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THE STARK EFFECT FROM THE POINT OF VIEW OF
SCHROEDINGER'S QUANTUM THEORY

BY PAUL S. EPSTEIN

ABSTRACT

A theory of the Stark effect based on Schroedinger's ideas is presented.
(1) Positions of lines practically coincide with those obtained in the writer' s
old theory which gave an excellent agreement with experiment. (2) Intensity
expressions are obtained in a simple closed form: (a) Components which,
in the old theory, had to be ruled out by a special postulate now drop out
automatically. (b) The computed intensities of the remaining components
check the observed within the limits of experimental error.

1. Introductory. In the rapid development of the quantum theory
during the last year, Schroedinger s concept of characteristic oscilla-
tions in the atom' represents the most significant contribution. From
the formal mathematical point of view it includes the whole of the
Heisenberg-Born-Dirac matrix theory and gives, moreover, a simplified,

practically convenient method of finding the matrices. Beyond this,
it opens new avenues of thought and seems to afford our first glimpse
of the true nature of the quanta.

It seemed highly desirable to carry' through this ingenious method
in as many special cases as possible: Accordingly, a complete theory
of the radiation of a hydrogen-like atom in an electric field (Stark effect)
has been worked out and is presented in the following sections. After
a general mathematical exposition of the method (Sections 2,3), the
positions of the components are determined to terms of the second order
in the electrical field, (Sections 4, 5), while the rest of the paper is

devoted to calculating the intensities. The positions of the lines turn
out to be practically the same as in the writer's old theory. ' The first
order terms are identical with the old expressions, the second order terms
show a very slight difference. The main interest of the paper lies, there-
fore, in the intensity formulas, which are remarkably simple in their
structure and agree with the observed values better than Kramers" in-

tensity expressions derived from Bohr's correspondence principle.
2. Outline of the mathematical problem. We have to start from Schroe-

dinger's equation

~ Schroedinger, Ann. d. Physik. 79, 361, 489, 734 (1926).
' P. S. Epstein, Ann. d. Physik. 50, 489; 51, p. 183 (1926).
3 H. A. Kramers. Roy. Danish Academy, p. 287 (1919).
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where p, and e denote the mass and charge of an electron and k is an
abbreviation for h/2s. Moreover, U is the potential energy of the
dynamical system, and E a constant corresponding to the total energy
in Bohr's theory. In the case of the combined action of a -nucleus +Ze
and a homogeneous field of the strength D, which we propose to treat
in this paper,

Ze
U = ——+ear

r
(2)

if the s-axis is taken in the direction of the field.

The first question that arises is to find a set of separation coordinates
for Eq. (1). It is easy to see that this can be accomplished by using the
same coordinates which brought the solution of the Stark effect in the
old theory, i. e. parabolical coordinates given by the representation

This gives

x = Q$ scosy, y = g$qsinp, s=
0~(g ~, O~g~ ~, 0&(p=2~

5+v
2

1 (d$' dq'l
ds'= —($+g) (

—+ —' —(+jqdq',

4 8 t' eltII 8 ( 8/1 1 t'1 1 O'P—
i ~

—i+—
i

—i+-i -+- —,
$+g ~( E ~(& ~q E ~q) 4 E( g ~q'

and Schroedinger's equation becomes

8 t' 8f't 8 r' 8/1 1 (1 i~ 8'$ p,—
I t—I+ —

I
—I+-i-+-

I

—
—,+ —,&(t+ )+2~"

a( E a(& a~ & a~& 4 &( ~) ay' 2k'

eD(P q')—
/=0

2

We make the substitution
cos

&=M(g)X(q) (s—1)y,
Sill

(6)

and get for the functions 3II and N

d'3l 1 d3II 'p, E
dP $ d 2k'

d'E i dÃ (pE+- —+( +
dq' q dg (2k'

the two plain differential equations

(s—1)' 1 peD l—
~ )a=0,

4 (' 4k2 )
(s —1)' 1 peD—+—q %=0

4 q' 4k'
4 P. S. Epstein, Ann. d Physik. 50, 495 (1916}.
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The two constants 5 and 5' must satisfy the relation

pZe2
8+5'=

k'

The main mathematical problem is to Pick the constants 8 and 5 in such

a toay that one of the intet, rais of either equation beeonMs f'tnite in the point
)=0 (resP it =0.) and vanishes for $= ~ (resP rt =. ~).

