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ABSTRACT

Measurements of ion and electron current densities and temyeratures in a low
pressure arc may be made with a collector which is screened by a close parallel
electrode pierced with uniform circular holes. The electrostatic potential distri-
bution in the neighborhood of a pierced electrode, pierced with either slit or hole,
has been worked out. The volt-ampere characteristic for random electrons is
exponential for the higher retarding voltages and the exponent gives a tempera-
ture slightly too high. When the anode drop is known the current density of
electrons can be calculated. The volt-ampere characteristic for positive ions is
linear for small accelerating voltages. For small retarding voltages the char-
acteristic is not a pure exponential. The characteristic gives anode drop, ion
current density, "transverse" ion temperature and "longitudinal" ion tempera-
ture. The limitations and possible errors are discussed.

'N ORDER to separate the ionic and electronic parts of the electric
- current to an electrode immersed in an electric discharge in a gas,

A. F. Dittmer suggested allowing these carriers to pass through
small holes in a plane electrode and collecting them on a second elec-

trode parallel to and behind the first, keeping the gas pressure low

enough so that no collisions occurred between the sheath edge, A,
and the second electrode, C, cf. Fig. 4. By adjusting the potentials on

these electrodes it can be so arranged that either ions alone or electrons
alone reach electrode C. The necessary variation in electrode poten-
tials has a negligible effect on the discharge because of the presence
of the sheath before the pierced electrode B. The thickness of this
sheath must be greater than the hole diameter to prevent the dis-

charge from penetrating through the hole. Other conditions, also,
must be fulfilled, as will appear when the different cases are analyzed.

The carriers, which it is desired to keep from reaching C, can be
prevented from doing so either by the field between 8 and C, or by
the field between sheath edge and 8. Thus there are two fundamental
potential arrangements; in the first the carriers to be collected on C
are initially retarded then accelerated, in the second they are initially
accelerated then retarded.

The first arrangement is unsuited to measurements on positive ions
(hereafter called simply ious) because it requires that 8 be made posi-
tive with respect to the anode. This situation cannot usually be realized
for it is the most positive electrode of any considerable size which acts
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as anode in the discharge. The second arrangement, on the other hand,
is unsuited to measurements on electrons. They should be collected.
in an accelerating field because of electron reHection. On account of this
specific application of each arrangement, we shall hereafter speak of
positive and negative voltages, rather than accelerating and retarding
vol tages.

The present papej. treats first, the measurement of the current den-

sity in a high velocity beam of electrons; second, the volt-ampere
characte;istic of electrons having a Maxwellian distribution of velo-
cities in the discharge; and third, the volt-ampere characteristic of
ions having Maxwellian and other velocity distributions in the dis-
charge. Preliminary to this, the equations for the electric potential
field in the neighborhood of both a slit and a circular hole in an in-
finite charged plane are derived, and the transverse velocity and dis-
placement acquired by a fast electron (ion) in traversing such a field

are calculated.

I. THE ELECTROSTATIC FIELD ABOUT A SLIT

The potential distribution about a slit in an infinite plane charged
electrode' is found by applying a Schwartz transformation' to the
polygon ABC II of Fig. 1. Proceeding to the limit by allowing
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rN to approach ~ as BV/8 yat y=+~ remains finite and equal to
—B, the potential V near a slit is found to be given by the parametric
equations:

U EP U
x=

E 4 U'+ U'

U EP V
y= —+— —,V&0

E 4 U'+ V'

' The hydrodynamic case corresponding to this problem and also to the problem
of the hole in a plate has been treated by Lamb, Hydrodynamics, 3rd edition, p. 77
and p. 137 respectively, but it has been thought worth while to sketch derivations of
the potential using more usual coordinate systems.

Jeans, Electricity and Magnetism, 2nd edition, p. 271.
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and the boundary conditions of the field reduce to those shown in
Fig. 2. To realize the general case where B V/By is different. from zero
on both sides of the electrode, it is only necessary to superpose a
uniform electric field parallel to the y-axis modifying U and V in
Eqs. (1) and (2) in such a way as to retain their conjugate properties.

U, the parameter, and function conjugate to V, has a very simple
physical meaning. Keeping U constant and taking V as parameter
in Eqs. (1) and (2) (or these equations modified as contemplated
above) gives the lines of electric force just as V=constant gives the
equipotentials, and the value of U associated with a line of force is
proportional to the total charge (per unit length) between the foot
of that line of force and the foot of the line of force for which U=O.
Along any line x=constant, in Fig. 2, the change in U between any
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two fixed points, as given by Eqs. (1) and (2), is the same as the change
in U, given by these equations modified to include the superposed
uniform field. Therefore, Eqs. (1) and (2), rather than the more
complicated modifications, can be used for the general case whenever,
as in the next section, changes in U along a line parallel to the y-axis
are involved.

