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ON THE INTERACTION OF RADIATION KITH MATTER
AND ON FLUORESCENT EXCITING POKER

Bv E. H. KENNARD

AssTRAcT
The interaction of radhation and matter is discussed on the basis of Einstein's

theory. The distribution of energy in an enclosure containing quantized
particles is indeterminate unless there is thermal or other non-radiative
interaction between the particles; the latter process is therefore essential to the
production of the black-body distribution. Fluorescence cannot lower the
entropy of the system.

Exciting power for fluorescence. —No sharp distinction can be drawn between
thermal emission and fluorescence. If p„ is the fluorescence of frequency s „ex-
cited by radiation of frequency v and if n„a„, N„g„are the corresponding
absorption coefficients and black-body densities, respectively, then on certain
assumptions P„=kn e„u„/v, k being independent of u, and s„. Much more
general assumptions lead to: P„,/P, „=v„u„/s,N, . These equations ought to
apply to gas fluorescence, and it is quite possible that the latter may hold
generally for liquids and solids and the former in those cases where the shape
of the fluorescence band does not vary with the exciting frequency. The
equations agree with the few data in existence.

INTRODUCTION

HE relation between fluorescence and thermal radiation was dis-
cussed a decade ago by several authors' and an equation connecting

them was obtained by the present author and found to be confirmed

by experiment. In the present paper the same problem is attacked
from the standpoint Of the present-day theory of radiation, and similar
but slightly modified results are obtained.

In Part I some general theorems are deduced concerning the equi-
librium between radiation and atoms which, while not bearing directly
upon present-day observations, yet possess a certain theoretical in-

telrest. In Part II the excitation of fluorescence is considered. Through-
out the paper Einstein's theory' of emission and absorption will be
employed as a basis.

I. EQUILIBRIUM BETWEEN RADIATION AND ATOMS

Suppose we have, in an enclosure, N similar atoms whose state is
characterized by a single quantum number capable of assuming difl'erent

values. The results deduced below will hold also, mutatis mutandis,
for a mixture of atoms or molecules of any sort, but it will be sufhcient

~ E. Pringsheim, Phys. Zeits. 14, i29 (i9i3); E.H. Kennard, Phys. Rev. 11,29 (i9i8)
~ P. Einstein, Phys. Zeits. 18,- i23 (19173,
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to give the proofs for the simple case just speci6ed. Suppose further
that collisions are either rare or at least without effect upon the quantum
number. Let the quantum levels be numbered 1, 2, 3, ' -, ~, in the
order of increasing energy and let there be X& atoms in level 1, N2 in

level 2, etc. Then

Now, in general, if radiation is present in the enclosure it will prog-
ressively alter the distribution of the atoms among the quantum levels.
The condition that the radiation should leave the atomic distribution
unaffected is:

N Qh(& I+B sp a)= Qh(&a +Be p's)N~, . (i=1, 2, , ~) (2)
k~1 k 1

Here A;; is Einstein s probability per unit time that an atom in the
i-level will jump spontaneously to the j-level, and 8;;p;; is the similar

probability that it will make the same jump under the influence of
radiation density p;; of the frequency v;; corresponding to this jump;
A. ;; =0 if j&i and 8;i=0. The equation simply states that the losses
from any level must equal the gains.

On the other hand, by emission and absorption the atoms will in

general alter the distribution of radiation. The condition that this
should not occur is that for each frequency corresponding to a quantum

jump emission must equal absorption, or

(A;;+B;;p;;)N; = B;;p;cN;

for all values of i and all values of j(i.
The total energy of radiation and of atomic excitation will be, pro-

vided the mean radiation density is uniform throughout the volume
I/' of the enclosure,

V=V+ g p, ,+ QNe;
i~1 j~1

(4)
where ei is the excitation energy of the i-level.

From these equations we can obtain at once a number of interesting
theorems.

1. A distribution of radiation that shall leave a given atomic distribu
tion undisturbed can be chosen in many ways, in fact with (co —1) (co —2)/2
degrees of freedom For to find .such a distribution we need only de-
termine the co(co —1)/2 p; s so as to satisfy equations (2) for given values
of the N's and only (a& —1) of these equations are independent, since
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if we add all of them we obtain an identity corresponding to the physical
fact that the sum of all losses must equal the sum of all gains.

