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OPERATOR CALCULUS AND THE SOLUTION OF THE
EQUATIONS OF QUANTUM DYNAMICS

BY CARL ECKART

ABSTRACT

A formal calculus is developed which includes the Born and Jordan matrix
dynamics, and also the remarkable quantum condition of Schroedinger. A
method for the calculation of the matrices which is in close analogy to the
classical Hamilton-Jacobi method of solving dynamical problems is explained.
These'results have been obtained independently by E. Schroelinger [Ann. d.
Physik. 79, 734 (1926)j.

HE recent advances in quantum dynamics made by Heisenberg',
Born and Jordan, 2 Dirac, 3 and most recently, by Schroedinger, ' have

lead to various mathematical formulations of the various physical
hypotheses involved. In the present paper it is proposed to give a unified
mathematical treatment, which, though it cannot pretend to be the final
form of the theory, leads to methods of solution of the equations of Born
and Jordan, and Dirac which are much simpler than those previously
developed. Very little attempt to justify the mathematical steps by
physical hypothesis will be made. The final achievement will be the
inclusion of the results of Schroedinger in a single calculus with those of
the other authors mentioned above. This would seem to be the strongest
support which either of the two widely dissimilar theories have thus far
received.

THE OPERAToR CALcULUs IN THE CLAsslcAL THEQRY

Let q and f be numerical quantities' and qf their product This p.roduct
may be said to result from the action of the operator [q)&] on f For.
simplicity of notation we shall denote [q&&] by the single symbol Q. This
operator is not identical with g, e.g. , the operation of multiplying by two
is not identical with the integer 2. However, just as the result of multiply-
ing the integer 1 by two is the integer 2, so in general the result of applying

* National Research Fellow.
' Heisenberg, Zeits. f. Physik. 33, 879 (1925).
' Born and Jordan, Zeits. f. Physik. 34, 858 (1925).
' Dirac, Proc. Roy. Soc. A109, 642 (1925); A110, 561 (1926).
4 Schroedinger, Ann. d. Physik. 79, 361 (1926).
' Throughout this paper, the term numerical quantity will be used to distinguish

between the quantities of the classical physical theories, and those appearing in the
generalized calculus about to be developed. These latter quantities will be called,
"operators, " The numerical quantities will be denoted by lower case letters, while upper
case will be used for the operators.
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the operator Q to the integer 1 will be g; this may be expressed by the

equation Q1 =q.
To avoid lengthy explanations of the significance of equations it may

be remarked that throughout Part I, the sense of any equation will

become obvious if symbols such as Q,P or X are read as the "operation of
multiplying by the numerical quantity g,p or $."

It is possible to define the addition and multiplication of operators.
The equations

(Q+X)1= (X+Q)1=g+x
QXl = XQ1 = gx

are sufficient for this. Similarly, the symbolism Q" may be given a
meaning, and from this a large class of functions of operators may be
built up.

Beside the operation of multiplication, the operation of differentiation,

d/dx, plays an important role in analytic theory. Its relations with the
operators already defined must be investigated. Let g=g(x); then the
operator Q is a function of the operatorX: Q=Q(X). This de6nition is

identical with the previous definition of a function .of an operator, but
will not as readily permit of generalization. The result of the operation
of Q on an arbitrary function f(x) is

If we follow the operation Q by the operation d/dx, the result is

d dq df dq df—(Qf) = f+c = ——
&&

—f+Q
d$ d$ d$ „d$ d$

Since f is entirely arbitrary, it may be omitted from the equations and

the result, written in operator form, is

d$ d$ d$ dX

The symbol dQ/dX which is defined by this equation is read "the opera-
tion of multiplying by dq/dx. " This interpretation makes it unnecessary
to prove that

d(QP) dQ dP= —P+Q
dX dX dX

though such a proof could readily be constructed, and will be given when
the present simple interpretation is abandoned in the next section.

