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REFRACTION OF X-RAYS BY SMALL PARTICLES

BY RQBERT voN NARDRQFF

ABSTRACT

The broadening of a beam of x-rays passed through a mass of small particles
is investigated mathematically. It is shown that if the width of the beam, as
given by the rocking curve of the second crystal of a double x-ray spectrometer,
is mo before passing through the refracting material and m afterward, then
uP —mo'=882no{log 2/8+1), 8 being equal to j.—p, , the refractive index of the
material and no being the average number of particles passed over. The radius
of the particles may be found from the expression R =3 VD/4no, where V is the
volume of refracting material per cm and D the thickness of the material
passed through. The above expressions are checked by experiments on graphite
as to their dependance on 5, and quantitatively by measurements on graded
aluminum powder.

LACK' in the course of his work on the refraction of x-rays by prisms

found that the beam was greatly broadened on passage through a
prism of graphite. He suggested that the broadening was due to re-

fraction by the individual particles of which the prism was composed,
and tested the idea by sending a beam directly through plates of graphite
of various thicknesses, finding that the width of the beam, as measured

by the rocking curve of the second crystal of the double x-ray spec-
trometer, increased with increasing thickness of the graphite plate. The
present work, which was brieRy described at the April 1926 meeting of
the American Physical Society, is an attempt to work out mathematically
the broadening to be expected, and provides a means of obtaining the
size of fine particles which can not be measured by other means.

Distribution of energy from u single particle For simp. licity the particles
are assumed to be spheres of radius E. and index of refraction p, = 1 —5,
where for x-rays 8 is of the order of magnitude of 10 '. A parallel beam

of x-rays passing through the sphere will be made divergent, for since

p, (j., the sphere will act like a negative lens.
A ray striking the sphere at an angle 8 (see Fig. 1) is bent so that

sing = (1/p) sin8. (1)

By symmetry, the ray will be equally bent on emerging from the sphere.

Hence the bend produced is a&=2(P —8). Then P =&a/2+8, and

sing = (sim&/2) cos8+ (cos&a/2) sin8 = (sin8)/u

using (1). Dividing by cos 8, we get
since 2

tan8=
1/u —cosa&/2

' Slack, Phys. Rev. 27, 691 {1926).
240

(2)
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If the energy per unit area per second in the original plane wave is

Ep, the energy per second meeting the sphere at an angle between 8 and
8+d8 is 2s.R'Zo sin 8 cos 8d8=dE (3), and this energy will be refracted
between two cones making angles with their axis equal to cv and or+dc@

respectively. From (2) we get

(c os(o/2)/p —1
de = dc' .

2(1/p —c oslo/2) '

Fig. 1. Path of ray through refracting sphere.

Putting this value with (2) and (3), we get

Eos R'(sin&a/2) [(cos&o/2) (1/p+ p) —c»'&o/2 —1]
dE= dbms ~

p(1/p' —(2/p) c»&/2+ 1)'

Using 1o = 1 —5, 1/p = 1+5+8 12/p' = 1+25+3P, we get

(sins&/2) [P (sin'&o/2)/4—]dE= Ep~R' dc' .
(b'+ sino(o/2) '

Since, being small, sin cu/2=co/2, we get

8ooP oo'/8—
dE = Ep&R dG0

(4)2+& 2)2

The fraction of the energy striking the sphere, or the probability of a
"ray" striking the sphere, being refracted through an angle lying between

co and ~+der is then

85'(v —a)'/8
chal.

(4h'+oo')'

This equation holds from oo =0 to u =2+28, beyond which total reflection

sets in. At the critical angle we have @=vr/2, a&=s.—28, des= —2d8,

sin (@=sin(s.—28) = —sin 28, dE= 2s'R'Zo sin 8 cos 8d8= sR'Eo sin 28d8

=(sR2Zo/2) sin oodles, or, for the probability of a ray being totally re-

Rected through an angle lying between co and ~=des we have

I'„"= ((o/2) doo



ROBERT VOX NARDROFF

Hence, for the total probability of a ray being bent to between co and
co+den we have

F =P '+P "= f((8Pcu cv'/—8)/(4f'+(o')')+(a/2]d(o

The integral of P„over its range of application, 0 to 2/25, is 1+6,
which, because of the approximations made, differs from the proper value of
1, but only to a negligible amount.