3. Conditions in a vanishing field If t. he homogeneous field vanishes,
it is not hard to satisfy the above condition. Let us simplify our ex-

pressions by substituting

3E=) ' ' "e~&X($) y=rt' ""e~"I(v)

pE
2k'

Eqs. (7) then are reduced to

t d'X f' st dX (g+ so. peD l—+i2-+-1—+ i—
dP & $) d$ & $ 4h' )

' d'V ( sl ' dI' (g'+sn peD l—+( 2a+-[ —+ ( + —„)I=0
dg' E g) dg q g 4k' )

In the special case D =0 these equations are obviously of the hyper-
geometric type and the functions X and Y can be readily represented

by power series. We shall write in this case Xp, Pp, 5p, O.p. If we denote
for short

Sp+so!p = —2&pm, Pp +s(1p = —2o!pn,

the exponents of the first terms of the ascending series are 0 and —(s —1).
We can, therefore, use only the series with the exponent 0, since the
second will give values infinite in the point, =0 (s being a positive
integer):

m rn(ni —1)
' Xp= 1 + 2ap( + (2aoh) '+

1 s 2!s(s+1)

n n(n —1)
Vp= 1 + 2apg + (2aov)'+1's 2!s(s+1)

(12)

These expansions show that our functions can be reduced to ordinary
hypergeometric functions by the following process:

Xo=lim F(—ns, P, s, —2aox).
P=oo, z= 0

px =$
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That is, we let x decrease and P increase indefinitely keeping, however,
the product Px finite. We could, therefore, starting from the representa-
tion of the hypergeometric function by a definite integral give a similar

representation for our function Xo.
The behavior of our functions in the point lx7 follows in the simplest

way from the original Eqs. (7) with D =0. We may neglect 5/$ compared
with the preceding constant term and the remaining equation is a
cylindrical one which has for $ = po the two asymptotic solutions e &/Q$
and e '&/Q$. It is easy to show that the particular solution (12), multi-

plied by ~~&' '& "e &, is equal ton either of these two integrals separately
but to a linear aggregate of both, so that, in general, it does not vanish for

and does not satisfy the requirements of last section. The only
exception is formed by integral values of m. From our expansion (12)
it is clear that for

m, n=0, 1, 2, 3, 4

the series for X, and Yp are finite and that the corresponding values (9)
of Mp and Iltp vanish for $ = pp if np is negative. The integral values of
nz and n are, therefore, the only ones we may use in our theory. The
values of Kp and np follow, from (11), adding the two equations and

taking into account relation (8)

pZ82

2k' m+ e+ s

pZ82 s+2'
2k2 1g+ s+ s

@ZAN

1

2k' l
(16)

(17)

Whence
2 k'

jvo —n02 =—
p

pZ2e4

2k2 t2
(18)

If we recall the relations from the theory of hypergeometric functions

(v —a —1)F(a, P, v x)+aF(a+ 1, P, v, *)= h' —1)F(&, P v —1 x)

(P y+1)xF(n, P,—y, x) = (y —1)(1 x)F(a, P, y —1—, x)

-(v-1)F( -1, p, 7-1, *),
dF(n, P, y, x) nP— = —F(a+1, p+1, 7+1)

dS

we can by means of definition (13) derive from them

sXp(m, s) = (s+np)Xp(pti, s+ 1)—pipXp(m —1, s+ 1), (19)

2ap/Xp(rl s) = (s+sp)Xp(sp+ 1,s) —(s+2rip) Xp(pri, s)+ripXp(pri —1, s), (20)
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(2ng)'Xp(m, s) = (s+m) (s+m+ 1)Xp(m+ 2, s)
—2 (s+m) (s+2m+ 1)Xp(m+ 1,s)

+ [(s+m) (m+ 1)+(s+2m) '+ (s+m —1)m]Xp(m, s)
—2m(s+2m —1)X,(m —1,s)+m(m —1)Xp(m —2, 3),

dXp m—[Xp(m s) —Xp(m —1,s) ] .

