher velocities. This appears to contradict Bond s conclusion, but it
should be remembered that these tubes were very long (l &40«), while

those used by Bond were much shorter (l(150r).
Combining the two sets of observations, it is seen that the nature «

the flow may be represented as in Fig. la; ABD represents Bond' &

observations, ABC and BD represent Poiseuille's. Above B, which cor-
responds to R= 10, there are two distinct regimes, BD representing the
preferential one. But the regime BC can be established, and when

established, may be stable. The interpretation of these observations is
not dificult, and leads to a clear idea of the origin of the change in regime.

As inertia effects vary according to a higher power of the velocity
than do the corresponding viscous ones, it is evident that, as the velocity
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is reduced, the former will presently vanish as compared with the latter.
At such low velocities, the How takes place as though the liquid were
devoid of inertia; and, in any region, the elementary tubes of Row are
distributed in such a way that the rate at which work is done against
the viscous forces is as small as possible, consistent with the velocities
of the liquid at the boundaries of that region. 4 Hence, at these velocities
both 8; and 8, are as small as possible, consistent with the value of v; and

y Fig la

Fig. 1. Poiseuille's data for tubes A' A" B' B" B"' and probably Ji indicate that
pt is independent of the velocity. Continuous lines connect the individual observations.
The three dotted lines indicate the slopes of the graphs which would have been obtained
for the A, B, and Ii tubes, respectively, if pt had varie3 in the manner commonly as-
sumed; the short vertical lines indicate the positions at which 8=10. The length of
each arrow-tipped vertical line corresponds to a change of 0.1% in pE for the adjacent
graph, except in the case of Ii for which the change is 2.0%.

Fig. 1a. Variation of Pt with the velocity. From A to B there is no variation; beyond
B there are two possible regimes, BD is the preferential one, but BCcan be realized and is
stable for long tubes and quiet conditions. If p, is the difference in pressure between the
surface of the liquid in the entrance reservoir and the exit terminus of the capillary,
and p is the difference in pressure between the surface of the liquid in one reservoir and
that in the other, then, in the region AB, p, &p; in BD, p, =p; in BC, P,)P.

a constancy of their sum requires the individual constancy of each.
Furthermore, if the two reservoirs are identical in form and size, the
distribution of the tubes will, at these velocities, be the same in each, and

8; will equal 8,. As Bond found that so long as R was less than 10,
6;+8, remained constantly equal to 1.146r, the distribution of the tubes
must have remained unaltered —must have been that characteristic of
an inertialess liquid —and 8;=5,=0.573r, which may be denoted by e.

At excessively low velocities, the pressure in the stream at its exit
from the capillary exceeds that in the quiescent liquid at the same level

~ Lamb, H. , Hydrodynamics (1st ed.), p. 537, Section 297.



FLOS' OF LIQUIDS THROUGH CAPILLARIES

in the exit reservoir by an amount p„which is equal to the viscous work
done in that reservoir per unit volume of eaux. As the veloci'ty increases,
the kinetic energy delivered by the stream to the exit reservoir presently
becomes appreciable as compared with the viscous work done in the
reservoir, and p, decreases in such a manner that p, +pe' continuously
equals that viscous work per unit volume of efHux. That is, p, +pe'
=Spv5, /r'=Spve/r' if A&10. When v becomes equal to Spe/pr', p, =0;
and if v continues to increase, p, becomes negative unless 8, increases;
that is, unless the distribution of the tubes of flow changes. When p,
is negative, a portion of the energy of pressure is transformed into kinetic
energy which is retransformed into pressure energy as the issuing stream
does work against the back pressure arising from the negative value of

p, . Such pointless transformation and retransformation seems to be
avoided whenever possible. When, with slowly increasing v, p. becomes 0,
the distribution. of the tubes of flow begins to change. Until this velocity
is reached, the tubes of flow are distributed over a hemisphere resting
against the end of the capillary; now this hemispherical cap moves out,
developing a stem, and, if the reservoir is large so that the advance of
the cap and the attendant changes are unimpeded, the change proceeds
at such a rate as to keep p, continuously equal to zero. That is, 6,
remains always equal to pvr'/Sp, which is exactly the value of the m term
in Eq. (3) when m=1.

If the preceding description is correct, the point 8 (Fig. 1a) should

correspond to the velocity v=Spe/pr'. Putting into this expression the
value of e(=0 573r) de.duced from Bond's observations, it is found that
the resulting Reynolds number' is 9.2, while Bond's value for this point
is 10. The two values agree as closely as one should expect. It should be
remembered that Bond's determination of the position of B is entirely
independent of his determination of 2e.