2. Among these Chstributions of raCkathon that leave a given atomic
Chstri bution unaffected there is just one and, it —is the only one, whi—ch is
itself unaffected by the emission and absorPtion of raChation by the atoms

For if the radiation is thereby unaGected, there must occur as many
jumps per second in one direction as in the other between any given
pair of levels, in order to secure equality of emission and absorption
for the corresponding frequency; and such an equality of jumps will

necessarily also have no tendency to change the distribution of atoms.
To find such a distribution of radiation we have only to solve equations

(3) for the p; s, which are just equal in number to the equations. Such
a state might be described as one of "mutual equilibrium" between the
radiation and the atoms.

On the other hand, if we start with a prescribed distribution of radia-
tion and seek the equilibrium distribution of atoms, the possibilities
are more limited:

3. Given a Chstribution of radiation, the atoms can always be distributed

so that they miLL be undisturbed by the radiation; but mutual equilibrium
m~ith the given radiation is usually impossibLe. In other words, if we il-

luminate the atoms, we shall cause them to distribute themselves in a
certain definite manner among their various energy levels, but when
thus distributed they will usually subject the incident radiation to con-
tinuous transformation (fluorescence). For we can solve the (cu —1)
independent equations (2) and (1) simultaneously to determine the cu X s
in terms of the given p;;s but eqs. (3) will then usually fail to be
satisfied.

4. The equilibrium distribution of a given total amount of energy U

among tke energies of excitation of the atoms in the enclosure and the cor
responding guantum frequencies of tke raCiation is indeterminate in tke

absence of collision sects (provided co)2), possessing (co —2) degrees of
lability For Equation. s (2) are deducible by adding up suitable combina-
tions out of Equations (3), and Eqs. (1),(3) and (4) give us only to(co 1)/2—
+2 equations to determine the co+a&(co —1)/2 unknown X s and p; s.
Under these conditions the actual final distribution of energy will be
determined by initial conditions.

This theorem is particularly interesting because it shows clearly
that:

5. Thermal agitation plays an essential part in producing and in de-

terrnining the special distribution of black body raCkation -We obtain.

Planck's radiation law only if we assume that thermal agitation sets
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()
we have from (3) for the b1ack-body spectral density referred to fre-

quency

R'g J3~)=%~'B~s ~

A;;
ghv s j'/ItT

up the Boltzmann distribution among the atoms'; then E;=const.
Xm;e "l~, where m; is the statistical weight of the i-level, and, if we

assume also that' e; —e; =hv;; and

The theorem here stated merely repeats with a modern proof a con-
clusion reached long ago on classical grounds4

An old question to which a peculiarly keen point can be given in

terms of current theory is that concerning the relation between viola-
tions of Stokes' Law and the Second Law of Thermodynamics. Suppose,
for instance, that in our case ~=3. Then we can easily make p» neg-

ligibly small and yet have many atoms raised to the third level by
absorption of p» and p23, and there seems to be no reason in principle
why we should not have v»=v». Under these conditions we should
have incident radiation causing fiuorescence of higher frequency (vie)
than its own with an entire absence of fluorescence of lower frequency.
At first glance one might expect that such a fluorescent process would

increase the availability of the radiant energy.
The explanation lies in the fact that the entropy of 'radiation depends

not only upon its frequency but also upon its density; and the laws of
emission and absorption are such that the following theorem holds:

7. The .interaction between radiation and atoms or molecnles cannot
lower the entropy of the radiation without causing at least a compensating
increase in the Boltsmannian entropy of the atoms or molecules As usua. l

we shall give the proof only for the simple case described at the begin-

ning of this paper. The entropy per unit volume of monochromatic
radiation of density p;; is p;;/T where T is the temperature of the cor-
responding black body, i. e. by (6)

1 h. ( Ai
log

]
1+

T h&ij 4 Bij pii I
This equation applies separately to beams moving in different directions,

g In consequence of the theorems here stated, the view of A. E. Eddington (Phil.
Mag &Os 803 &925) according to which the black-body law might well be regarded as a
primary law and the Boltzmann law should then be deduced from it, although of course
logically sound, seems rather unnatural.

