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A VELOCITY FILTER FOR ELECTRONS AND IONS

BY WILLIAM R. SMYTHE*

ABSTRACT

If a charged particle, moving along the x-axis with a velocity e, encounters
successively two identical alternating electric fields of frequency s, which are
everywhere perpendicular to the x-axis, it will emerge from the last field un-
displaced and traveling in the original direction under the following conditions:
(1) Each field has two similar halves whose distance between centers is a;
(2) The distance between the fields, center to center, is D =sa jn, where s and e
are odd integers; (3}The velocity of the particle is vo 2am/e. The distribution
about the velocity vo is computed when particles enter and leave the system
through slits of width yo on the x-axis. The results show that the emergent
beam can be confined to a verv narrow velocity range.

Apylications of the velocity 61ter.—Possible applications of the velocity
filter, chieHy to positive ray work, are mentioned. It has already proved a
successful and convenient substitute for pure magnetic analysis. It can be
used to analyze a beam which is inhomogeneous both in mass and velocity
when combined with either electric or magnetic deflection methods. The
latter combination can be arranged to give a rigorously liriear mass scale.

Most methods hitherto used for isolating from a stream of charged
particles, moving in a high vacuum, those having a given velocity require
the use of a magnetic field. The measurement, maintenance and repro-
duction of a constant and homogeneous magnetic field is, in many cases,
difficult or inconvenient. On the other hand the recent development of
radio technique has made it a comparatively simple matter to generate
and regulate high frequency oscillating electric fields, so that a method

using such fields should prove a valuable addition to those now available
for positive ray analysis and similar work.

The first arrangement which suggests itself is an alternating electric
field at right angles to the beam. If it were possible to make such a field

uniform and sharp edged then those particles whose velocity is such that
they pass through the field in a whole number of cycles will evidently
have received as much acceleration in one direction as in the other and
will emerge parallel to their original direction of motion. Simple con-
siderations show however that they will be displaced from their path
by an amount depending on the phase of the field when they entered it.
If now a second identical field be placed at such a distance from the first
that these particles enter it in opposite phase to that in which they
entered the first, then the displacement will be reversed in the second
field and the particles will emerge from it undeviated and undisplaced.
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It is impossible in practice to make such a uniform sharp edged field

but in the theory which follows it is shown that fields which are neither
uniform nor sharp edged and whose actual form is unknown can be used

equally well, provided they satisfy certain conditions of symmetry.

I. THEORY

ONSI DER a charged particle moving originally along the x-axis
with a velocity v which encounters successively two identical.

alternating fields that are everywhere perpendicular to the x-axis. The
origin is chosen at the center of the first field which lies entirely between
—a and +a. For a given value of x the field strength at any instant is

f(x)f(t). The wave form of the alternating field may be written

)t (t) = QC„sin(2rprvt+(t(„)

where P„ is the phase of the rth harmonic as the particle crosses the y-axis
and v is the fundamental frequency. Between —a and +a we may
express f(x) as a Fouriers series

f(x) =Bp/2+ QB,cos(qprx/(t) + gA „sin(pprx/a)
q=1

The acceleration and y velocity component of the particle of mass m and
charge e are respectively

8 dy e
f(x)P(t) and——=— f(x)P(t)dt

m dt m

Since the particle has a uniform x velocity component we may write
x =vt, dx = vdt, so that on emerging from the first field

Let k=2prv/r) and substitute values given above for f(x) and 1(((x/v).
This gives

t =(o fr+a q=oo

QC„Bp/2+ QB,cos (qprx/u)
d$ mV r- l & -a q=l
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Integrating this equation gives

dy e r=~—=—gC, —y g( —1)'B, —— sinrkasinQ„
dt me „=~ rk r'k'a' —q'm'

2p7l 8
+ P( —1)"A„—sinr kacosg„~

r2$2g2P2~2
(2)

When ka=nz, n being an integer, all terms are zero except those for
which rn=g=p. Let rn=u and the above expression becomes

dy ae "=" 2(—1)v sinux
QC„(B„using„+A „pcosg„)

dt mv „~ m I'—p'

Let u~p and substitute ae/mv=n7re/femv=ne/2mv and we have

dy ee
QC„(B„„sin@,+A„„cosg,)

252V

The Fouriers coefficients B„„and A„„are
p+Q rn% s 1 r+' rrIm xB„„=—
~ f(x)cos dx and 2,„=—

~
f(x)sin dx.