The equipotentials given by Eqs. (1) and (2) are sufficiently plane
when y is somewhat greater than zero for these equations to be good ap-
proximations even when the parallel electrode, C, is near. For instance,
Eq. (2) shows that the equipotential V= —6lZ lies at y=6l at some
distance from the slit (x large, U large, ) and lies at y=6l(1 —1/144)
at x=O. In terms of potential, the potential of a conducting plane
at y=6l is too low at x=0 by Zl/24. When y is somewhat less than
zero, the electric field is so weak and the potential is so nearly zero
that the plane equipotential, A, may also be used there without al-
tering the field for our purpose.
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II. TRANSVERSE VELOCITY ACQUIRED BY A CHARGED PARTICLE

PAssING THRQUGH THE SLIT

A particle of charge e and mass m moving with high velocity parallel
to the y-axis is subject to a transverse acceleration due to the non-

uniformity of the field.
This acceleration is

~ t'B Vl
dt' m g Bx).=.

where V is the potential in the field and x' is the distance of the particle
path from the center line of the slit. Now the discussion above shows
that such non-uniformity is quite local, so that the particle acquires
the same transverse velocity in traveling from y = — to some point
near electrode 8 as in going from electrode A, the sheath edge of
Fig. 4, to the same point. Hence the transverse velocity acquired
will be

"BV—dt = ——
Bx flz

1 BV

y Bx

If y is large it changes but slightly in the neighborhood of the slit,
so y will be supposed constant and

x
~ BV ~ ~BU—dy= — —ay= —

~
V~

Bx nsy By my
(4)

where U is the function conjugate to V.
Eqs. (1) and (2) are applicable, as has been remarked above. From

them

U= —Ex', when y=+~, x=x'
U=O, when y= —~

Accordingly the total transverse velocity acquired in passing from
electrode A to electrode C (y = —~ to y = +~ ) is

xf = eEx'/my— (5A)

Now E is the electric field in the simple case corresponding to Eqs.
(1) and (2). It is equal to the difference of the actual fields on the two
sides of B so that

e(Eg+&)x'
xf-

my
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where E~ and E2 are the two fields, each being counted positive when

directed towards B. Expressing velocities as potentials and using
the mean field strength E = —',(Ei+82)

U V„=E'x" (6)

One conclusion from the preceding is that the particle has acquired
one-half its transverse velocity when it reaches theplane ofB. This
is obviously true for a symmetrical arrangement of voltages; any un-

symmetrical arrangement can be realized by superposition of a uni-

form field, hence it holds also for any other arrangement. In general,
however, this conclusion is not valid if the slit has finite thickness.

On the other hand, it is true that ii is given by Eq. (SB) no matter
what the thickness of electrode 8 and what the shape of the sides of
the slit so long as the slit s cross-section is constant. This follows im-

mediately from the fact that U at A and C does not depend on the
shape of the slit. Of course there is the difficulty of ass.gning an origin
of coordinates when the slit is unsymmetrical.

A further integration of Eq. (4) would give the lateral displacement
of the particle. Inasmuch as the calculation for the case of the hole
is simpler and the displacement in the present case is of no interest
here, that result is not calculated.

III. THE ELECTROSTATIC FIELD ABOUT A HOLE'

The problem is to find the potential distribution due to an infinite
conducting plane with a circular hole of radius u charged to potential
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+ V and placed symmetrically between two parallel infinite grounded

plates at a great distance away.
The limiting value of surface charge density on the central plate

far from the hole is taken to be 0 o, then the uniform density on

each grounded plate is ——,'o.o. A uniform density —ra is then

superimposed over the central plane and h'ole in addition to the charge

already existing, and to compensate for this —~|70 is removed from
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each distant grounded plate. The central conducting plane is there-

by brought to zero potential, and the problem is changed to: An

infinite grounded conducting plane has a circular hole in which is
placed a disk charged with a uniform density of negative electricity.
Find the potential distribution.

The general nature of the distributions of potential V and charge 0.

are indicated in Fig. 3. It can be proved by direct substitution that
a solution of Laplace's equation in cylindrical coordinates is

V(r, s) = e *udu f(s)Jo(ur) Jo(us)sds
0

where f(s) is arbitrary; V vanishes for s=+~, and for e=0 is

V(r, 0) = udu f(s)Je(ur) Je(us)sds =f(r)
0 0

The last equation is a consequence of the Iionrier-Bessel integral
formlla analogous to the Fourier integral in the case of circular func-
tions. Thus f(r) is simply the potential distribution in the plane s =0.
Taking the hole to be of unit radius, for convenience, f(s) =0 for s) 1,
and

U(r, s) = e *udu f(s)Jo(ur) Jo(us)sds (7)

Applying Gauss' theorem at the disk,

to Eq. (7) gives an integral equation to determine f(s) The sha.pe of
the curve for V in Fig. 3 suggested the solution

f(s) =3+1—s'

This is tried in the equation and found to satisfy it, giving for .A

the value —400. Hence the potential distribution in the plane a=0
is given by

f(r) = V(r, 0) = 4o p+1 —r' 0 ~ r ~1—
' Invaluable reduction formulae are found in Watson, "A Treatise on the Theory

of Bessie Functions, "
pp. 373, 54, and. 405, Nos. 2 and 7.
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The potential distribution for the modified problem is found by
putting this in Eq. (7) and reducing slightly

U(r, z) = —4ap
e "'(sinu —cozen

(
Jp(gr) dN, z & 0I & u )

The potential distribution for the original problem involving the
hole of radius a is then easily seen to be

V(r, z) = Vp—ap 2zz+ 2a
e "'i' sInn

cosQ
~

jp(ur/a)du z + 0 (10)
Q Q )

where Vp is the potential of the plate with the hole.
The equipotential surfaces given by this equation are more nearly

plane than those for the slit On .the axis of the hole Eq. (10) reduces to

S 2' 't

U(0, z) = Vp —p.
p 27rz+4al 1——cot '—

a a)
so that the equipotential

V= V) —2~(rpsg,

which lies at s'=a~ at a distance from the hole, lies at

2 a ( zq z~
1 ———

i
1——cot'—

~ s~E a d,

2 u'~

3m ~s')

at the axis. Thus the surface at s&=3a only decreases its distance
from the plane of 8 by 0.8 percent.