If the 2ri quantities g; and p; satisfy the equations

dpi'

BP dq; BP
d$ Bq; d& ap;
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it is fairly obvious that the corresponding operator equations are

dI';

dT

8H(PQ)

~Q;

dQ, aH(IQ)

dT BP;
(3)

Expressed in wor'ds, the first equation reads "the operation of multiplying
by dpi;/dt is equivalent to the operation of multiplying by —M'j8gi. "

In translating ordinary equations into operator notation, nothing new
is introduced. The translation involves merely a change of mental focus.
Instead of concentrating the attention on the numerical quantities, it is
directed to the operations of combining them. Since the great problem
of the quantum theory seems to be to find new methods of computation,
new operations of combining numerical quantities, it may be supposed
that this change of view-point will be of value in the development of the
theory. This value may be purely heuristic, and it may be pa@sible to
reduce the equations finally obtained to ordinary differential equations,
or at least, to equations involving only the ordinary mathematical opera-
tions with which we are already familiar. It is also conceivable, though
not probable, that this will not be possible. If this should be the case,
it will not mean that the fundamental entities of the mathematical
theory will be other than ordinary numbers. The operators (we shall see
later that matrices may be regarded as operators) will be secondary
entities in the same sense that the operations of multiplication and
addition are secondary to the numbers of arithmetic.

Ke might now proceed to consider operations of a more general class
than those considered above. It seems preferable, however, to give a
short discussion of the methods of solving the operator equations which

have already been defined. The simplest way, but the least instructive,
would be to translate them directly into ordinary equations and solve
these. In order to illustrate the new point of view, the equation

d2—+ (o'Q = 0
dT

will be solved by a less direct method. From Eq. (1) it follows that this
equation may also be written

d' d d d'—Q —2—Q —+ Q—+co'Q= 0
dt' dt dt dt'

(4a)

The problem is to find a function g(t) such that

d' d f df& d'f
&&f) 2 'I V 1+ V +"&f=0

dt)
(4b)
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for any choice of the function f(t). If the operations indicated in (4b)
are carried out, it reduces to

(d'q
'q [=O

( dt' )
which, since f is certainly not always zero, reduces in turn to

d q——+ o)2q=0
dt'

which is the result which would have been obtained if the more direct
method of solution had been used.

There is yet another problem related to the previousone, as will pres-

ently be apparent. . In the Eq. (4a), the operator d/dt may be replaced by
the operator i7 =6[q, (d/dg)]. The problem is then to find the operators
such that

HqP —28qdg+q8'jb+ a)2qg =0

is an identity in @(g). Without entering into the general theory, we try
O.S d

0q dq

where S is a function of g which is to be determined so that Eq. (7) is

satisfied. If this value of 6 is substituted into (7) it becomes on simplifi-

cation
dS d'S——+ co'q = 0.
dq

which is satisfied for all P provided that

1 (dSJ ~

—
(
—

[ + cu'q = W = const.
2 &dq)

(8a)

This is none other than the Hamilton-Jacobi equation corresponding to
Eq. (4), and it is known that the solution of the original problem con-

nected with (4) can be reduced to the solution of

dq dS

dt dq

when 5 has been determined. The operator calculus thus leads to a new

conception of the Hamilton-Jacobi theory of the solution of the equations
of dynamics.

II. THE GENERALIZATION OF THE OPERATOR CALCULUS

The definition of an operator will now be generalized; the notation

Qf will henceforth be interpreted to represent the result of any general
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way of combining the numerical quantities g and f, subject only to the
restriction that Q(f+g) = Qf+Qg In. more usual language, Qf is a function
of g and f, and perhaps also of their derivatives with respect to any
independent variable of which they may be functions. Since f is entirely
arbitrary, it may again be suppressed in the equations to be derived,
making them operator equations in the sense already explained.

In the previous section, because of the interpretation given Q as the
simple operation of multiplication by g, the multiplication of operators
obeyed the commutative law QP =PQ. In a more general calculus, this
law will not in general be valid; for Q might be [g&&], while P might be
d/dg, and these operations are certainly not commutative.

The operat'or d/dx loses its utility in the generalized calculus (though
not its existence nor its significance). It is possible to define another
operator by the relation

D,X XD = [—1X] (9)

which will replace it. The solution of equations of this type for D~ in

terms of X must be considered as one of the fundamental problems of
operator theory. We assume the existence of a solution in all cases,
though this must be proven.

If Q is a function of X, in the sense that its operation is the equivalent
of a series of operations involving the operation X one or more times,
the operation defined by

Ct—= D,Q QD, -
dX

(10)

will play a part in the solution of operator equations which is entirely
analogous to that played by dg/dx in the solution of ordinary equations. '
The laws of operation of d/dX are:

d dQ dP-( +P) = +
dX dX dX

d dQ dP—( P)= P+
dX dX dX

The proof of the first is obvious. The second also follows from the
definition.