The preceding assumes that the changes in the velocity are so slow
that the distribution of pressure is always that which corresponds to an
unaccelerated How; otherwise, p.+pv' will not be equal to Spv5. /r'. If
the acceleration is positive, p, is greater than it would otherwise be.
In particular, if there is a considerable positive acceleration as the
velocity passes through the value corresponding to B, the kinetic energy
of the incoming liquid is not sufficient to enable it to get out of the way
of the following liquid, even when it keeps to the most favorable dis-
tribution of the tubes of flow—that corresponding to very low velocity.
Hence, P. continues positive, and the original distribution persists. Thus,
this distribution of flow may be established at a velocity corresponding
to some point I' beyond B. Having been so established, the distribution
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of the flow in the reservoir can change to that corresponding to the line
BD (Fig. 1a) only by decreasing the velocity of efflux by a Rnite amount.
Such decrease involves the slowing up of the entire column of liquid in

the capillary. This can not be done instantly, but only progressively,

by the propagation of a series of compressional waves through the column.
As these waves are damped by the viscosity of the liquid, a given ampli-

tude at one end of the capillary will produce no appreciable effect at the
other if the length of the capillary exceeds a certain amount. Hence a
flow corresponding to BC may be stable in relatively long tubes, and
under very quiet conditions.

For tubes of circular section, it can be shown' that the amount a
wave is damped while traveling the length of the tube is determined by
the value of the dimensionless quantity pP/pksr', where s is the velocity
of sound in the liquid, and ) is the wave-length. Unless X is simply
related to l, the effect of successive waves will not be cumulative. In the
case of Poiseuille's observations, as well as under the usual conditions
obtaining in viscosity measurements, the mechanical disturbances are
not simply periodic, but are very heterogeneous. Under such conditions,
the component which is fundamental to the tube is of greatest importance
and is automatically picked out by it. Hence the quantity which deter-
mines the damping of the important constituent of the disturbance is

D =pl/psr'

If, for a given series of tubes, the corresponding fundamental con-

stituents of the disturbance were all of the same intensity and persisted
for the same number of oscillations, a definite, limiting value of D would

mark the division between those tubes for which flow of 'the type 8C
was stable, and those for which it was not. But if certain of these funda-

mental constituents were more intense, or more persistent than others,
they would be more effective, and for the corresponding tubes a larger
value of D mould be required to insure stability of the BC type of flow.

For weak, or brief constituents, the reverse mould be true. Furthermore,
the intensity and other characteristics of accidental disturbances are
subject to large fluctuations; these will cause marked variations in the
limiting value of D. Hence, in general, this limiting value will not be
very definite, and it is probable that even under the most favorable
conditions certain of the data will seem to be exceptional. Nevertheless,
it seemed desirable to see whether Poiseuille's data would give any
indication of a definite limiting value of D. For certain series of his tubes,
both types of How of water at 10'C were observed; the values of 1/r'
for the adjacent members for which the types of flow differed are given

~ Rayleigh, Theory of Sound, Vol. 2, p. 331.
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in Table I. It will be noticed that, excepting the F-tubes, the smallest
value for which the flow was definitely of the BC type is 73,000 cm ',
and the greatest for which it was definitely of the BD type is 51,000 cm ',
or possibly 73,000 cm '. These limits are surprisingly close. Taking
60,000 cm as the limiting value, the limiting value of D is 0.005. The
data for the F-tubes are distributed erratically, but the BC type of flow

seems to persist to R=300 if l/r'=36, 000 cm ' (F), and possibly even
if l/r' is as small as 19,000 cm '(F'). For larger values of R, the observa-
tions with tube J".appear to correspond to points lying between BC and
BD, but much nearer the former. This may result from the regime
changing from BC to BD during the course of a single observation; such
a change might well result from a violent jar. The observations with
F' lie fairly close to BD when R)300; this suggests, that during the
observations at low velocity the significant mechanical disturbance was
weaker than it was when the high velocity observations were taken.