IV. TRANSVERSE VELOCITY ACQUIRED BY A CHARGED

PARTICLE PASSING THROUGH THE HOLE

The expression for the transverse velocity can be written imme-

diately from inspection of Eq. (3)

er=— 8V 2edan-

=Br

ms
p

Evaluating this and introducing E gives the same results as in section II,
namely

rf —pEr'/rn——z or V„V,=E r'

Watson, p. 405, No. 3, used twice, once integrated with respect to b.
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The similarity between this case and the slit case extends further.
Here as there the particle acquires one-half its transverse velocity in
reaching the plane of 8 in the ideal case of zero thickness of B. Here
also the total transverse velocity acquired isindependent of the elec-
trode thickness and the hole shape as long as the hole has circular
symmetry. This follows from the existence of a "current function"
which has been defined by Stokes for three dimensional problems
concerning configurations having axial symmetry. ..This function is
analogous to the function U conjugate to the potential V in two
dimensional problems.

V. MEASUREMENT OF THE CURRENT DENSITY IN A BEAM

OF HIGH VELOCITY ELECTRONS

Under certain conditions the electrons which leave the incandescent
tungsten cathode in a low pressure arc travel with nearly equal velo-
cities in straight lines radially from the filament. One way of col-
lecting these without at the same time collecting the random low

velocity electrons and without introducing reHection errors is by using
the present double electrode scheme. The potential requirements here
are that a low negative voltage Vg be put on 8, and a low positive
voltage Vq be put on C. These potentials are relative to the sheath
edge which serves as electrode A, V~ must be sufficient to repel all

low velocity electrons, V& must be sufficient to repel all positive
ions, and the electrons must be moving parallel to the hole axis.

All the fast electrons which are headed for the hole pass through
it and reach C. In addition some electrons which are directed toward 8
just outside the hole are displaced inward so that they penetrate the
hole. The decrease in radia1 distance which enables an electron to
graze the edge of the hole can be calculated readily on the assumption
that 8 is infinitely thin and with the approximation that the trans-
verse field is the same along the straight line path r =u as along the
actual path. Thus the displacement at the hole is given by

evaluating this' it is found that

Ar' Q2 aeE Q2 aE aE-= .075
a 3x mi 6m Vg) —Va VD —Va

(12)

~ Watson, pp. 54 and 403, No. 2.
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where VD is the potential, intrinsically negative for electrons, neces-

sary to reduce the drift velocity ~ to zero. The difference VD —V& is
' ~

used instead of V~ because it is the value of & at the hole which is
significant. The effective area of the hole is then fractionally greater
than the true area by

AA/A = —2 Ar'/a=0. 15 aE/(Vs Vi)) (13)

It is to be noted that whereas the field, E2, between 8 and C is given

by (Uc —Vs)/8, where 5 is the electrode separation, the field, Ei
on the sheath side of 8 is more nearly —4Vs/3o, c being the sheath
thickness, on account of the space charge there. Accordingly

t ( 4 Vs Vc —
Usl~———+

3 o
(14)

As an example, consider the following case: hole radius, a =0.0125 cm;
sheath thickness 0. =0.0375 cm; electrode separation 5 = 0.075 cm; Vgg =
—10 v. ; Vg=+10 v. Then Ei ——356, B2=267 and aE=3.9 v.

Calculating AA/A in percent for various values of Vn the follow-

ing is found:

VD .'—100 —50 —30 —20
DA/A: 0.0065 0.015 0.029 0.059

The true electron current density in the beam is found by dividing
the current to C by A(1+AA/A).

If the hole has appreciable thickness the side of 8 with the stronger
longitudinal field has the stronger transverse field, and, therefore,
contributes the major part of the transverse velocity. In the present
example, the sheath-side field is the stronger on account of the space
charge there. Accordingly DA/A as calculated is too small.

Electrode 8 collects all the ions which strike it but reflects some
of the electrons. The ion component can be determined by the method
of section VIII and in other ways. Thus it becomes possible by com-
paring the electron current densities to 8 and C to determine the
reHection coefficient of B for electrons of diffe'rent voltages in the
presence of gas and ion bombardment.

VI. MEASUREMENTS ON THE RANDOM ELECTRONS IN AN ARC

The random electrons, having, presumably, a Maxwellian dis-
tribution of velocities, can be investigated in the absence of drift
electrons with essentially the same potential arrangement as in the
previous case. When the electric fields on the two sides of 8 are equal,
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the surface of minimum potential (m.p.s.), which caps the hole, be-
comes plane and the potential at any point on it is given by

V = Vs+ (2E/7r)+a' r'—

A general theorem pertaining to Maxwellian distributions, which is
discussed in a forthcoming paper by Langmuir and Mott-Smith,
Jr. , applies here in all cases where V(0 over the minimum potential
surface. In this case, the entire hole constitutes a collector which repels
electrons, and there will be no "interior orbits" for the electrons be-
tween sheath edge and B. Accordingly the electrons in the plane
m. p.s. have a Maxwellian distribution of velocities and a density
which varies according to Boltzmann's equation. The current, there-
fore, which Hows through the hole is

zg —I

Using (15) to integrate and then (14) together with the substitutions

gi = —e Vs/k T, g2 ———e( Vc—Vs)/k T

we obtain

ic=7ra'1 e~C(v) (16)

Since elections are involved e is negative. Besides, it has been as-
sumed that V& is negative and V& positive. Hence g2 and v are always
positive, and gi negative.