—(QP) = D,QP QPD—
dX

' Cf. the references to Born and Jordan, and Dirac already cited. Also S. Pincherle,
Funktionaloperationen und -gleichungen Enc, Math. Miss. II A.11, or equations et
operations fonctionelles, Enc. sciences math. , II vol. 5, fasc. 1.
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= D,QP QD—,P+QD, P QP—D,
(D,Q QD—,)P+Q(D,P+PD )

dQ dPP—+Q—
dX dX

In this last equation, the order in which Q and P are written must be
preserved. From this remark it follows that there will be no rule analo-

gous to the rule for the differentiation of a function ofa numerical quantity.
If we are concerned with functions of more than one variable, say

Q& Q„,the operations analogous to partial differentiation are defined

by the relations
(12)

where the numbers 5;; are zero when i', and unity when i = j. The
compound operators 8/t)Q; defined by

BF——= DF—FD ~

7 7
8 7

(13)

are then quite analogous to the operations denoted by the same symbol
in Part I. It must again be remarked that the non-commutativity of
multiplication prevents the expression of the total derivative in terms
of the partials.

Before proceeding to a discussion of the quantum theory, the sig-
nihcance of the modified operation of multiplication must be considered.
The validity of 2)&2=4 can certainly not be called into question. The
generalized multiplication is perhaps more closely analogous to vector
than to arithmetic multiplication. The operators are compound, built
up from the elementary arithmetic operations of multiplication and
addition in an undetermined manner. In the terminology which has
been developed above, they are functions of the arithmetic operations.
The problem of the quantum theory is to determine these functions of
the simple operations so that the solution of the Hamiltonian equations
represents the observed phenomena.

A special example, having no direct application to the present subject
will serve to make this clear. The velocities of two bodies relative to an
observer on a third are readily measured. So is the velocity of one of
them relative to the other. According to pre-relativity kinematics, the
three velocities are related (provided they all have the same direction)
by the formula

~13 &12+&28

where v» is the velocity of the body 1 relative to the body 2, etc. The
sign + represents the ordinary arithmetic operation of addition. This
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formula, however, is found to be too simple to represent the observational
data accurately, and is replaced by a more elaborate one:

&i2+&23
&X3 =

&la ' &23
T+

G2

This is the usual way of stating the modification which kinematics has
undergone. An exponent of the operator calculus might prefer to state
it in another way, sa,ying that the Eq. (14) has not been altered, but that
the sign + no longer represents the arithmetic operation of addition.
Fundamentally, neither statement is preferable to the other. Neither
results in simpler numerical computations than the other, and both would

lead to the same numbers v~3 ~

The operator calculus developed above is merely a logical application
of the same ideas to the operation of multiplication. A special case of it
might have been developed by changing the significance of the sign X.
Such a calculus, having a definite geometrical interpretation, is vector
analysis. By associating with each numerical quantity its own operation
of multiplication, however, we have obtained a more general calculus.

III. QUANTUM DYNAMICS

The equations of the new mechanics have been developed by Born and
Jordan on a frankly empirical basis. Their discovery was not entirely a
matter of chance, however, but was accomplished by the aid of a principle
which has been most clearly stated by Dirac: in seeking for the new

equations, the classical equations are to be retained formally without
alteration. Only the operations by which the quantities involved are
combined are to be altered. In order to obtain the necessary freedom to
alter the operation of multiplication, the "quantities involved" were
first interpreted as matrices. Then it was shown by Born and Wiener"
that the matrices were closely related to a special form of operator, and
that the operator calculus furnished a means of calculating the matrices.
The present paper is the application of a general operator calculus to the
same problem. The significance of the operators is suggested by the
remarks at the end of the last section. It does not seem worth the trouble
to pursue any more detailed speculations at this time.

Let P; and Q; be the operators which correspond to the ciassicai

[p;X] and [g;X], where p; and g; are the momenta and coordinates of a
dynamical system. The first relation existing between the classical
analogues to I'; and Q; is the commutation law of multiplication. Accord-

~ Born and Wiener, Zeits. f. Physilr. 30, 174 (1926).
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ing to the results of Heisenberg, the corresponding relations in the new
mechanics are

h
PsQ). —QgP'= —.&';X

2~$
"

O'Q —
Q O'=O

I';I'; —E;I';=G

which also take the place of the quantum conditions.
These operators are related by the following Hamiltonian equations:

dP; d . d BH(PQ)= —I' —E—=—
dT dt dt f)Q;

dQ I d d BH (PQ)

dT dt dt BQ;

These two sets of equations are apparently sufficient to determine the
operators in terms of t and d/dt, except for a certain arbitrariness which
will be removed later by another postulate.