Cf. concluding section of Planck's WKrmestrahlung, 2d edition.
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each having its own temperature; but for our present purpose we can
assume the radiation to be uniformly distributed in direction, since,
if it is not, then the process of absorption and re-emission will tend to
make it so and will thereby tend to raise the entropy. We can then
write, for the gain or loss of radiant entropy due to the emission or
absorption, respectively, of a quantum hv;;, hp;;/T, and the total net
gain of radiant entropy 5 will he

co j= i—1—= k Q Q [(A;+B;p;;)E;—B;;p;;E;]log
~

l+
p') J3tg- )

Gl g=t—1

= k g l g {(A;;fB;;p;;)F-;-B;;p;,E;;j [log[A;;+B;;p;I)E;j

+ k g g [(A;;yB;;p;;)E, B,;p, ,E,]-
i~ 1 j=i+1

j i-1
—Q [(Ao+B;;p;;)Eg—B;;p;;E;jjl goEg

Here in the right-hand member each term in the first double sum is
necessarily positive or zero; and the coefficient of log N; in the second
sum is simply the net rate or gain of atoms in the i level. Hence

dS " dX; CO—~ k Q —logE;= ——Q k(E; —E, logE;).dt, i dt dti i

The last sum in this equation is, except for an additive constant, the
entropy of the atoms in the extended sense given to the term by Boltz-
mann. ' The theorem stated follows at once; continuous decrease in

radiant entropy is impossible without continuous change either in the
atomic distribution itself or in some other part of the system which

acts so as to preserve the atomic distribution.

II. THE EXCITATION OF FLUORESCENCE

We shall now turn to the question of the laws governing the excitation
of Quorescenoe. Ke may note first that the modern theory of radiation
seems to make impossible any sharp distinction between luminescence

and thermal emission. For emission of any sort depends essentially

upon the presence of atoms or molecules in an excited state and is

independent of the nature of the agent producing these. In an iso-

thermal enclosure, for instance, either the radiation alone or thermal

agitation alone is competent to maintain the existing distribution among

~ Cf. Planck, Warmestrahlung. 4ed. Eq. (173).
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the energy levels; hence any division of the emission into thermal

emission caused by thermal agitation and Quorescence excited by the
thermal radiation must be, to say the least, highly artificial. It seems

best to say that in this case the distinction between thermal emission

and luminescence has entirely disappeared. '
At the other extreme stands the case of zveak excitation. The criterion

for this is that the density shall be relative/y little disturbed by the ex-

citing beam in any quantum state that is associated (as initial or final

state) with two or mode constituent frequencies of the exciting light,

and, furthermore, that if any quantum state is associated with only

one such constituent, then the term 8„for that state and that frequency
in the exciting beam shall be small as compared with A; the second

of these requirements is amply met if the energy density p is small

relative to the density u in black-body radiation which has its maxi-

mum at the frequen'cy in question, for at this maximum e""~~~=60 and

Bu/A = 1j59. Under these conditions the excited emission or increment

of emission will enjoy the properties that are most distinctive of classical

Huorescence, for it will be proportional in intensity to the exciting radi-

ation and it will obey the law of superposition, since two different wave-

lengths incident together will produce the sum of their separate effects.
In intermediate cases both proportionality and superposition may

fail (e, g. in some of Wood's experiments on gases).
In the case of weak excftatioN, as just defined, the modern theory

leads, on certain further assumptions, to two important results con-

cerning the exciting power.
Let us consider, first, a collection of atoms or molecules whose state

is characterized by two quantum numbers, m and n. Let m be practically
unaffected by thermal agitation; then normally it has nearly always

a certain value, m&, and after being changed by excitation it is restored

only by the process of emission. On the other hand, let n be dis-

tributed statistically, so that the density of atoms for which n =n; is

eg kT (9)

where e; = energy and m, = statistical weight of the quantum state char-

acterized by m=m& and n= n;, k =gas constant for one particle, T=
temperature, C =a constant. Let the material be illuminated with

radiation of density p, b
——p, and frequency v b =v, such that on absorp-

tion m changes to m2 and n changes from a certain value n, to another
vahie nb. For generality and convenience we shall assume that the