GJ 8 8 J g 8

If we make f(x a) =f(x)—and if rn is an odd integer then both B,.„and
A„„are zero because

rnx(x —a) r67r g
f(x a) cos————= —f(x)cos—

C 8

rnx(x —a) rn7r x
f(x a)sin- —= —f(x)sin—

8 8

Thus particles emerging from the first field will have no y velocity com-
ponent if there are only odd harmonics in the alternating field, if f(x—a) =
f(x), and if the velocity of the particle is

se= 2/avn (4)

I

a == a- =I I- 0 -. o

Fig. 1.

where v is the frequency of the alternating field, 2c is the length of the
field, and n is an odd integer. A form of f(x) which meets the above
requirements is shown in Fig. 1.



1278 5'. R. SMYTHE

DISPLACEMENT IN FIELDS

The y velocity component at a point x in the first field is, from Eq. (1),

dy e t=oo q=oo

gC Bp/2+ QB,cos(qxx/u)
dt em q=1

+z~. .u-i)) .(~+~)~.

The displacement on emerging from the erst 6eld will be

1 p+ dyF'=- ~' —dx

Integrating this twice we obtain 6nally

~0 —(—sinrkacosQ„+rkacos(rka —Q,))
r2k 2a2

a2e
Y=

m@2

1 —(r'k'a'+ q'x')
+ g( —1)'2B, sinrkacos4„

QC, —g
ypkpgp —q2%2 ypkps2 —qpxp ",(~)

r 1

+rkucos(rka —Q„)

2yka p7r
,+ Q( —1)"2A„ —sinrkasinp„

y2k2a2 P2~2 y2k2a2 p2g 2

+pprsin(rka —p,)

When ka =nor all the first terms in the above square brackets drop out
except those for which rn, =g=p. In this case let ryf, =n and let I—&p.

Evaluating the indeterminate form gives eventually the following

expression in which porn, , g/rn, ka=nm. , and yyI, is odd.

ae s =00

1 =—QC„»
m8 2

90 '=" 2$q+ g( —1)' rnyrcos4„
r'n'xs p=& (r'm' —q')x'

yahoo 2A„+ g( —1)" —pxsing, '
(y2~2 P2)x2

B.+ (cosp, +2rexsinp, )+. ( i s4„n+2yexcosg„)
2rsx' 2'~

But we have chosen yn odd and made f(x—a) =f(x) so that B„„and A,„
are zero and odd values of g and p drop out, since for them Bq and A. „
are also zero. Substituting the value a'e/xmv'=(ev/2v)' e/xyns'=
n'e/4prmv' gives the equation
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n'e "="
Bp '=" 2rnBq " 2pA ~'- Zc, ——'+Z '"—'- -~, +Z- —'- ~,I (6)

4&~&2 =1 rn =2 r2n2
g

2
& 2 r2n2 P2

Where there appear only even values of g and p and odd values of r and n,.

FINAL DISPLACEMENT

Suppose the charged particles pass through a second field identical
with the first but vrith its center at a distance D from the origin. Consider
the particle having the velocity i)o = 2a /)n which passed the origin when
the phase of the rth harmonic was Q„. It passes D when the phase of this
harmonic is @„. Since it traveled parallel to the x-axis between fields
its final displacement is

n'e 8p
'=" 2mB

Ff = — gC„——+ g — (co sf„+co sf„' )
4xmv „=~ rn, 2 r'n —q'

2pA~+ z '-( .~,+ '.~'))
=2 r2n2 P2

For the rth harmonic this will be zero if P, = m.s„+P„where s„ is any odd
integer. This condition is satisfied if D=s„a/rn. We can choose s„=rs
where s is an odd integer and it will then be satisfied for all odd harmonics
at once since

D= rsa/rn=sa/n

OTHER VELocITIEs TRANsMITTED

Certain other velocities will also be transmitted for, with a given
setting, D/a=s/n=k and if any other odd integers, I and p, can be
found such that k =rn/p then the corresponding velocity, r) =2ar/p will

pass. If s and n are incommensurable then p must be an odd multiple of
s so that the other velocities which pass the filter will be v' =v/fi where fi is
an odd integer. These velocities are all less than v. If the alternating field

is sufficiently strong so that the spread of the velocity between the fields
is the maximum permitted by diaphrams in the apparatus then any
lower velocity v' will generally have a wider spread and be cut out
partially by the diaphrams.