In the operator calculus of the classical theory, there is a relation
between the operators and the numerical quantities, as was pointed out
in the first part of this paper. It is Q1 =g. In the same way, it is possible
to define a numerical quantity related to each operator of the new theory
by a relation which has already been used by Born and Wiener:

1—E.P =P.

and in general

-QA =v.

1-P4 =f

where F is any function of P; and Q;. The numerical quantity P in the
Born and Wiener calculus has the value exp [2s'iWt/h], where W is
the energy in the nth quantum state. In the present calculus it will be
defined by the relation.

1—H(P;Q;) P„=W.

It will be seen that this is the equation published by Schroedinger in
another form, and which in addition to defining f„,serves to distinguish
a certain discrete sequence of values of ~ from all others.
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IV. THE SOLUTION OF THE EQUATIONS

The first step in the solution of the operator equations of the last
section is to find an operator 8(q,8/8g) such that the equations are
identities when 8 is substituted for d/di, and the operator Q; is assumed

to be [q;X].
Let F be any function of the operators F; and Q;. Then it may be

shown that the conditions (I) are entirely equivalent to

az
FP' —FF;=—

2rri 8er.

e~-Fe; =
2xi BP;

(Ia)

The proof is easily constructed using the method of induction. ' Hence
Eq. (II) may be written

d 2' Z—P;—P,—= (HP; —P;H)
dt dt h

(IIa)
2xz—Q;-e,—= (~e;-e;»

dt dt h

It is to be noted that this is a direct consequence of Eq. (I) and therefore
has no analogon in the classical theory.

From the form of (IIa) it is seen that the operator 8 for which we are
seeking will be

27ri
8 = —H(PQ)

h

The first part of the problem is thus reduced to finding P; such that it
satisfies the Eq. (I) when Q;= [g;X]. The solution of this problem is
not difficult; if P; = (Ir/2rri) (8/8g;) be substituted into (I) and both sides
of the equations allowed to act on an arbitrary function of g;, we get

h 8 h Bg h
&vf) — .m

= 5 f
2mi Bq; 2zi Bq; 2mi

Remembering the rule for the differentiation of a product, it is readily
seen that the equations are identities in f Hence the f.irst part of the
problem is competely solved:

2mi ( h 88= a[-
h &2+i Bq; ]

I Born, Heisenberg, and Jordan, Zeits. f. Physik. 35, 557 (1926).

(16)
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Eq. (15) 'becomes on substituting this value of 0:

(17)

which may also be written

1 2~i%

h
(18)

In the case of Keplerian motion, where

g2

B(PQ) = —[P,'+P„'+P,'] ——
2@

Eq. (17) becomes

(17a)

which is the equation derived by Schroedinger from entirely different
considerations; It is a linear differential equation of the second order,
and from the theory of such equations it is known that when S' takes on

a certain sequence of valises called the characteristic values of the equa-
tion, the corresponding solutions for P are especially simple. Schroedinger
has shown that the characteristic values of (17a) are

2m IMt.'
p 1 2 3 0 ~ ~

h2e2
(19)

which are the Bohr energy levels for the hydrogen atom.
The solution of the problem. may now be completed by making use of

a certain property of the solutions of (17) or (18) which correspond to
the characteristic values of II„.Call these solutions P„.Then it is
possible to choose them so that they have no singularities in the finite

part of the g; manifold, and vanish on its infinite boundary. Any function
subject to certain immaterial restrictions can be expanded as an infinite
series in P„.Let us expand the function

or

Pa
q = QQ (Nk)—

(20)

If this expression for q; be substituted into Q;= [q;X] and thence into
the equations (II), they will still be identically satisfied by the operator 8.



OPERA TOR CALCULUS 721

(21)h d
P(P,Qi) = ——

2gi dt
so tllat (15) becomes

The problem is now that of passing from the operator 8 to the operator
d/dl. Evidently the reasoning of the first part of this section is still valid,
and from (IIa) we deduce that

or

h dfn = 8'„
f„'2+i dt

{isa)

2iriP„=e 8'„t
h

It will be logical, from our empirical point of view, to admit only those
values of W„in (15a) which are the characteristic values for (17).