(21)

(22)

These formulas will be used a great deal in the following sections.
4. First order terms of the Stark egect If .the field does not vanish

the functions I, F, as well as the constants 0., 5, 8' will depend on D.
We solve the problem by the method of successive approximations
putting

0!=Ap+DAI +D 0!2 +
5= 5p+D5I. +D'52+
8' =Sp' —DS& —D'$2+
X=Xp +DXg+D'X2+
I"= I'p+DI'i +D'I'2+

(23)

Such a method was, to the author's knowledge, first applied in a similar
case by Matthieu. Substituting (23) into Eqs. (10) we get the system

d Xo & s't dXp 2o,'pm
X.=0,

d(' & $) d$

d'Xi ( sl dXi 2npm dX, 21i+sni+ 2np+ — Xi = 2ni —Xp
dP E 1)

pg+—(Xp
4k'

O'Xi ( si d X' 2n,m dXi Ki+sni
+ 2np+- —Xg

dP 0 $) d$

p8 dXp gg+ sag
+—$Xg —2n2 — —Xp

4k' df

(24a)

(24b)

(24c)

t

The equations for F result from these if we substitute n for m and change
the sign of Si, Sp and of the term with tie/4k'.

The solution of the first equation has been discussed in the preceding
section. Eqs. (24b, c) are inhomogeneous equations of the same type,
the right side being known when the preceding equation is solved. To
accomplish this solution, we will discuss the equation
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d'u ( sl du 2npm CXp(m', s)—+ 2np+ Q =
dV

(25)

We try to substitute u= O'Xp(m', s). This function satisfies Eq. (24a)
with m' replacing m. The substitution gives, therefore,

2np(m' —m)C' =C
or

C
u = Xp(m', s).

2np(m' —m)
(26)

This solution obviously satisfies all the requirements of finiteness, but
it applies only to the case m'gm. If m'=m, the solution can be found

by the method of variation of constants and it turns out to be

u=CXp Jfepap))s 1ZpX—pd( CZp—Jfepappfs 1X —
pdp

where Zp is an abbreviation for the second integral of (24a) mentioned
in Section 3. As this integral does not satisfy the conditions of finiteness
and enters as a factor into the second term of our expression, it follows

that it is not possible to satisfy the conditions offiniteness, if in (25) m ' =m.
The procedure is now obvious. We transform the right side of (24b)

with the help of relations (21) (22) into

2A]m pl+ SA1 p,8
[X p(m, s) —Xp(ni —1,s) ]—— —Xp(m, s) +—

$ 16k'np'

I (s+m) (s+m+ 1)Xp(m+ 2, s) —2(s+m) (s+ 2m+ 1)Xp(m+ 1,s)

+ [(s+m)(m+1)+(s+2m)'+(s+m —1)m]X,(m, s)
—2ni(s+ 2m —1)Xp(ni 1,s)+—m(ni —1)Xp(m —2, s) I

From the preceding discussion we know that all terms will give a con-
tribution of the required properties except those containing Xp(m, s).
The condition which we have to impose on u& and 5& is therefore, that
the sum of the coefficients of this term must vanish:

pe
g&+ (s+2m) n& —— [(s+m) (m+ 1)+(s+2m) '+ (s+ni —1)m ) .