From the form of Eq. (16) it is seen that C'(v) is the ratio of the
currents per unit area to the hole and to electrode 8 (assuming no
reHection), and since lnC is an almost linear function of v whose de-
rivative changes only from 2/3 at v =0 to 1 at v = ~ it follows that the
slope of the ln i, against Vs (q2 constant) characteristic will differ
from its usual value in other cases, namely, s/kT, by a nearly constant
amount. It will correspond to a higher temperature.

When V~ is made rather large so that v is large, the equation of the
characteristic is

2~'uI
ZQ— ggn&/~~ gn&(i 4+/3~~)

—4&,/3~y &,/S
(17)'

See the discussion following Eq. (23) for a necessary modification to this equation.
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which shows that for q2 constant, ln z, is nearly a linear function
of qy whose slope is

dlnz'g 4a d—= 1———(g)/0), nearly.
dpi 3~ dpi

Since 0 is proportional to qI"" this becomes

dlnic/dq& ——1 —a/3x-o, nearly. (18)

Consequently the temperature determined from this slope is slightly
greater than the true electron temperature in the ratio 1: 1 —a/3s. o.
Practically, g& and g2 cannot be made very small because of incal-

culable changes in the sheath field, but it is instructive to consider
the case. Eq. (16) becomes

and

'.=-"I" 1+—
I
—-+ —

l3s& 30 h)

dlnic/drI& 1——2—u/9m 0. , nearly,

giving again a temperature slightly greater than the true one, now

in the ratio of 1:1 —2a/9~0. Accordingly the slope of the character-
istic consists of a constant corresponding to the true temperature
less a correction term which is small (not over 3.5 percent since 0

must not be less than 3a) and inversely proportional to the three-

fourths power of U~.
If now the sheath edge potential and the positive ion current

density are known (from measurements on the positive ion current
which will be discussed below in section VIII, for instance) so that Us

and Ug are known, and 0 can be calculated, everything but I in

Eq. (17) is known and the electron current density can be found.
Three factors affecting this method and introducing certain cor-

rections must be treated in greater detail. They are, first, the effect
of the random ion velocities on the electric field and sheath thickness;
second the condition that the fields on the two sides of 8 should be
equal, and third, the condition that the potential everywhere over

the hole shall be less than zero.
The presence of initial velocities among the ions changes the space

charge equation7 to

Ip=5.44X10 '(—Us)'12(1+p)/+Ma' (21)

& Langmuir, Phys. Rev. 21, 419 (1923), Eq. (17).
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where M is the molecular weight of the ion, and

p =0.0247+ —T+/ Vs (22)

T+ being the positive ion "temperature. " From this it is found that

4 V~ 1+@
3 0' 1+8+

(23)

Thus Eqs. (17), (18), (19), and (20) should be modified by replacing
1/o by

1 i+p,
0 1+8P

For o, Eq.. (21) gives

o =7.37&(10~(—Us)z"+1+@/M'"I "'
The condition that Ei =Z2 is seen to be

4 V~ 1+p, Vt.-—V~

3 a 1+8@

and using (24) it becomes

Va —Vs 4 M'"Iy'"( Vs)'" /1—+p,

3 7.3/X10 4 1+8@

(24)

(25)

(26)

The theory has been worked out on the basis of keeping Vq —V&

constant, so that if a run includes an X-fold variation of Vs and (26)
holds for some mean value of V& then (26) will be out each way by
the factor ¹I'at the extremes. This results in a bulging of the m. p.s.
so that its center lies at a distance so from the plane of 8 given by
the equations

2 f zo/a -+« - ("/.) )
F-./~. =«+»/(1-~)

z. \. 1+zpz/az

or approximately by

1+1.274zo/a —1.70zo'/a'
g,/g, —

1—1 ~ 2 74zo/a

(27)

(28)

which. makes Zz/Z& 5 percent too large for z0=.4a and 8 percent
too large for so ———.4a. The potential at the center of the m. p.s. is

V = Vs+2aZ/z (1+so'/a') (29)
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A permissible error of 1 percent in V allows an error of at least I percent
in the second term of the right member. This in turn allows so/a to
be as great as 0.1 and Ez/Ei to be 1.29 by (28). But this is 1V"',
so that Vs may have a (1.29)'=7.7-fold variation when properly
chosen without exceeding the 1 percent limit set above.

Finally, the condition that the center of the m. p.s. shall be negative
is given by Eq. (15).

Vc —Vs 1 —4a/3m. o. n b
nearly,—Vs a/ir8 a

the effect of initial ion velocities being neglected. Inspection shows
that when condition (25) is satisfied this condition is satisfied also
since 0/a ~ 3.

VII. MEASUREMENTS ON POSITIVE IIONS: CALCULATION OF THE VOLT-

AMPERE CHARACTERISTIC OF IONS COLLECTED ON C

It was noted in the preliminary remarks that to make measurements
on the ions V& must be su&ciently negative to keep any electrons

—?onLzed Cns-
jo~g wit/ paxWel)ten Vglot ~I:A@5

'IJ =- 0 $hea.t

Vp

Large f1eg

Vc

Peat' Ze~a

Fig. 4.

from reaching C. The situation as regards the ions is illustrated in

Fig. 4 and may be described as follows: An ion of a certain I, v, m

velocity class (u perpendicular to the electrodes, s and w parallel to
them) leaves the ionized gas, is accelerated by B, is given an added
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transverse velocity by tl-. e hole, and is then retarded by C so that it
may not reach C. The v velocity axis is chosen in the sense and direc-
tion of the radius vector, r, from the center of the hole to the point
at which the ion path cuts the plane of the hole. The transverse
velocity r' acquired by the ion increases its "transverse energy" by
—,'(r'+2rv) and decreases its "longitudinal energy" by the same amount,
Hence only when