But now we are no longer free to assume that Q;= [q;X] It will

become apparent in the following that Q; is now an operator defined by
the Born and Jordan-Dirac matrices, provided that one further assump-
tion is made. Thus far the functions P„have been indeterminate to the
extent of an arbitrary factor A„which might be a function of the par-
ticular one of the sequence 9'„to which the solution corresponds. It will

now be shown that the coefficients Q(nk) defined above possess the
properties of the matrices. To do this, we return to the functions f„
defined by (17) and expand q'P„in terms of them:

q'f = QQ(»)qf = QQ(nk)Q(kf)t'ai (22)
Js kl

which yields the law of the multiplication of matrices.
Also

27ri
(~q q~)A =ZQ—(»)qA q~k. =Z — (W —W-)Q(»)A

k A, h

so that the operator 8Q —QP may be represented by the matrix 2vri jk
(Wi, —W )Q(mk) and therefore the operator 8 by the matrix

27ri (23)5'8g
h

It must also be shown how the result of the action of the operators
previously dehned on an arbitrary function can be calculated from a
knowledge of the matrices. Let f=Z„F„f„bean arbitrary function,
subject only to the restriction that it may be expanded in such a series.
Then

Qf = qf = QF„qf„=QF„Q(mk)fi,,

k Bf k Br(
Pf ———= —QF„—= QF„P(»)tfi,

27Pl 8g 27rZ rl, Bg
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provided that

(24)

The matrices of the earlier calculus were defined to have one property
which those obtained in this way do not in general possess.'they were
defined to be Hermitian, which is to say that X(nm) is the conjugate
complex quantity to X(mn). Since in the preceding, Q(nm) is a real

quantity, while P(nm) is a pure imaginary, they should satisfy the
conditions

Q(em) =Q(me)

P(nm) = —P(me}
(25)

in order to be identical with the earlier matrices. It will shortly be shown

that this condition serves to determine the functions P uniquely. The
physical significance of this condition will probably become evident only
when the theory has been placed on a more physical basis than the
present, and at the moment it need not be discussed further than to say
that it must Le related in some way with the equality of the probability
of emission and absorption (Stefan's Law).

In order to show how the condition (25) serves to determine the
constants A„,it is necessary to consider the process of expanding a
function in a series of the form ZF„Q„.Without serious loss of generality,
we may limit ourselves to the case of a single mass moving under the
action of a force which possesses the potential V(xyz). Then

Z = —(P,'+P„'yP,')r U(X Y Z)
2p

and Eq. (17) becomes
h'

p'P+ [V {xyz)—IV ]/=0
Sar'p

(26}

If the potential V vanish on the infinite sphere, and 8 have one of the
characteristic values of the equation, it may be shown that there are
solutions of this equation which vanish exponentially on the infinite
sphere. Let l(„bea sequence of such solutions, each corresponding to a
certain value of O'„. By Green's theorem we have

The right side of this vanishes from what has just been said, and on
substituting the value of g'f from Eq. (26) it reduces to
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f'P P(If- W-)
l J J P„y„d.=O

whence it may be concluded that

J ))Jt f if„ds=0 NNm

(27)=C„~=m
This gives the formal method of expanding a function in a series of P„.
For, if

fixys) = QF„iP„
then by (27),

)/f)f p.a.=c~

The matrices can now be calculated from (22) and (23), and it is found
that

C Q(vis)= t ~ qP f„dv=C„Q(isN)

where q represents either x, y or s.

r r"r» tJ". » 4-

The condition (25) will then be satisfied if and only if

C =C„
which can always be attained if we replace the functions P„by the
functions P„/QC„which are also solutions of (26).

The method of obtaining the matrices which has just been outlined
differs very little from Lanczos' interpretation of the matrix calculus
which is thus also included in the present calculus;

Before solving a special example with these methods, some discussion
of the possible physical significance of the functions P„may not be out
of place. If the independent variable in (26) be changed by the substitu-
tion S=)i/2iri log P it becomes

I (35'l ' —(9Vl ' I'35') '——."+—
I -(+I —I+ I

—
I

+«*y)=~
2p 2mi 2p, g8x& $3y) &3s)

9 Lanczos, Zeits. f. Physik. 35, 812 (1926). In a preliminary paper, (Proc. Natl.
Acad. &&, 4&3 (1926) the present author has given the solution of the simple oscillator on
Lanczos theory, as modified by some of the results of the present paper. These are
used without explanation in that place.
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and this reduces to the classical Hamilton-Jacobi equation when fi

approaches zero. The presumption is that the function S thus de6ned
has no other significance than the classical Hamilton-Jacobi function.