16k'ap'
(27)

Correspondingly, the solution of (24b) is, according to (26),

Cl y pe
Xi ————mXp(m —1,s) + [ (s+m) (s+m+ 1)Xp(m+ 2, s)

Ap 64k'np' (28)
—4(s+m) (s+2m+ 1)Xp(m+ 1,s) +4m(s+ 2m —1)Xp(m —1,s)
—m(m —1)Xp(m —2, s) I .
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By analogy the formulas derived from the conditions to which F is

subject are:
yt!—g, +(s+2e)n, = — [(s+e)(e+1)+(s+2e)'+(s+e—1)e], (27')

16k'Q, p

0!y p8
V& ————e1'0(e —1,s) — {(s+e)(s+e+1)y'0(e+2 s)

Ap 64k'Q. p'

—4(s+e)(s+2e+1)Vp(e+1 s)+4e(s+2e —1)Yo(e —1,s)
—e(e —1) Vo(e —2, s)].

Adding (27) and (27') we have

3 p8
ng ——— (m —e),

16 k'O. p'

(28')

(29)

which gives directly the Stark effect of the first order because of the
connection (9) between n and the energy. However, we shall postpone
the discussion of the results until Section 8.

5. Second order terms of the Stark effect As in. the computation of
the first order terms, the condition which we have to impose upon 52, 0.2,

is the vanishing of the term proportional to Xo(m, s) on the right side of
(24c). All we have to do is to write down this part of that expression
and make it equal to zero:

ey geo!y

n~ —(m+ 1)(s+m) (s+2m+ 1)+ 2(s+m —1)(s+2m, —1)m
8k'np' 16k'np'

p2t.'2

+ {(s+m) (s+m+ 1)(m+ 1)(m+ 2) +8(s+m) (s+2m+ 1)'(m+1)
1024k 40.p5

—8m(s+ 2m —1)'(s+m —1)—m(m —1)(s+m —2) (s+m —1) ]
—93s —(s+2m) ns =0.

This can be written in the simpler form

ePC1 y—[(m+ 1)(s+m) (s+m+ 1)—m(s+m —1)(s+2m —1)]
8k20, p3

@~8~

+ —(s+2m) [4s'+9s+5+34m(s+m)] = 2(&+(s+2m)n&,
512k4np'

and by analogy

8P&y—[(e+1)(s+e) (s+e+ 1)—e(s+e—1)(s+ 2e —1)]
8k'np3

p, 282

+——(s+2e) [4s'+9s+5+34e(s+e) ]= —Pfs+(s+2e) as.
512k'ap'
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Adding the two expressions

p~e~
az = — [17(m+e+s)' —21(m e—)' 9-s'+18s+10]

1024k4np~
(30)

The consequences of this expression will be discussed in Section 8.
6. Connection of the intensities with our expressions It h.as been shown

by Schroedinger and independently by Eckart' that the components of
Heisenberg's matrix are given by the expressions

q (m, e, s; m', e', s') =A (m, e, s)A (m', e', s') .

t tjt&(m, e, s))l(m', e', s&)dxdydz, (31)

(with analogous expressions for y and z), the integration being extended
over the whole space.

We introduce our coordinates $, it, d&, by means of (3) and (4):

q, = A(m—,e&s)A(m')e'&s') ', t ($'—)t')M(m e&s&()M(m'&e'&s'&g).

COS COS
~ N(m, e, s, zt) N(m', e', s', )t) (s —1) z) (s' —1)&t&dcdztd&t&.

sin sin

We see that g, is finite only when s'=s: onIy oscillations corresponding

to s —s'=0 are polarized in the direction s.

q, (m, e, s; m', e', s') = A(m, e, s)A (m', e',—s) .
8

(32)

J (P zt') M (m, a,—s,$)M(m', a', s, $)N(e, a, s, )t)N(e', a', s, zt)d$dzt

In a similar way

1
q*,„=—A(m, e, s)A(m', e', s') .