-u' —-r' —rv~ e Vv/m1 .
1'

2 2 (30)

is the ion able to reach C, Vq being the retarding voltage on C. From
Eq. (11)

e

rf=ur', u= —eE/ms, a constant

so that the relation (30) can be written

suer" +nr'v (su' eVv/—m—) ~0 (31)

The two roots r„r, (r, (re) of the equality partially fix the respective
radial limits p& and p2 between which an ion of a certain velocity
class in a certain retarding 6eld (Vc) must pass in order to be col-
lected. But besides the mathematical relations

pl='fr p2='f2 (32A)

there are the additional dominant physical limitations on p~ and p~

0&p, (p2& g (328)

Now the effective area of the hole for (u, v, ev) ions is

v(p, ' —p, ')

Accordingly the current of (u, v, ev) ions is

i„„„=2h'h, ",m'I+ (pee pP) u exp [—h'— muhe"m(v'+ w') ]du dv dev (33)

the u velocity distribution being characterized by a different tempera-
ture from the v and m velocity distribution because in the body of the
discharge there is a small electric field perpendicular to the electrodes
which makes the longitudinal components of velocity greater. The
relation between the h's and temperature are given below Eq. (368).

Denoting the sum of (pee —pp) for a positive and an equal negative
value of v by A, and using the variable

u' = u' —2 e Vc/m
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(u being the final u velocity before impact on C of an ion passing
through the middle of the hole), (33) becomes

f~, =2+sh"mh'rNIpe '""r~ Ae exp( h—'rscP h—"mv')duds (34)

after integration for all values of m. The limitations on p~ and p2

imposed by (31), 32A), (32B) necessitate breaking up the I, s plane
into several sections for the integration of (34) as shown in Fig. 5.

LA2 Pl
F

p!
&I

P„

+LA

Fig. 5.

The values of the A's there given are the values appropriate to a
hole all points of which are at the same potential. This is not true
of the actual situation, the potential in the hole being variable and
given by Eq. (15), Within the mathematical limitations of the present
theory, it is suKcient, except in Eq. (39B), to write

where

Q~+ 282
A, =48 QFP+s—', A, =28

S2 e2

2
8 =1+2'/~Vs =1—g V,/ —V~ . (35)

The integration limits are 0 and + ~ for v and —2&Vc/I and +~
for zc'. For accelerating potentials, Vg(0, that is, the lower u limit
lies to the right of the v-axis as indicated by the dotted line, while for
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retarding potentials, Vc&0, that is, the lower u limit lies to the left
of the v-axis. Practically, as long as 2v Vo/m is considerably less than
a' n' and k'm a'n'& &1, the integration may be simplified by taking
Ap ——A. and A, =A, =A, .

The integration then gives

zc
i = —8—( Vo+ V'+ V")

Vg
for —V&« Vv&0 (36A)8

ic t Uc Vc Ii= —e —
( V"exp——V'"exp —

~
for V, &)Vo&0 (36B)'

V,(V' —V") & V' V")

Here i, = ma'I+, is the constant ion current when all ions are collected;
V, =m(na)'/2c is the voltage equivalent to the transverse velocity
acquired by an ion grazing the edge of the hole; V'= —1/2h'v=
—hT'/s is the reciprocal of the slope of the semi-log plot (base e)
corresponding to the temperature 1' of the longitudinal velocity
distribution; and V" = —1/2h"s= —hT"/e is the same for the trans-
verse velocity distribution.

The behavior of i for values of Vo less (more accelerating) than
those covered in (36A) is very complicated except when V" =0 and
therefore the general case will not be dealt with.

When transverse and lougituCknal temperatures are equal (36B) re-

duces to

2c Vci= —8—(2U' —Uo) exp —,
Vg V/

for V'=U", V» —V', V»Uc~0 (37)'

the equation of a curve on a semi-log plot which has half the slope at
Vc=0 that it has at Vc= ao and only approximates to a straight
line of slope 1/V' for large values of Vo.

When the transverse temperature ss zero, V"=0 and the Eq. (368)
gives a straight semi-log plot of slope 1/V'. In this case it can also
be shown that

z —$c for Vc& —V, (38A)&c, Uc+ Vgi= —e—V, +V' 1 —exp — forV, » —V', U«Vv&0 (38B)
Vg U/

See section IX, $/8 and C.
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S'hen bo/h transverse and longitudAsal temperatures are sero but the
ions have a longitudinal drift velocity corresponding to VD volts
the equations for the volt-ampere characteristic become

Z —Zg

Zg
i = —e —(V,—Vo) for Vo —V, ~ Vo~ Vo

Vg
(393)'

i=0 for U|.-& UD

Here 0' is similar to 0 except erst, that the value of E to be used

in it is that corresponding to V~= VD instead of V~=0, and second
that when V~ leaves the neighborhood of VD and approaches VD —V&,

8' increases and approaches 1. tl

VI II. MEASUREMENTS ON POSITIVE IONS: INTERPRETATION OF

EXPERIMENTAL CURVES

A. The potential of the discharge with respect to the anode The.

voltage readings, E&, do not give the position of Vt.-=0 for they
measure potential from the anode which is a few volts negative with

respect to the discharge itself. It follows that the reading on the Eo
scale of the line V~=0 is the potential of the discharge with respect
to the anode. Now, Eq. (36A) shows that if a linear plot be made of
the volt-ampere characteristic, a portion of it up to Vq=0 will be
straight. The curves of Fig. 6 obtained by Mr. C. G. Found using

a mercury vapor arc in a tube built by Mr. A. F. Dittmer show this
well. Unfortunately the deviation from a straight line is so slow at
small positive values of V~ that the actual position of Vo=0 cannot
be found by simple inspection of the curve.