What of the distribution of the tubes of flow in the entrance reservoir?
Does this remain unchanged, as our observations with colored liquid
seemed to indicate? As any change from that corresponding to very low

velocity would result in an increase in 5;, Bond's observation that pt
remains independent of v so long as R does not exceed 10 shows that for
this range of v there is no change. Poiseuille's observations indicate that
there is no change in pt while v varies from a value near R = 10 to R = 104
(tube A"), to R=117 (tube 8"'), and possibly to R=300 (tube F);
consequently in this range there is no change in 6;. Within this higher

range, the flow with Bond's tubes and also with many of Poiseuille's was
of the type corresponding to BD; as there gems to be no reason for
expecting that the type of flow in the entrance reservoir will change at
exactly the same time as that in the exit reservoir, the absence any break
in the BD graph within this range indicates that, within this range, 5; is
changeless even for the BD type of flow. Furthermore, Bond's curve
shows that BD retains its linear character until R= 700, and, with one
exception, Poiseuille's observations give no indication that the linear
character of BD changes before the condition of turbulence is closely
approached. Whence, it appears that the distribution of the tubes of
flow in the entrance reservoir remains unchanged throughout the range
of velocity for which the flow in the capillary is steady, provided that the
capillary fulfills the ideal conditions stated at the beginning of this article.

But what of the exceptions? Bond's curve shows that for R&700 the
slope of BD progressively changes, becoming smaller; and Poiseuille's
observations at high velocities with tube A"' lie below the BD graph
corresponding to low velocities. Tube A"" was very short (1=0.1 cm,



l(r =14), and so were several of Bond's tubes; it seems probable that the
non-linearity of.BD is intimately connected with the shortness of the
tube, but until additional data are available it is not possible to speak
with certainty. It may possibly arise somewhat as follows. One might
well anticipate that the velocity of the entering liquid will not be fully

adjusted throughout the cross-section until after the liquid has advanced
a certain distance 0; into the capillary, and that cT; will increase with Rr.
Likewise it would not be surprising to discover that the distribution of
the velocity begins to change before the exit is reached, and that the
distance o, from the exit to the point where this change begins, increases
with Rr. In these terminal regions of adjustment, the kinetic energy
per unit volume of: the liquid is less than it is in the central region of
complete adjustment; hence, after these regions have met one another,
after 0;+o..has become equal to the length of the capillary, the kinetic

energy per unit of volume delivered to the exit region will be less than
pv' and consequently 8. will be less than its normal value pvr'/Sp Hence. ,

the rate of increase of pt with v will begin to decrease, probably per-

ceptibly, when 0;+0, has become equal to l. It may be for this reason
that the graph for short tubes ceases to be linear at some value of R
which is smaller than that corresponding to turbulent flow in long tubes.
But if such is the case, then at low velocities, R(10, 0;+cr, must be
exceedingly small, - as Band. found. that the difference between the value
of 6;+0, for a perforated plate (l =0.0075 cm, //r=0. 102) and for long

tubes lay within the. limits of his experimental error, being only 0.014r.
Furthermore, the increase of 0';+0., with v can be accompanied by only
a very small increase in the rate of dissipation, otherwise pt could not
have appeared to remain independent of v to such high velocities as was

observed for some of Poiseuille's tubes.
Although the data we have considered give no indication of any change

in the distribution of the tubes of flow in the entrance reservoir, the fact
that the kinetic energy per unit volume of liquid in the capillary is
pv'—exactly. .twice what it would be were the velocity the same over the
entire transverse section of the tube —suggests that with increasing
velocity a change in distribution will probably occur. Reynolds' observed
that in no case did the first suggesf. .ion of turbulence occur nearer the
entrance than 60 radii. tA"hatever its significance, it is interesting to note
that when 'the velocity is such that, in transferring a unit volume of

liquid from the surface of the reservoir to a point 60 radii beyond the
terminus, the viscous work done is equal to —,'pv', the Reynolds' number

' Reynolds, O., Scientific Papers Vol. 2, p. 77; Phil. Trans. 1F4, 935—982 {i883).
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is 1938; Reynolds' observed that turbulence set in when R lay between
1900 and 2000.

Departures from the ideal conditions mentioned at the beginning of
this paper will, in general, be accompanied by changes in the amount of
viscous work performed at the termini, and by changes in those quantities
which depend upon this work. Hence, in practice, we should expect the
values of 6;, 6„e,m and the value of R at which 5, begins to vary with v,

to vary from case to case. There seems to be no satisfactory data which

will enable one to form an idea of the magnitude of such variation in

5;, e, and the critical value of R, but there is a considerable amount of
data bearing upon the rate of variation of 6. with the velocity. These
indicate that for actual viscosimeters approximating to the ideal con-
ditions, the variations of 6, with the velocity are such that m averages
about 1.12, and varies from very near 1.00 nearly to 2. Probably these
variations are caused mainly by variations in the configurations of the
terminals of the capillaries. But it is obvious that changes in nz will

also occur if the reservoir is so constructed as to impede the development
of the jet. If, in its advance, the head of the jet meets an obstruction,
the uniform development of the jet will be impeded, the work done in

the reservoir will be increased, the pressure in the jet will rise, and the
observation will lie above the line BD (Fig. 1a). Whether beyond this
point the line will have the same slope as BD depends upon the nature
of the obstruction. In some cases it is to be expected that the slope will

be greater. On the other hand, if the reservoir is small, it is conceivable
that the distribution of the tubes of How may presently become such that
no further change with the velocity is pos'sible. Then, pt will cease to
increase with v, and the graph will become parallel to AC, but will lie
above it.