4

COS COS COS
~ N( , m, e, t)sN)( ', m', e', )sit(s —1)z (s' —1)&p zd(dztd$

sin sin sin

The integration with respect to @ can be carried out immediately, giving
a finite value (+zr/2) only when s'=s+1. Oscittatioes polarized ie the

plane (x,y) correspond to quantum changes s —s'= +1.
~ Carl Eckart, Phys. Rev. 28, 711 (1926).
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i q, „j —A(m, e, s)A(m', e', s') .
8

t t gf, g()+gal)M(m, n, s, g)M(m', n', s+1,$) .

Il7(e, n, s, il) Ã(g', a', s + 1, il)d$dil

As to the coefficients A (m, e,s) they are defined by the requirement

(32')

1r—A'( m, es) ~ ($+vj)M'(m, a, s, f)iaaf'(e, n, s, ()d(dies=1.
4

(33)

It appears from this that the fundamental problem that must be solved,
in order to find these expressions, is to calculate the integral

R(m, o, , m', a' s) = M(mp 0.f sp $) M'(m', 0.', s, () d$.
0 0

(34)

7. Auxiliary mathematical expressions. In the developments of this
section we shall keep m' and s constant. Therefore, we can abbreviate
expression (34) by the symbol R(m). For the computations of intensities
it is a sufhcient approximation to substitute for M and N the values
Mo and No corresponding to a vanishing electric field (D=O) which

dier from the exact values only by minute amounts. For convenience of
writing, however, we shall drop the subscripts 0. We can obtain a
recurrent relation for R(m) directly from Eq. (7). If we multiply this
equation by M' = M(m', n', s, $) and subtract from the product the
equation obtained from (7) by the substitution of m', n' instead of m, n
multiplied by M = M(m, a,s,$) the result is with the help of substitution

(9) and (11)

—(s+2m') a']MM' =O.

Integrating with respect to f fram 0 to ai

(n' —a")
~

$MM'd$+ [(s+2m)n —(s+2m')a']R(m) =0
Jp

(35)

We transform $M with the help of forinula (20) which applies to the
functions M as well as to the functions Xp.

1
(s+m)R(m+1) — (s+m+m')u+ (m m')- R—(m)+mR(m 1) =0, (—36)
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n' —n l —l'
Q=—

a'+ a 1+l'
(37)

This result is in so far interesting as it shows that all the R(m) can be

computed from this formula if only R(0,n; O,n'; s) is known. This last
function, however, can be obtained directly from the definition (34),
considering that M(0, n, s) =$ ' '& "e'&

(s—1) !
R (0, 0) =R (0, n; 0, n', s) = ( —1)'

(n+n') ' (40)

Apart from this factor the expressions R(m) are, therefore, functions of
the combination u only. It is natural to introduce new notations:

1
R(m) = -U(m).

(n+ n') '

For the U(m) the same re!ation must hold

(41)

(s+m) U(m+1) — (s+m+m')u+(m m') —U(m—)+mU(m 1)=—0. (42)

A second relation can be obtained by differentiating R(m) with respect
to o. :

dR(m) d (' dX
e~~X(m, n$) M'dP = (AM'd$ + — f e~& d(—

dA dc' a d$

On the other hand from (41)

dR (m) d U(m) 1
s U(m)+(1+u) ~ ~

do! du (n+ n') '+'

Comparing these two relations and using (20) and (22)

d U(m)
(1—u') = —(s+m)U(m+1)+suU(m)+mU(m 1). —(43)

dl

From (42) and (43) we obtain a differential equation determining U(m).
It is, however, convenient to make the substitution

U(m) =u 'V(m)

and to use as independent variable the square v= n'-.

The equation then acquires the form

d'V(m) d V(m)
v(1 —v) —+ L(m —m'+1) —(s+m —m'+ 1)v]

d8 dv

+m'(s+m) V(m) =0,

(45)
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so that
V(m) =CF(s+m, —m', m —m'+1, v).

The third argument of the function must satisfy certain conditions to
give a finite value and this gives for m' the restriction nz' &m.

It remains to determine the factor C. Its dependence on m can be
obtained from the recursion (43) which shows that this part of the factor
is m!/(m —m')!. The rest follows from the requirement of symmetry
with respect to m and m' and the limiting value (40) for m = m' =0.