' This view of the matter supersedes that developed in the author's earlier paper
(loc. cit.).
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material is also bathed by thermal radiation corresponding to its tem-

perature, although the effects of this radiation will usually be of the
same order as the secondary effects which are neglected under the
hypothesis of weak excitation. Then B,&p,&7., quanta will be absorbed
from the incident beam in unit volume per second, and the coefficient
of absorption for this frequency, defined as fraction of the incident
energy in unit volume that is absorbed per second, will be B,tp, &r,hv, /p,
or, by (9),

o.,=Cm„hv, B,y e «/'&& (10)

(B depends also, of course, on rs but for simplicity only the values of n

are indicated in the notation. )
Now let us assume further that upon particles thus excited thermal

agitation and thermal radiation act either (1) relatively slowly, so

that very few changes are thereby effected in rs before re-emission oc-
curs, or (2) relatively rapidly, so that most of the excited particles,
before re-emission, become re-distributed statistically as to the quantum-
number n The. n in case (2) the density of excited particles with n=n,
will be

r, '= C'x, 'e—' ~»,

(14)

We can now draw two interesting conc1usions that do not require

a knowledge of the constants A and B.

C' being a new constant and m, ' the statistical weight and e, ' the energy
of the state in which m=m& and n =n, . The same equation will serve
also for case (1) provided we understand that in this case s can have

only one value, namely, s=b.
Jumps will now occur in which m returns to m, and n changes from

n, to some other value, n„There w. ill be (A,„+B,„u,„)r,' of these in

unit volume per second, u,„denoting the density of thermal, radiation,
and there will be a resulting fluorescent emission, of frequency s„=v„,
equal per unit volume to

F„,=C'w, 'h~„(A„+B,„N„)e 'e&»- (12)

The constant C' must be such' that the total 1oss of excited atoms balances
the gain, hence

O'S=C' Q Q w. '(A.,+B.,N.,)e 'I& =B,ephor, , (13)
8

s being restricted in case (1) to the value s=b Let us defl. ne as the
exciting power, P„„ for frequencies y and x the fluorescent emission

from unit volume of frequency v„excited by unit radiation density
of frequency v . Then P„,=F„,/p, and, by (9), (12) and (13),

g„=Cw,w, 'B,Q 'hv„(A, „+B,„ee„)e ~~a+'.&»r.
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Corresponding to (10) we have, using (5),
e„=Cm,hv„B„,e «~»=Ca, 'hv„B,„e ~~»~. (15)

Combining this equation with (14), (10), and (6) and putting

e,'-e, =hv„, we obtain
A~

lgyg = K Aylmt~ R =
V~ hCS

(16)

Since z is independent of the choice of frequencies for x and y, we

have the double result that for a fixed frequency of fluorescence the ex

citing power is proportional to tke coegcient of absorption for the exciting

light divided by its frequency; whereas for fixed excitation at any point

in the spectrum the fluorescent enussion is proportional to the product

of the coeff'scient of absorption and tke black body'-ntenst'ty at the temperature

of the substance, both taken for the same frequency as the fluorescence.

If Wien's formula can be employed with sufficient accuracy for n,

CL~—g~ —~ P ae-hu7t»2 ~ (17)
Vg

We can also eliminate all unknown factors by interchanging y and x
in (16) and then dividing the equation thus obtained into (16); the
result is a remarkably simple relation between the reciprocal exciting

powers for any two frequencies and the corresponding black-body

intensities, namely:

(18a)

Py ~ Vga
(18)

/*3' V~Qs

or approximately, if Wien's formula be used for I,
4'v* &u

g(vy va) l)ep

fey 4

Let us consider now the extent to which the assumptions underlying
these results can be generalized. The same equations are easily obtained
if the quantum state is characterized by three or more quantum numbers
of which each is of the type either of m or of n as above defined. Eq. 18,
but not (16), can also be deduced very plausibly without the restrictions
touching thermal agitation.