Egect of nzarty spheres Sup. pose there are N spheres per unit volume.
The total area for a depth D presented by these spheres to a beam one cm'
in cross section is XmR'D. Therefore the average number of spheres
crossed by a single ray r's XzR'D, and hence the average length of a
"jump" between "impacts" is 1/%7''D=X. It may be compared with
the mean free path in kinetic theory, the light rays being regarded as
molecules of zero radius and mass, and the spheres as molecules of finite
mass and radius R. The kinetic theory expression (see Jeans, Dynamical
Theory of Gases, p. 268) gives then the same result. We can then apply
the line of reasoning adopted by Jeans to find the probability of deviations
from this average value. The probability of a single jump having a length

lying between I and l+dl, is (p. 274) (e '"/X)dl where X is the average
value given above.

The probability that the total distance for two jumps lie between D
and D+dD is = 1'I, , (probability of getting to between L and L+dL
in one jump) &&(probability of getting from L to between D and D+dD
in one jump)

L=D r D
= dD! (e It"/X)dL(e 'n I'I"/X) = dD (e ot"/X~)dL

~ L=O J'0

= (De nt"/X')dD.

The chance of getting to between F and F+dF in three jumps is = 1'e
(probability of getting to between D and D+dD in two jumps) &&(prob-

ability of getting from D tobetween F and F+dF in one jump)

pP= dF ! (De nt"/h')dD(e &e— »'~/X)dD
d0

= dF (De e t"/V) dD = (F'e e—t"/2V) dF—
0

By induction the chance of getting to between L and I.+dI. in m jumps is

Lm —1 ~
—L/x

I'L = —dL.
(m —1)!)
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The probability of taking m jumps to go a distance D equals the
probability of going at least D in m jumps, but not in m —1 jumps which

equals (the probability of going any L((D) in m —1 jumps) &&(prob-

ability of going at least D L in—one jump)

tn L m 2&
—L /2— p

m
e l /2—

df /ZL=P„.
m —2 r), m-i EQD-I, ) )

pD I m—2e—Dl)2

p dl.
(2/2 2) I gm —/

(D/1 ) m—I~—n/x

p
(2/2 —1) !

The pr'obability of making n impacts is the probability of making n+1
jumps. Hence

(D/X)~e n/"

The average value of P is, of course, D/X. The root mean square
deviation is (D/X)'~. If D/X is large, the fractional root mean square
deviation is small and hence no appreciable error will be introduced by
assuming that all rays make D/X impacts in passing through the refract-
ing material. Even if D/X is as small as 5, calculation shows that the
above assumption yields results which di8er only very slightly from those
obtained by using the expression for I'„. In what follows, n will be
assumed equal to n, =D/)l =N2rR2D for all rays.

If the volume of the spheres present per cm' is V we have V=4N2rR2/3
or N = 3 V/42rR2. Hence the average number of impacts is 222 =3 VD/4R.

The number of impacts per ray giving rise to bends lying between cv

and co+der is npP ~ The angles are so small that they may be added like

displacements. These noP„displacements will be distributed at random
as to direction, and hence their total effect (see Rayleigh, Scientific
Papers, Vol. I, p. 491) will on the average be proportional to the square
root of the number. Hence they will produce a bend equal to (22oP ) ~/d

There is a similar expression for every co. To add the effects due to all

the m's in such a way as to take into account their random distribution
in direction we take the square root of the sum of the squares, or rather,
the square root of the integral of the squares. That is, the average total
bend of a ray will be

f (g 8/2/d —&g2/8$
'I —+-

EJO
'

l 2 (4&2+l22)2 i
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(
n, =] 4Ve(log —+l) [.