It follows

(s—1)!(s—1)!m!
C= (—1)'

(s+m' —1) !(m —m') !

(—1)'(s—1) !(s—1) !m!
R(m, n, m', n', s) =

(s+m' —1) !(m—m') ! (n+n')'

F(s+m, —m', m —m'+1 u')

(46)

(47)

The symmetry of this expression becomes apparent when we rearrange
it in falling powers of u':

(s+m+m' —1) !(s—1) !((s—1) ! Nm+"' (48)
E(m, n;m', n';s) = (—1)'+"'

(s+m —1) !(s+m'-1) ! (n+n')'

In the special case m =m', n =0.'

(s—1) !(s—1) !m! 1
F.(m, n; m, n; s) = (—1)'

(s+m —1)! (2n)'
(49)

8. Exfr/ieit exPressions of the intensities. To compute (32) we shall

need another integral

T(m, n;m', n') = t PMM'd$.
Jo

According to (20)

T(m, m') = t
l )I (s+m)M(m+1) —(s+2m)M(m)+mM(m —1) I M'd$.

20!J p

On account of relations (35) and (36)

J
(s+m+ m') tt —(m —m')

$M M'df = ——R(m),
o (n+n') n

(51)
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and
T

T(m, m') =
]
—(s+m+m')u (m——m')

(a+a')'u & u

2

, 1
+ (*+ + ').+( — 'i—«)-2 « -»]

According to expression (32)

8
q, (ns, m'; n, e';s) =—j T(m, m' )R(n, n') R(m—, m') T(n, n') ], (53)

where we use abbreviation

8= ——A (m, e, s)A (m', e', s)/(a+ a') '. (54)

This can be transformed into the form
. 8

q, =—
I [—(m' —e') (1—u')

Q

+(m —n)(1+u')] . R(m, m' )R(n, n') —2u[mR(m —1,m' )R(n, n')

nR(m, —m' )R(e 1,e')]—] .

A further reduction gives

pl m+n —m' —n' —2

—] [(1+u') (m n) —(1 —u') (m—' n')] U—(m, m') V(n, n')
(a+a')'

(55)—2[mV(m —1,m') V(n, e') —eV(m, m') V(e —1,e')]].
It only remains to determine 8 which is defined by condition (33).

Eq. (51) remains applicable in the case m=m', a=a', u=0 and gives

s+ 2m

j $3Pd) = —— R (m, a; m, a) .
0 2A

With the help of this relation (33) reduces to
nA '(m, n, s)

(m+n+s)R(m, m)R(n, n) =1
40,

and with the aid of (49) and (16) to

2 k (2a)'+'
A(m, n, s) =

ir uZ e (s —1) !(s —1) !
k' (a+a')"

J3=- —(1—u') '+'
4siZe' [(s—1) !]4

(s+m —1) ! (s+n —1) !
tg! n!

(s+m —1) !(s+e—1) !(s+m'—1) !(s+e'—1) (56)

m! ~!~'!~'!
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(5f)

To handle expression (32'), we have'to make use of formulas (19)
and (51). In the case s'=s+1) we obtain

kP (s+m —1)!(s+e—1)!m!e! u' ' '(1 —uP)'+'
fg

4u ZeP (s+m') ! (s+e') !m'! e'! (m —e) !(m'-e')! (59)
. [(s+m)(s+e)u' C(m, m', s+I) C(e, e', s+1)—(m —m')(e —e') .

C (m —1,m', s+ 1) . C (e—1,e', s+ 1)] .