For this purpose we need only draw from the principle of "detailed
balance" the inference that, under conditions of thermal equilibrium,
as many excited atoms or molecules are transferred in one direction
between any two quantum states as are transferred in the opposite
direction. Let the quantum states, which may be of any sort, be num-

bered as before from 1 to ao and let v; be the number of particles per
unit volume that are in the i-state in thermal equilibrium; let p;; de-
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note the probability per second for the passage of a given particle from

the i-state to the j-state under the combined influences of thermal

agitation and thermal radiation. Then by the principle just stated

P~7~& P 1&+7

for all i and all jWi. The assumption of weak excitation wi11, however,

be retained, with the added proviso that all changes of density shall be
small relative to the general density of the particles; from the assumption
as thus extended it follows that the values of the p's themselves are
little affected by the excitation.

Now let the material be weakly illuminated from the outside with

density p,&=p, of frequency v,&=v,. A steady state will be set up, with

slightly modified densities r =r;(1+0;), such that "loss equals gain"

or, for each value of i,
(p17'+877'ps7)rs(1+7TS) —g (pe'7+87'sps ) ie'(T1+ 77 7')

or, by (19),
Q (p;;o,r; +8;;p;;r ) = g (f7;;7r;re+8;;p;;re')

where the value j=i is to be omitted in the sums, and p;; = 0 except that
it equals p, when either i =a and j= b or else i = b and. j=c; or, if we

put p;;= —g'; '
p;;—g,"+, p;; and replace T' by r in the coefficients

of p because of the assumption of weak excitation,

Q f7;;r;7T; = Q (8;;r; 8;;T;)p;;, (i =1—7 2, ~, co) . (20)

Solving these equations simultaneously for the o's, we find

1
er; = —(M „M7,;)(8,7,r, —87„r7,)p— (21)

6 being the determinant of the coefficients and M;; the minor of the
element in the ith row and jth column.

There will now be a differential or fluorescent emission due to the
disturbance in the atomic distribution; its amount per unit volume for
a frequency v„,=v„, divided by p„ is the exciting power for these two
frequencies, f„,. Hence

Apy
4'77a [(Asr+Ber7777)erers Brsiiaerrrr]i=

ps

But, since the r's refer to the equilibrium state, (A,„+8„77„)T,=B,„u„ri.
Hence

4'77a= Brsleerr(Mae M77e Ma +Misr)(Babra Bbar77)h7777 ~
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Similarly, interchanging the roles of v, and v„,

1
g'et~ &abgsra(Mrs ~es ~ra+~ss)(&rsrr &vere)&&x ~

Now because of (19) M;;=M;;; furthermore, r;=Cw;e "'"r. Hence,
using (5), we find

~-( ey-eg) /kT

(22)
v~N~ $ —e,

—&&e-&f& I&&

This equation is more general in form than (18). It should hold for
instance, for the fluorescence, or increment of emission, excited by
throwing an additional beam of radiation into a furnace at a high tem-

perature. We obtain (18) as a first approximation if we now assume

further that the temperature of the material is low enough so that the
two higher quantum states, 5 ands, associated with the two frequencies in

question are rare in the absence of excitation; for the exponentials are
then small. This condition is satisfied in all ordinary cases of fluorescence.

Another restriction to be removed is that all of the results obtained
so far in this paper have had reference to a line spectrum, lb referring to
the total energy and u to the integrated absorption for an entire line

(i. e. if n'=absorption per unit of frequency, n=j n'ds). If, however,
we have an approach to a continuous spectrum in the form of many
unresolved lines close together, —and it seems probable that any con-
tinuous spectrum is at least equivalent to such, —then one easily sees
that the results obtained in Part I of the paper will still hold. Eq. (18)
and (22), which are linear in the P's with coefficients depending only
on the frequencies, will also hold, P„, denoting now the fluorescent
emission from unit volume per unit of frequency due to unit density
of exciting radiation at frequency v, .

On the other hand, Eqs. (16) or (17) will hold, with a similar change
in the meaning of f and with n denoting simply the absorption referred
to energy density, only provided the constant x is the same for all lines.
This appears to mean that either there must be only one undistributed
quantum number of the type of nz, or, if there are several, then only
one mode of simultaneous change of them must be involved within the
spectral region under consideration. Under these conditions it will also
follow that the shape of the puorescezce band is independent of the fre
quency of excitation, for quantities referring to the latter frequency enter
in (16), relative to y, only in the constant of proportionality,

For complete accuracy the e6ect of refractive index ought also to be
considered, but that will not be done here.