Several have attempted to derive the value of the quantity e in Eq. (1)
from two sets of observations; one made with a long capillary, and the
other with the same capillary cut into a number of sections which were
then connected one to another by short lengths of tubing of considerably
greater internal diameter. The computation was based upon the assump-
tion that each of these connecting tuLes acted as an exit and as an

entrance reservoir, each of these functions being in every way the same
as that performed by the corresponding, large, terminal reservoir. This
required that the viscous work done in each connecting tube should be
equal to the sum of those done in the same time in the two terminal
reservoirs. But in the small, intermediate reservoirs, the distribution of
the tubes of How entering the capillary was surely not exactly the same

~ Reynolds, O., Scientific Papers, Vol. 2, p. 536; Phil. Trans. 186, 123-164 (1895);
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as in the large entrance reservoir; and the distribution of the tubes
emerging from the capillary was certainly quite significantly different
from that in the large exit reservoir. Hence, correct va1ues of e could not
be so obtained.

As already stated, the only satisfactory data from which e can be
obtained are those of Bond. These lead to the value 0.573r, which we
have denoted by e. This is for the BD regime (I'ig. 1a); for the region
AB and for the BC regime, in which the inertia term vanis'hes, the
Conette correction (1.146r) is twice as great as it is for the BD regime.
This i'8 because the inertia term arises from the variation in 8.; and the
minimum value of 5, is e.

TABLE I

Certain data for Poi seui lie's tubes.
(See pages 837 and 841.)

Tube

g iii
giv
gv
gvi
g vii

+Biv

B'
+Civ

Cv

1.038
1.061
1.072
1.04e
1.061
1.074
1.038
1.16g
1.81

**Mean

Tube

ODiii
QDgv

+alii

Fi
Fii
Fi"
Fiv
Fv

1 038

0.79
1.52
0.24(?)
0.51
1.048
0.97e
1.098
0.914

gii
8"i
Ciii

+Diii
QF
*F (?)

l/1000r2
BC

102 A"'
73 B'"

134 *Civ(?)
208 *Div(?)
36 *F'(?)
19 F

50.8
28
55.5
73
19
9 4

* Observations are very erratic. For Bi" m lies between 1.01 and 1.14; some points
of C" indicate m is as low as 0.79; some points of D" give m =0 51**Omitting the C, D, and 8 tubes and F'.

Summary. For viscosimeters of the type considered: 1. The m-term

in the viscosimeter equation arises from progressive changes in the
- distribution of the tubes of flow. It is an inertia correction; it has nothing
to do with any loss of head attending the acceleration of the liquid, a«
is not the Hagenbach correction. It is not dependent upon the existence
of turbulence or of eddies, although the latter are frequently present,
and the former may exist.

2. Bond's data show that when Reynolds' number R &10, tffe inertia
correction vanishes and the Couette correction is 1.146r.

3. For R)10, approximately, two regimes are possible if the tube
is long and the mechanical disturbances are slight. In one, the conditions
continue the same as when R & 10. In the other, the Couette correction
is half .as great as it is when R&10, and m is probably equal to unity.



FLOP' OF LIQUIDS THROUGH CAPILLARIES

4. From theoretical considerations, it is shown that the value of R
at which the inertia correction firstappears is 16s/r, where s is the Couette
correction for the BD-regime.

5. As the velocity is increased, it is to be expected that the distribution
of the flow in the entrance reservoir will ultimately change, but there is
no evidence that such a change occurs before the flow in the tube becomes
turbulent.

6. For very short tubes, m seems to decrease at high velocities. This
may indicate that near the ends of the capillary the distribution of the
velocity over the cross-section of the tube is not quite the same as it is
at the center of a long tube; and that the length over which this abnormal
distribution extends increases with the velocity.

7. The value of the Couette correction, of m, and of the velocity at
which the inertia term first appears, all depend upon the configuration
of the terminals and of the reservoirs, and may be expected to vary from
case to case. The variation in m is of special importance in viscosimetry.

WASHINGTON, D. C.
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