In the case s'=s —1

If we substitute into expression (55) the functions

C(m, m') F(s+m, -m', m —m'+1, u')

this expression can be reduced to its simplest form (I=m+e+s)
k' (s+m —1)!(s+e—1)!m! e! (1—uP)'+'u' ' '

4uZeP (s+m' 1)—!(s+e' 1)—!m'! e'! (m m—')!(e-e')!
I [(1+u') ( m e)——(1 u, '—) (m' e'—) ]C (m, m') 4{e,e') (58)

—2 [(m —m') C (m —1,m') C (e, e') (e—e'—) C'(m, m') C&(e-1,e') ] ] .

k' (s+m —1)!(s+e 1)!m—!e! u' ' '(1—uP)'+'
gN=-

4uZep I (s+m' —2) !(s+e' —2) m'! e'! (m —m'+1)! e—e'+1)!
[(m —m'+1)(e e'+1—)C(m, m', s) C (e,e',s) —m'e'up@(m, m' —1,s)

C(e, e' —i, s)].
9. Position of the components Accord. ing to definition (9)

2k'
E = A 2

p

or expanding in powers of D and denoting the part of E proportional to
D by L&Z, that proportional to D' by 62K:

2k'
Ep+6gE+6pE= ——(a +a D+apD')'

JM

or
4k'

6yE = ——0!OA'yDy,

2k'
t4Z = — (a/+ 2apap) D'.

p

Substituting expressions (16), (29), and (30) and remembering that
k ~ h/2pr

3h'D
6.gE = — (m+ e+s) (m e), —

8+2pZe
(60)
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D' h
hsE= — ' —(m+n+s) 4[17(m+n+s)1

16Z4m' 2xe

-3(m —n)
2- Ps'+1Ss+10]. (61)

There can be hardly any doubt how to interpret these expressions.

According to Sections 1 and 2

s=1,2, 3,4, (62)

In the old theory we had

m~=1, 2, 3,4 . ei, e2=0, 1,2, 3

ns, e= 0, 1,2, 3,

P. S. Epstein (1.c.). By an oversight the sign of the expression was there given as
positive.

~ A. M. Mosharrafa Phil. Mag. 44, 371 (1922).
Takamine and Kokubu, Proc. Tokyo Math. Phys. Soc. 9, 396 (1919).

Therefore, m, n, s must be identified with the quantic numbers ri&, n2, n3,

respectively. It will be remembered that the restriction for the azimuthal

quantum number n»0 was an additional one, not following from the
dynamical conditions. It was introduced by Bohr for the purpose of
eliminating plane orbits, moving in which the electrons would sooner or
later undergo a collusion with the nucleus. In our new theory an addi-
tional restriction is not necessary: only (s —1)' enters into Eq. (7). The
case s=0 does not represent, therefore, a new oscillation, it is identical
with the case s=2, so that by the assignment (62) all possible states
are taken care of.

Formula (60) is, therefore, identical with the writer s old expression

for the Stark eAect whose agreement with the experimentally determined
positions is all that can be desired. Formula (61) differs slightly from

the expression of the second order e8ect given by the author' and by
M. Mosharrafa~ in that it contains the terms 18s+10 which were absent
in the old formula.

The only observation on record of the second order effect is due to
Takamine and Kokubu. These authors found a displacement of the
central perpendicular component of H in the red direction by an amount
which they estimate at 1A in a field of 130 kilovolts per cm. As we shall

see in our next section, we have for this component the following quantic
numbers of the first term m =n = 1, s =3. Because of the factor (m+n+s)'
the second term (m'+n'+s'=2) is negligible compared with the first.
The shift in wave-numbers is given by A&U=D&E/h, in wave-lengths by
DqX= —622 )i2/hc. If we measure X in A, D in kilovolt/cm, the value
of the numerical coefficient of the shift corresponding to formula (61)
becomes 5.21 X 10 ' giving for the above conditions (X =4340.5A)
D~) =0.42A. T'his theoretical value 1ies ie the right direction and is of
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the right order of magnitude. However, one gets practically the same
result with the old formula. The positions of the lines are represented
equally well by both theories.