VELocITIEs DIFFERING SLIGHTLY FRoM vp

We will now find the displacement of a particle with the velocity
v=vp+~v at a distance d beyond the end of the second field. Since the
easiest experimental arrangement makes f(x) =f( x) we will c—onsider
this case, leaving only cosine terms in our Fouriers Series. If the time of
passage from x=a to x=D+a is v~ and the time from x=D+a to
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x=D+a+d is ~2, if the y velocity component on leaving the first field

is (dy/dt)1 and on leaving the second field it is (dy/dt)2 and if the dis-

placement in the first field is yi and in the second y2, then the displace-
ment when x =D+a+d is

= r1(dy/dt) 1+y1+y2+r2(dy/dt) 2 =y0+yl+y2+y3

rsr(2m —s+ 2md/a) Av
Bp cosf„—3sing„

2 Vp

nes "="
Av

y' = gC„' +2siny„—
45t V2 Vp

—3p 2n2+ 5q2 ~

+ g —' —sing„
=2 g 2n2 q2 y2n2 q2

rsr (2m —s+ 2md/a)+
2

cos p„—+2sing„—

Starting with Eq. (2), expanding trigonometric functions in terms of
the small angles Av/v„neglecting powers of hv/v0 higher than the second
and neglecting Av/v0 compared with one in the coefficient of q we obtain

y0. By a somewhat similar procedure, starting with Eq. (5) we obtain

y& and y2. We get y4 in a manner similar to yp. Adding the results gives

Since (Av/v0)2 is very small the (Av/v0) term is negligible except when

sin p„ is of the order of (22v/v0). In this case the sin p, term in the coeffi-

cient of (Av/v0)2 may be neglected since it is of the order of (Dv/v0)3, so

we have finally

mes
"= '=" 2r2m2B0 r22(2m —s+ 2md/a) hv

cos Q„
42mv2 ,. 2 r'm' q'—2 'ttl

p

+2sinp„— (8)

In our further considerations we will assume that only the fundamental
or one of the harmonics is present. In this case Eq. (8) takes the form

Ames ( '=" 2rsm2B, I (rsr(2m —s+ 2md/a) Av

, B0+ cosp-
4mv' 4 0=2 r'm' —q2& 2 'Vp

+2sing— (8')

where A is the maximum value of the field. From Eq. (6) we know that
the maximum width of the beam between the fields is
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Anes 2 r' ~-" 2r~n2$, i
iy'=2ym~*= —

I
~o+ g

4rev' mrs &, 2 r'e' —q'&

Substituting this value in (8') gives

Wsrsr frsr(2N s+ 2nd—/a) . As ' hs—cosg —+ 2sing—
2 vo )

(10)

INTENSITY CONSIDERATIONS

In practice the beam will not be confined to the infinitely narrow X-axis
but will have a finite width yp. Hence there will be in the emergent beam,
which we will also confine by a slit to a width yp along the x-axis, a certain
distribution about the velocity vp. For an apparatus of given dimensions

we may compute the relative number which will emerge with any
velocity v=vp++V. Let yp be the width of the slit, i.e. the maximum

value which y' can have and pass. Make the substitutions

Av yp —1++1+4R~Q2 (2rs —s+ 2ed/a) yo—where R=
vp Wsr7f 2R' 4Ws

then Eq. (10) becomes

—1++1+4R'f'
y'/y. =& cos@+

2R'

—1++114R'P'
—sing (11)

2R'

Let tan8= (1/V 2) P—1+0 2+48'P and this takes the form

y'/yo ——/sin(P+ 9) (12)

The displacement y' is always a maximum when sin (/+8) = 1. When
this maximum is less than yp all values of Q contribute to the emergent
intensity, but when it exceeds yp only certain values of @ contribute.
The point where this change occurs is.

~v yp=+1 or — =+
vp 8'sr' 2RQ

(13)

If Ip is the intensity of the transmitted beam of particles with the
velocity v0=2av/n, then the intensity of any other value of 6v/vo and

@ will be

IA 1/~0, 4) Ip = 1—' — Ip
yo yo



Where iy'i is the absolute value of the displacement for a given Dv/so

and P. It is assumed that the entering beam is equally intense in all

velocities and phases but enters parallel to the x-axis. I(/, „/„, zi is zero
when iy'~/yo)1. To get the value of I//, „/„,& we must sum up for all

values of Q which permit that value of hv/so to pass the filter. From

Eq. (13) all values of P contribute when f (1. The expression for I~/, „/„,&
in this region is then