Referred to wave-length throughout; the final equations read:
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(16', 17')

(18', 18'a)

J denoting spectral black-body intensity, f„„ fluorescent emission per
unit of wave-length at )„due to unit energy density in the neighborhood
of X„and e, the speed of light. If the shape of the fluorescence band
is constant, we can write f„,= (P,„)pP„)where p is "the" exciting power;
substituting in (18) and allowing 'h, to take on all values while X„ is

held fixed, we have the equivalent equation

J())
f-(X) = u. ~(l ), (23)

k, being a new constant.
The appearance of X or v in these equations is a characteristic result

of quantum theory; except for this factor, (17') and (23) agree with

results obtained previously on quite a different basis. ' The difference
is due to the fact that here conservation of quanta, instead of energy,
is assumed during the double process of emission and absorption, the
energy balance being maintained at the expense of heat energy.

COMPARISON WITH EXPERIMENT

The theory here developed ought, if its basis is sound, to apply to
band-spectra such as that of iodine, ' the quantum numbers for both
intra-molecular vibrations of the atoms and rotation of the molecule

playing the role of n while the electronic quantum number plays that
of m. In the case of the rotation number, observation~ suggests that
thermal agitation is a~most completely ineffective before re-emission

occurs, so that we have case (1). Qualitatively, the increase in the
number of "anti-Stokes" lines with rise of temperature is in accord with
the theory, but quantitative observations are lacking.

Because of the generality of the basis underlying the present theory
it seems quite possible, also, that it may apply to fluorescent liquids
and solids. Experimental support from observations on eosin and reso-
rufin was adduced in a former paper for Eq. (23) (with the factor X

omitted, which is of little consequence because the spectral range is so

4 Loc. cit., Eqs. (TO) and (j.3). The argument there given can be reconstructed in
harmony with present assumptions and then yields the results of this paper, but its
significance remains doubtful because of the impracticability, pointed-out above, of
resolving black-body radiation into thermal and fluorescent components.

~ Cf. VT. Lens, PZS 2l, 69i-2 (1920).
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limited). In these cases it has been thought that band shape was in-

dependent of exciting frequency; if that is true, there is a good chance
that (16), and (17) will hold for these substances, and evidence that they
probably do hold is aftorded by observations just pubhshed in the
Physical Review by E. Merritt. Additional experiments on fluorescein
are approaching completion in this laboratory and will be published soon

by the present author.
In a qualitative way, it might be said that (16) expresses in mathema-

tical form an explanation of the universal fact that, where a fluorescence
band visibly overlaps the associated absorption band, either the former
descends steeply or the latter rises steeply toward shorter wave-lengths,
and the maximum fluorescence lies at a lower frequency than the maxi-

mum absorption. This arises, in the equation, from the extreme steep-
ness of the black-body curve at ordinary temperatures. The physical
explanation may be stated as follows. If we fix our attention upon a
particular wave-length corresponding to a jump between two given
quantum levels, then absorption of this wave-length is favored by abun-
dance of particles in the level of lower energy whereas fluorescence is
favored by abundance in the higher level; hence thermal agitation, by
favoring abundance in the lower level at the expense of the higher, favors
absorption rather than fluorescence at this wave-length. As the wave-

length is decreased the difference in energy between the levels is increased
and with it the effect of thermal agitation in favoring absorption more
than it does fluorescence, The relative position of the two curves is
thus accounted for.

Eq. (18) similarly throws light on the fact that Stokes' Law is, prob-
ably, never strictly true, and yet the exciting light can never be pushed
to much longer wave-lengths than the fluorescence. The physical reason
for this, already suggested by other writers, is that at ordinary tempera-
tures quantum states of energy higher than normal by an amount
corresponding to a large shift in wave-length very rarely occur as a con-
sequence of thermal influence alone.

A special interest attaches to the question. whether exact relations
such as these hold for the fluorescence in liquids and solids because,
although the breadth of the bands has been vaguely ascribed to the
combination of thermal with electronic energy, yet no satisfactory start
has yet been achieved toward a detailed theory.

CORNELL UNIVERSITY.

June 25, 1926.