10. Numerical values of intensities . F. ormulas (58), (59), (59')
Section 7 are very convenient for numerical computation. Owing to
the fact that in the Balmer series m' and n' cannot be larger than one,
the hypergeometric function (57) reduces to one or two terms, and our
expressions can be evaluated in a few seconds for every combination of
quantic numbers. In. the following tables we abbreviate by Q the ex-

pression

Q = (ni+ n+ s) (ni n) —(ni'——n'- s') (ni' —n')

giving the position of the component according to formula (60). We
have seen in Section 6 that the electric vector of the emitted light is
parallel to the applied field (p-components) when s —s'=0, and per-
pendicular to it (s-components) when s —s' = + I.

Calc. Ampl. :
Obs. Int.

Calc. Ampl. :
Obs. Int.

Calc. Ampl. :
Obs. Int.

Calc. Ampl. :
Obs. Int.

2

0.8

0
2.0
2.6

0
0

1.4

Hn-line. p-components.
3 4 8

1.0 1.3 0.03
1 ~ 1 1 ~ 2

Hcx line. s-components.
5 6

1.2 0.1 0.1

1

HP line. p-components.
2 6 8 10

1.6 4.8 7.4 10.2
1.2 4.8 9.1 11.5

HP line. s-components.
2 4 6 8

5.0 12.6 10.2
3.3 1$.6 9.7 1.3

12 14
0.5

1

10 12
1.4 1.6
1.1 1

Calc. Ampl. :
Obs. Int.

Calc. Ampl. :
Obs. Int.

Hy line. p-components.
2 5 8 12 15

3.4 2.6 1 3.5 6.5
1.6 1.5 1 2.0 7.2

Hy line. s-components.
0 3 7 io 13

5.4 3.1 1.1 4.3 4.2

7.2 3.6 1.2 4.3 6.1

18 22

9.8 0.7

10.8 1

17 20
0.7 0.9
1.1 1
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Q
Calc. Ampl. :

obs. Int.

H8 line. p-components.
4 8 6 16 20 24 28 32

1.0 1.5 1.6 1.2 1.2 2.5 4.2 0.4
1.2 1.5 1.2 1.1 2.8 7.2 1

C'alc. Ampl. :
Obs. Int.

H6 line:. s-components.
2 6 10 14 18 22

1.4 3.2 2.2 0.3 2.5 2.5
1.3 3.2 2. 1 1.0 2.0 2.4

26 30
0.5 a.7

1.3 1

We have given only the positive values of Q. From the symmetry of
our formulas it is evident that we shall have the same intensities for
the negative Q. Special remarks must be made oniy with respect to the
last columns of the p-components and the last but one of the s-com-
ponents; here the second argument (I' or n') of R is larger than the first,
so that our formulas cannot be used in the given form but must be slightly
changed by inverting the hypergeometric functions as in Eq. (48).

Comparing the calculated values with those observed by Stark9 we
notice the phenomenon stated by H. N. Russel" in his work on the
intensities of multiplets. The observed values, estimated by the experi-
mental physicist from the blackening of the photographic plate, are not
proportional to the intensities but to their square roots, i.e., to the
amplitudes of the emitted waves. Therefore, we have tabulated alongside

with Stark's observed data the calculated amplitudes. We see that the
agreement is fair, and decidedly better than that obtained from Bohr's
correspondence principle in Kramers' work.

On account of our discussion of the second order displacement of the
central Hy line (Q= 0, s-com ponent) in. the preceding section, it will be
well to state the following particulars. This component represents the
superposition of two different transitions: from m = 1, n = 1, s =3 to
m'=n'=2, s'=2 and from m=n=2, s=1 to m'=n'=0, s'=2. The
first transition, however, contributes 85 percent of the total intensity
and the second only 15 percent. Therefore, it is permissible for the
purpose of the last section to neglect the second origin of this line alto-
gether, as we have done.

NORMAN BRIDGE LABORATORY OF PHYSICS,

PASADENA) CALIFORNIA.

July 29, 1926.

J. Stark, Ann. d. Phys. 48, 193 (1915).
"H. N. Russel, Nature 115, 835 (1925).