I0
I(gy/~s) (& —

i 0 (0+0) i')&e=(& — — h

When P)1 only values of Q from —8 to P& and from sr —28 —Qi to
sr —8 contribute. Here Pi has the value /=sin ' (1/P) —8 so that

2IO
(1—l&»n(@+8) I)«

2 ( ' —/(1— (15)

This expression can be expanded, giving

1 1 1 ~ 3 1 1 1 ~ 3 5 1I=—1+ —+ —+ — —+ Io
3 4 P' 4 5 6 f4 4 6 7 8 lit'

=(~) '(1+ 0833$ '+.0250' +.0112$ +.0061$ + )Io

From this a table of I/Ip in terms of P can be computed.

I/Io
0 .5 1.0 1.5

1.000 .682 .363 .221
20 30 50 80 120
.163 .107 .064 .040 .027

The value of hs/vp corresponding to any of the above values of I/Io
can now readily be found from

+yo
Wsrsr~

—1+v'1+4&'lt' + yacc.

2R' Wsrsr

In most cases R can be neglected. At least it can be considered constant
for a given apparatus in which the ratio a/D does not vary greatly and

the second slit is at the end of the second field (d=0) for then

(2/s —s+2/sd/a) yo (2a/D 1)yo—
48's 48"
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D, c, yp and H/' are all dimensions in the apparatus. If R is neglected
&v/so can be computed from the formula

AP ypP

Vp W'Sr~
(16)

The distribution of velocities emerging, computed from Eqs. (14), (15)
and (16) are shown in Fig. 2. The dimensions of the apparatus now set

up are used. These are a =4.9 cms, D = 24.5 cms to 27.5 cms, yp =.02 cms
and 8'=.3 cms. The ordinates represent the relative intensity and each
abscissa scale gives the corresponding value of Av/v, when the I is chosen
as indicated in the vertical column of figures.

.004 .00$ .OO2 .OOI

.02 .OI .02,OI

.00' .002 .003 A%4
/

/
s /

/

e /
~ IX
n

Fig. 2.

We have assumed heretofore that the entire beam of width lV is per-
mitted to pass between the two fields. An increase in resolving power
with only a small loss in intensity can be obtained by cutting off the
outer edges of this beam with a diaphram. If the width passed is 8"p

we can see from Eqs. (6) and (9) that those particles which enter in the
phase P will be eliminated if Wo/W&cos P(1. The effect of this on the
intensity distribution curve can be found by modifying Eqs. (14) and

(15). We neglect R (and hence e) and let cos $0 ——W'0/W so that when

P(1 we have instead of Eq. (14):

Io ~ &o . ( 2 WO ~PIWO
(1—~/sing ~)dp= ] 1——cos ' ——+ (Io

Jgo I,
(17)
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When 1 &/& 1/V 1 —(Wo/W)' we have instead of Eq. (15):

2Ip ('&1
I= f —(1 —~&sing ~)dg

7i Pp

2& 1 Wp 1 8'0 i=—
]

sin ' ——cos ' +f—) 1————[Io
TV )

When 1/V 1 —(W,/W)'&P I=O.
The distribution curve obtained by letting Wo/W=. 9 is shown by the

broken curve in Fig. 2.
If the above dimensions are used and the frequency applied is s =

3X10 ' 1/sec, corresponding to a radio wave-length of 100 meters, we

can cover the following voltage ranges of positive rays by choosing

proper values of n as shown.

n Positive ray with velocity v0

1 437 volt H+ to 1748 volt He+
3 193 " He+ to 770 " 0+
5 208 " C+ to 781 " Sc+
7 204 " Na+ to 753

" Rb+
9 208 " K+ to 737 " Ba+

. 209 '" Ni+ to 750
' Bi+

13 203
" Br+ to 612 " U+

15 206 " Ag+ to 458 " U+

For a given choice of n the alternating potential used to obtain the
theoretical distribution will be proportional to the accelerating potential
required to give the charged particles the velocity vp. The factor of

proportionality can only be found experimentally since the form of

f(x) is unknown.