A method for ending the point Vq=0 is to plot a certain root of
the deviations from the straight line, against Zq. The straight line

drawn through the resulting set of points cuts the Eq-axis at Vo=0.
The root to be used varies from the square root for V"/V'=0 to
the 2. 'Ith root for .2 g V"/V'51 and this results in an uncertainty in

the value of the discharge potential.
As an example, consider the curves of Fig. 6. Both the square

root and 2.7th root of the deviations are plotted as crosses, the inter-
sections of the straight lines through these with the axis are marked,

' These curves were made before any of the present theory had been developed and
no particular precautions in regard to the shape or uniformity of the holes in electrode B,
to the measurement of the distance between 8 and C, or to the accurate measurement
of the small ion currents at the higher retarding voltages were made. Experiments in
which these precautions are being observed are under way.
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and it is noted that the uncertainty is about 0.1 volt. For curve A,
Eg, at Vg = 0, lies between 3.6 and 3.7, while for curve 8, Bq at V~ ——0,
lies between 3.7 and 3.8 volts.

B. The fundamental transverse voltage, V, . The slope of the linear
portions of the characteristics in Fig. 6 is ef—,/V, . Since f, is known

lo

/
0 P

Fig. 6.

in each case, V, can be calculated by using Eq. (35) and is found to be
1.9 and 2.2 volts respectively for curves A and B.

An independent calculation of V& can be made using Eq. (11),8 being
calculated by Eq. (14) with Vv ——O. The distance between J3 and C

was not, unfortunately, accurately known, but lay between 0.1 and
0.2 cm and was estimated at 0.15 cm for the held strength calculation.
On this basis it was found that:

For curve A; V, (calc) =2.4 v. , V& (from curve) =1.9 v.
For curve 8; V~ (calc) =2.65 v. , V& (from curve) =2.2 v.
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a satisfactory agreement in view of the uncertainty of hole and size

and electrode distance.
C. The voltage V' corresponding to the "longitudinal temperature, "

T'= —11,600 U'. Eq. (368) shows that when a semi-log plot of the
volt-ampere characteristic becomes straight at positive values lof

Vc, then the reciprocal of the slope is V'. The experimental difficulty
is encountered that the determination of this quantity depends ton

the smaller and, therefore, usually the less accurate current measure-

20

/y
0 O
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4c
OOO 0

0
0

0 0

4ZO

tt: go
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g.0 3.5
VOL, 7 S gc.
Fig. 7.

ments. This trouble appears in Fig. 7, the semi-log plot of the observa-
tions already shown in Fig. 6. Using the straight lines drawn here
as the best approximation:

I

For curve A; V' = —0.32 v. , T' =3360'K
For curve B; V'= —0.45 v. , T'=5200'K.

D. The voltage V" corresponding to the "transverse temperature, "
T"= —11,600 U". Eq. (36A) shows that the intercept of the Zc-axis
in Fig. 6, which is terminated by V|.-=0 at one end, and at the other

by the intersection of the straight line plot continued is the quantity
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—(V'+ V"). This relation may be used to calculate V". Assuming
that the value of Eq corresponding to Vg=0 is, for curve A, 3.6 v.
and, for curve J3, 3.7 v. , and noting that curve A intersects the Zg axis
at 4.1. v. and curve 8 at 4.4 v. , we have

For curve A; U" = —0.18 V. ,
'1"= 2100'K

For curve 8; V"= —0.25 V., 1"=2900'K.
Even if the other values of Ez, namely 3.7 and 3.8 v. had been used,

the ratio V"/V' would still have exceeded 0.2, showing that 2.7 was
the correct root of the deviations and that the proper values for E~
were used above.

A further approximation to V" can be made using (36B) by solving
it for the V" which appears in the denominator, using an approximate
value of V" in the term involving the exponential and using a value of
i at which the second exponential term is relatively small. Thus for
curve 8 atZg=4. 4 v. , i =1.1@a., it is found that V" = —0.24. Accord-
ingly T"=2800'K and T"/T'= V"/V' =.53.

E. The decrease in i when Vo~ —V&. Eqs. (38) show that when
V" =0, i is constant up to —V&. But the existence of initial transverse
velocities results in some ions being cut oB prematurely so that a
decrease in i at —V& indicates a transverse temperature diA'erent from
zero. In the present case part of the decrease must be ascribed to non-

uniform hole size which affects the characteristic shape most vitally
in this region. Accordingly this portion of the present characteristics
is unsuited to interpretation. Even in the ideal case, however, the
theoretical equation for the current is very complicated in this region
and also subject to errors listed in section IX, f)B and C, so that any
quantitative interpretation appears impossible.