The distribution of energy around this average. value can be in-

vestigated by the methods of the theory of probabilities as given by
Bachelier in "Calculs des Probibilites. " It leads to the following result,
also given in Rayleigh, loc. cit. The fraction of the original energy which

will be bent to an angle lying between n and (n+dn) is

P =-(2ne-+' '/ng)dn

In~the derivation of the expression for P the expression for P„ is
effective only through its effect on the "fonction d'instability, " which

is simply uo above. That is, the expression for P would have been
obtained from any expression for P„having the same mean square value,
including the case that all rays were bent by a single sphere an amount

ne/+no, but with random directions. Physically this means that the
form of P depends on the variations introduced in the total bend of the
different rays by the random directions of their bends from the individual

particles, rather than on the fact that some paths may have a larger
proportion, say, of small bends than others. This is equivalent to saying
that in all paths there will be equal numbers of individual bends of equal
amounts. Since the thickness of the material passed through in a given
sphere is a function of the bend produced, both depending on the angle
at which the ray strikes the sphere, what has been said means that all

rays may be regarded as having passed through equal amounts of material
and thus as having been absorbed equally. Hence absorption will not
alter the shape of the distribution given by P, but merely reduce by a
constant ratio the amount of energy at any n. As we are interested only
in the width of the distribution curve we may therefore disregard ab-
sorption.

Since measurements are actually made on the horizontal distribution
.resulting after passing the beam from a vertical slit through the refracting
material, we will seek an expression for the fraction of the energy lying
between a horizontal angle P and one P+dP with the original direction.
This is found to be

2 2

Pe=(e « '/~~no)dP

So fa,r the original beam has been assumed to have been paralle1.
Actually it is found that the energy is distributed around the central
direction giving a rocking curve which may be closely represented by an
equation of the form y =ae—b~. . If tangents be drawn to the curve at its
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two points of inflection, and the height of their intersection be called h

and the width of the curve at y =h/2 be called wo, then the equation of
the curve becomes

y=(h~e/2)e "I~'.

Each part of this curve will be distributed according to the expression
for P~. By integration the fraction of the original energy to be found
after passage through the refracting material, between y and y+dy
may be shown to be

g 5 I
P, = (w&hge/2+2nP+ we2) e '& I &~o—+ o&

This is the equation of a curve having a width (as above defined) of
w = (w(Py2n, ') V*.

Hence, if the width of the rocking curve of the second crystal of a
double x-ray spectrometer be measured before and after the interposition
of a layer of refracting substance, we have no'=(w' —we' )/2. Knowing

a0, 8 for the refracting material, and D, we may compute no, the average
number of particles passed through by a ray by the equation no n02/——4P
(log 2/8+1), and if the volume per cm' of refracting material is known,
the radius of the particles may be determined by R=3VD/4ne.

Table I gives the results of the measurements of Slack on graphite.
These are exhibited graphically in Fig. 2. w' —mo' should be proportional
to D, and, as is shown in the graph, this was found to be the case, within
the rather large limits of error of this experiment. Also the size of the
particles as calculated from the data on the two wave-lengths used comes
out approximately the same.
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Fig. 2. Broadening of x-ray beam passed through graphite plates.
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TABLE I
Graphite

Thickness in mm Width in seconds
'A = .708A; '8 = 1 .23 X 10 6

.0 6

.62 10+2
1.2 15+2
4.3 30+3
8.4 45+5

13.8 52+5
~=1.537A; ~=4.7X10 '

.0 10.8

.62 45+4
1.2 58+5

TABLE II
Allminlm, 250—300 mesh

Thickness of container in cm 1.30 ~ 400
Density of powder 1.35 1.31
Wave-length X 10' .528 .708
S X106 .95 1.70
K'o 8.2" 8.7"

11.6" 24.6"
Diameter in cm (calc.) .006 .0069
Dimensions in cm (obs. ) i.o& wx .ooss)

A further test of the theory was made by passing the beam of x-rays
through small brass boxes provided with paper walls, containing alumi-

num powder which had been graded between screens of 250 and 300 mesh.
The results are shown in Table II together with the actual average
dimensions of the particles, as measured by examination with a com-

pound microscope provided with a calibrated eyepiece. The calculated
dimensions are in excellent agreement with those observed, particularly
considering that the particles were far from the spherical shape assumed

by the theory.
DEPARTMENT OF PHYSICS,

COLUMBIA UNIVERSITY,

May 20, 1926.