The chief source of error in the above theory lies in the assumption
that "the field is everywhere perpendicular to the x-axis. " Clearly this
can only be strictly true along the axis itself. At other points there will

'be a longitudinal component retarding or accelerating the particle along
the x-axis. The actual computation of this effect involves assumptions
as to the nature of the field which are uncertain and depend on the
individual apparatus. If the curvature of the field is sufficiently great
the velocity with which a particle leaves the first field parallel to the
x-axis will vary appreciably from zp for those values of the phase which

correspond to large displacements. Only those particles which have the
velocity vp will reach the second field in the correct phase to reverse the
displacement and thus pass the slit. Also, in general, those particles
which do not travel between fields parallel to the x-axis will be lost.
Therefore, the chief effect of the curvature of the field, will be to weaken
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the intensity of the emergent beam rather than to destroy its purity.
Similar considerations hold for most of the accidental errors such as
irregularities in the dimensions or positions of condensers, errors in the
setting of D and so forth.

II. EXPERIMENTAL ARRANGEMENT

The experimental set up required to meet the conditions of the theory
is obvious. We must apply an alternating potential of frequency v

to four condensers in parallel. These four will be grouped in two pairs.
In each pair the distance between the centers of the condensers is a,
and the distance between the pairs, center to center, is D. We must put
the condensers plates far enough apart so that the curvature of the
lines of force in the region used is negligible. All condensers must be of
identical construction and must be placed in identical chambers in which
are suitable apertures to permit the beam to pass through. Since it is

desirable to be able to use different values of n for different regions the
distance D should be adjustable.

III. APPLICATIONS OI THE VELOCITY FILTER

The more obvious applications of the velocity filter are:
1. It can be used instead of a magnetic field to analyze the velocities

in a beam of similarly charged particles of equal mass.
2. It can be used to determine the relative masses present in a stream

of similarly charged atoms or molecules which have fallen through the
same potential.

3. Combined with electrostatic or magnetic deflection methods it
can be used to find the masses of the constituents of a stream of positive
rays containing all masses and all velocities. For precision work this
possesses certain decided advantages to be discussed later.

The second application mentioned above has already proved success-
ful. Dr. Klein, in this laboratory, completed last fall a velocity filter
which he uses to identify the positive ions from the various thermionic
emitters with Which he works in his study of the secondary electron
emission from positive ion bombardment. He varies the frequency
applied to the filter until a maximum current passes through. A wave-
meter and a voltmeter reading give the frequency and the accelerating
potentiai and e/m is easily computed. The method seems quite con-
venient and accurate, the apparatus working successfully at the first
trial.

Dr. Mattauch and the author have just set up a filter of higher resolv-

ing power which may be used as the one just mentioned or as in applica-
tion three above. In the latter case it sorts out one velocity from a



heterogeneous beam of positive rays. The frequency determining the
set of possible velocities can be kept constant with a piezoelectric oscil-

lator. We may attach to the filter a magnetic or electrostatic analyzing
device. Magnetic analysis will be used where a photographic record is

desirable as in exploring work. We deflect our beam in a semicircle by
means of a magnet with semidisk polepieces 25 cm in diameter, receiving
them on a photographic plate. If positive ions are to make much im-

pression on a photographic plate they must have a velocity of 5000 volts
or greater. This would require an inconveniently high frequency on the
filter and also, ' for heavy ions, a prohibitively powerful magnet. The
difficulty is solved by applying 15,000 or 20,000 volts accelerating field

immediately. in front of the plate. At this point all particles, having
completed a semicircle, are traveling parallel to each other and at right
angles to the photographic plate, so a symmetrical accelerating field

produces no distortion. It is unnecessary that this field be constant.
The displacements on the plate are proportional to the radii of curvature
in the magnetic field and these are directly proportional to the masses,
since the velocity is constant. Thus we have a rigorously linear mass
scale. All factors affect the image symmetrically so there is nothing to
produce a relative shift between mass lines except inhomogeneities in the
polepieces. The latter are of soft annealed steel run far below saturation
and irregularities should be very small if they exist at all. They can be
determined by comparing with the electrostatic method to be described
next.

The electrostatic method may prove more satisfactory than the above
for accurate work. The positive rays after passing the filter are deflected
between two curved plates two mm apart and caught in a Faraday
cylinder connected with an electrometer. Only a small range of masses
passes between the plates with a given field but by altering the field suc-
cessive masses are brought on the slit. The masses are directly propor-
tional to the potential difference applied to the plates and can be com-
pared as accurately as the potentials can be measured. All masses can be
checked directly against oxygen, we hope with great precision, and our
computations indicate that we should be able to determine the masses of
most atoms within one hundredth of a unit of atomic weight. Such
determinations would be of considerable interest in atomic theory.

The author wishes to thank Dr. Bowen for valuable suggestions and
Professor Epstein for checking some of the equations.
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