IX. MEASUREMENTS ON POSITIVE IONS: ERRORS

AND EXPERIMENTAL PRECAUTIONS

A. The condition V, ))—V' of Egs. (36) and (37). The necessity
for simplifying the integration of the ion distribution equation led to
this condition. By taking A, =A, =0 an upper limit to the error is
found to be about 4 percent for V& = —5 V', but the actual situation is
much more favorable than this. Probably the best criterion of the fulfill-

ment of this condition is the straightness of the linear plot, Fig. 6.
B. Effect of ion patks not parallel to hole axis The io. ns which go

through the hole follow paths which deviate appreciably from parallel-
ism with the hole axis. Insofar as this arises from the "transverse
temperature, " it is small, about gV"/Ve or 0.045 radians in the case
of curve 8, and its effect is negligible.
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The non-parallelism which arises from the acquired transverse
velocity itself is only slightly larger, but its effect is not negligible.
It results in a change in the effective area of the hole, which can be
calculated from Eq. (13). Un= —V' may be neglected so that AA/A
=.15 aE/Ve ———.022 for curve B. That is, the effective area of
the liole is 2 percent less than its true area. But cases in which this
error is appreciable may arise. An examination of the integration lead-

ing to Eqs. (36A) and (368) reveals that the hole size is not involved.
This quantity enters only when the final substitutions listed under

(368) are introduced. Accordingly the difficulty can be readily analyzed

by more exact definition. Retaining the definition of i, as the total
ion current through the hole it becomes necessary to append the factor
I+AA/A to the mathematical expression fori, which follows Eq. (368).
This introduces a correction coefficient of 1 —AA/A which is to be
applied to the right members of Eqs. (36A), (368), (37), (388), and

(398). The values of Vi (from curve) of section 88 are thus 2 per cent
low. None of the other calculations based on the experimental curves is,
however, affected by the non paralleli-sm of the ion path and the axis of the

hole.

C. Thickness of the hole. In sections II and IV it was concluded
that neither the depth of the orifice nor its shape, provided it was
of the proper symmetry, has any effect on the transverse velocity
acquired by an ion whose path is perpendicular to j3. The path is
not perpendicular to B primarily on account of acquired transverse
velocity, so if the hole is cylindrical and has appreciable depth the
radial distance at which the ion enters it is less than the radial distance
at which the ion leaves it. Such an ion acquires a maximum transverse
velocity when it 'grazes the edge of the hole as it leaves. The radius

appropriate for calculating this velocity is the mean of the radius of
entrance and the radius of the hole itself. This mean radius is seen to

be a 4tV V,/Ve —[or a(—I+tE/4Ve) by Eq. (11)]. Here again the
hole size is involved, and the reasoning of )8 applies. But since here

the maximum acquired transverse velocity is not directly observed,
the mathematical definition of V, as it appears below Eq. (368) will

be retained. Accordingly no change has to be made in the equations
because of this change in effective radius. There is, however, an

accompanying decrease in the effective hole area which allows ions

to pass. The complete fractional increase (algebraic) in area is by
Eqs. (13) and (11)

hA/A —t/a+V&/ Ve or —gV, / —V&(0.15—+t/a) (40)



FLOW OF IONS THROUGH AN ORIFICE 125

where t is the depth of the cylindrical part of the hole. In the new

experiments which are contemplated it is planned to make the holes
conical so as to reduce t to zero.

The initial transverse velocities of the ions also cause the ion paths
to deviate from the perpendicular, the effect here being to reduce the
effective area of the hole for ions having v&0 and leave it unchanged
for ions having v &0. As this only involves one half the ions, and as

V&» —V", any error from this cause is quite small compared with
those already dealt with.

D. Equivalence of mathematical and physical equipotentials In o.rder
that the mathematical solution of the Geld about a hole (slit) should

correspond to the physical conditions it has been pointed out in

section 3 (section 1) that the distances, sheath edge to electrode 8
and electrode 8 to electrode C, should be at least 3 radii (3 slit widths).

E. Return of ions through the hole. Any ions which are not collected
by C and re-enter the sheath through the hole in 8 increase the space
chatge there and decrease the primary ion current. As the space charge
conrribution of the returned ions relative to the space charge contribu-
tion of the primary ions at any point is equal to the density of returned
ions relative to that of primary ions at that point, an estimate of this
error is easily made. Neglecting the initial transverse velocities of the
ions for the moment, that is, assuming that all ion paths in the sheath
are perpendicular to 8, the transverse velocity acquired by an ion in

passing through the hole at a distance r' from the center corresponds to
an angular deflection of the path at 8 of QV, / —Ve radians, U„being
the acquired transverse voltage. The distance traveled before the ion
reaches 8 again is 25 (3 being the electrode separation) and consequently
the lateral displacement of the ion when it again reaches the plane of
8 is Aqr=2 25+V„/' —Ve, assuming that it follows a parabolic path.

The density of returning ions relative to outgoing ions is then
r"/(r'+A, r)' at 8, and this can be evaluated using the above equation
together with Eq. (11) and calculating E as in section UI, )B. Since,
however, the returning ions contribute most effectively to the space
charge when they are near the sheath edge the calculation of their
radial distances must be carried one step further, that is, into the
sheath once more, noting, of course, that in repassing the hole the ions
acquire additional transverse velocity. To calculate the relative space
charge contribution of these ions their relative density one quarter
of the distance from sheath edge to electrode 8 was selected as a fair
average value. As these ions have insufhcient longitudinal energy to
penetrate the sheath edge they are rejected from it and make a second
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space charge contribution as they return to 8 which must also be
added. The computation shows that the relative space charge con-
tribution is a function only of the ratio of electrode separation, 8, to
sheath thickness, cT. It has a maximum value amounting to 0.7 per cent
when 8/a =0.'t and drops to 0.35 per cent when 8/o equals either 0.2 or
2.5.

Turning now to the effect of the presence of random initial transverse
velocities it is seen that this has the general tendency to decrease the
returned ion density, and therefore to decrease the error. Under all

circumstances, then, the return of ions through the hole may be
neglected.