V. SOLUTION OF THE EQUATIONS FOR THE SIMPLE OSCILLATOR

In the case of the simple harmonic oscillator, the Hamiltonian function
has the form

1
H= —P + —@co X

2p 2

whence

h h' d' 1
+ pG0 x

2mi 8x'y dx' 2

and Eq. (26) is

h' d'ltt 1——+ -po)2x2 —W' P =0
8m'p dx~ 2

(28)

The solution of this equation has been discussed by P. S. Epstein. "
If we write x= (h/4n. pcs) .u, it becomes

/=0
du' 4 he (29}

This equation possesses solutions of the forms f(u)exp( —u'/4) and

F(u)exp(+u'/4) where the functions f and F satisfy

d'f df 2x.W 1——u—+ f=0-
du' du h 2

d'F dF 2m H/' 1
+ u————— f=0.

du' du h 2

(30)

The solution of these equations leads in general to infinite series in u,
but if I4' has such a value that (2xW/u s) is a po—sitive integer, then

both f and F are finite polynomials. Hence the sequence of characteristic
values is

"P.S. Epstein, Dissertation: Ueber die Beugung an einem ebenem Schirm, etc.,
Munich, 1914.
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The corresponding solutions of (30) are polynomials given by the re-
cursion formulae

f„p ppf—i+ppf„=0

F„2+IF„g—nF„=0
(31)

where the arbitrary constants are to be determined by the conditions

fp Fp 1—— ——fy =Fy = pp

As has been shown in the previous section, if we wish to obtain the
Born-Jordan matrices, the functions P„must be chosen so that they
satisfy the conditions.

Jt 1(„pdx =0

The first of these is satisfied by all solutions of (28) which vanish for
x = + ~ and the second can be satisfied by a proper choice of the arbitrary
constant with which each solution may be multiplied. The solution

f„(x)= Qpp!

4
2@07 Q—f„(N)exP.

h 4
(32)

4

satisfies both conditions.
The matrix for X is to be obtained by expanding xP„in terms of P&.

This may be accomplished by the general method given in the previous
section, but it may be done in a simpler manner by using the recursion
formula (31) for f„:

whence

xp„(x)=

X(ek) =0

h
I Qn $„g+ Qrp+1 f„A)I

4n pcs

= Q X(ppk)gp

X(pp, I—1) = X(pp, pp+1) = k(e+ 1)

47]'!MQ)

This is precisely the matrix which Born and Jordan give as the solution
of this problem.

The matrix I' can most readily be obtained from the relation

27ri
F(ppk) = IJ, (Wp —W„)X(ppk—)

h
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which gives
E(eh) =0 h/e+ 1

P(e, e—1)=ipcoX(e, e—1)

E(e, e+1)= i@a—)X(e, e+1)

CoNcr. UsroN

1. It has been shown that the classical equations of dynamics can be
written in operator form.

2. The operator calculus of the classical theory has been generalized
and applied to the solution of the equations of quantum dynamics. The
remarkable results of Schroedinger have been included in the same
calculus as those of Born and Jordan, and a method of calculating the
matrices of the last named authors has been developed.

The author is glad to have this opportunity to acknowledge his in-

debtedness to Professor M. Born, whose excellent lectures at.this Institute
formed his introduction to this subject; to Professor P. S. Epstein, and
to Doctor F. Zwicky, whose helpful discussion and criticism have con-
tributed much to this paper; and to his colleagues in the Seminar on
Theoretical Physics, who have reported on the various papers related
to this subject as they appeared.

CALIFORNIA INSTITUTE OF TECHNOLOGY

June 7, 1926

Dote added with Proof, September 2, 1926.—In an article dated March
18, 1926 [Ann. d. Physik, 79 734, (1926)], but which did not reach this
Institute until after the above was in course of publication, Schroedinger
has published all the essential results contained in the above paper. Since
Schroedinger s presentation is based on his wave-mechanics, while this
is based on the matrix-mechanics, it seems not without interest to publish

this even now. The author agrees, however, that the wave-mechanics

is more fundamental than the matrix mechanics, and holds out more hope
for an eventual physical interpretation of the results obtained. The con-

clusion of this paper may be stated, with Schroedinger, to be "that the
wave-mechanics and the matrix-mechanics are mathematically iden-
tical".