F. Ls'mits'ng of ion current to C by space charge. With an electrode
separation greater than the sheath thickness it is evident that if B
were perfectly transparent to ions, then theoretically no ions could
reach C on account of space charge. Experimentally, however, there is
only a narrow beam of ions Howing through a space devoid of charge,
and this beam tends to diffuse on account of initial and acquired
transverse velocities. It is evident that the thinner the beam is in the
sheath, the greater the separation 6 of the electrodes relative to the
sheath thickness, 0, may be. The condition that space charge limitation
shall not set in may, therefore, be roughly expressed as b/a —~oK/ aor

b/ao' ~xwhere r. is a constant. In the present case b/o =2, o./a=6,
hence 8 a/a=21 3/. Taking this as the maximum advisable value the
condition above becomes

b/a~o1/3 (41)

G. Reduction of potential at the center of the hole by space charge If no.
non-uniformity is introduced into the space charge distribution in
front of B by the hole, this charge gives no transverse Beld and cannot,
therefore, change the potential at the hole center except insofar as the
Field Ei is affected, a factor already dealt with in Eq. (14). But the
ions which have passed through 8 have a non-uniform distribution
and may affect the potential. Assuming, (1) a uniform field between
8 and C to calculate the ion velocities, (2) that the ions form a cylindri-
cal beam behind 8, and (3) that the density of ions returning from C
is negligible, it is found that the change in potential sought amounts
to only a few millivolts in the case of curve B. Accordingly it is most
unlikely that this factor would ever become appreciable.

H. Egect of s'on repulsion On account of.the concentration of charge
in the beam, any ion which is not on the beam's center line is subject
to a transverse repulsive force which tends to diffuse the beam still
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(43)

more and by increasing transverse velocities, reduce longitudinal ones.
No really satisfactory estimate of the magnitude of this effect has
been made on account of numerous complicating factors. But in order
to understand the situation better, a calculation based on certain
simplifying assumptions has been made. It is easily seen that the only
class of ions which is of interest is that composed of ions which just
reach the plate at some fixed collector voltage. Assuming that the
beam suffers no diffusion such as dealt with in ftE, those ions of this
class will be most affected which travel along the outside of the beam.
%e consider these ions only. The predominating part of the repulsion
velocity acquired by such an ion will be acquired while the ion is moving
either most slowly or in the vicinity of the densest space charge. Both
conditions occur at the same place, namely, in the vicinity of the
collector. On this basis the following assumptions were made: (1) the
ion beam is bounded by the right circular cylinder which has the hole
for a base, as already mentioned above, (2) an ion acquires a negligible

repulsion velocity until it is within a distance of the collector of the
same order as the radius of the beam (hole), (3) on account of the
electrical image of the beam in the collector, the charge effective in

repulsion is that in a cylinder cut from the beam which is bounded by
the planes x=x~/4, x= 7x;/4 and of diameter 3x;/2, x being distance
from the collector, and x; being the x of the ion, (4) the repulsive force
exerted by this charge is that of a sphere of uniform charge density,
of the same total charge as the cylinder, of the same diameter as the
cylinder, which is tangent to the cylindrical beam boundary at the
ion, i.e. , x;, (5) the charge density in the beam is given by the space
charge equation treating the collector as a plane cathode and using

the current density to electrode B.
Then for mercury ions it is found that the voltage corresponding to

the repulsion velocity is

Vg" =8.43X10'I '"a " (42)

For curve 8, Fig. 7, I+ ——8)&10 ' amps/cm', @=0.0125 cm. Hence
Vg" ——0.21 v.

Contrary to assumption (3) the repulsion velocity acquired by the
ion in travelling from x; = 3c to x; =c is not negligible, though less than
this. Assuming the charge between x=a and x=3a (as given by the
space charge equation) to be redistributed uniformly throughout a
sphere of radius a which is always tangent to the beam boundary at
the ion as the ion travels from 3a to a, it is found that

Vz' =3.88 X 1.0'P/'a4~'
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whence V~'=0.097 v. , and the total repulsion voltage is

v =(gv. , +Qv.")'=0.59.

This is very large compared, for instance, with V" which is 0.24 for
this curve. A re-examination of the assumptions shows that (1) is
certainly not fulfilled and (5) is open to doubt. lt is not unreasonable,
however, to suppose that the actual space charge, including ions
returning to 8, if confined as contemplated in assumption (1), would

be near enough on the average to that given by assumption (5). Accord-

ingly, attention must be confined to (1). The considerations of (E
show that three quarters of the way from 8 to C only a fraction, ), say,
of the iona lie within the cylindrical boundary of assumption (1).
Accordingly, the actual force exerted on the ion by the charge inside
the cylinder is certainly less than ) times the calculated force. X is

given by the approximate formula )i=.29o/S, in the range 1.4(8/o
(4.0. But the repulsive force of ions outside the cylinder balances a
portion of this force, say Q)i. Thus the actual force is V" of the cal-
culated force, and hence the repulsion voltage is V or 0.024 (o/8)' of
that calculated. In the present case Vg becomes 0.59X0.003 =0.002.
This, if correct, is small enough compared with V" to be neglected, but
the uncertainty involved demands that an experiment with ions or
electrons of known temperature be done. With the above corrections
the repulsion voltage in terms of the molecular weight, M, of the ion
becomes

Va ——991IP "I+'"a'"(o/5)' (44)

Summarizing the factors which vitally affect the interpretation of
an experimental curve in the form of conditions to be satisfied, we have,
from the paragraphs noted~

A. V&)) —V' (Validity of integration) (45)

1 .82 X 10 8 VgP"—(Space change limitation)
a 3Ia'I+

V// ))99M'"I+"'o'"(o/6)' (Ion repulsion)
V/

(4~)
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