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BATEMAN'S EXTENDED ELECTRODYNAM ICS, AND THE
MASS AND RADIATION REACTION OF AN ELECTRON

BY MEYER SALKOVER

ABSTRACT

From Bateman's earlier stress-energy tensor, there are deduced by analogy
with the momentum and energy equations based on the classical electromag-
netic stress-energy tensor, an extra-classical body-force and a condition that
may be understood to state the conservation of charge in combination with the
Lorentz transformation. It is then shown how this procedure may be reversed
so as to derive, from the new body-force and the condition just mentioned,
Bateman's tensor with all of its components physically interpreted. Next the
mass and radiation reaction of an electron in non-uniformly accelerated,
non-periodic motion are calculated from the force (classical and extra-classical)
exerted on it by its own field, on the assumptions that the electron is spherical
in a rest-system and has a centrally symmetrical distribution of charge. Both
come out zero. The result for the radiation reaction is new. Finally the same
result for the mass is obtained from the total momentum of the field of an
electron in uniform, or quasi-stationary, motion. The present method differs
from one recently published by Bateman in not using the restricted relativity
transformation for tensors, and in requiring of the distribution of charge only
that it be centrally symmetrical.

INTRoDUcTIQN

0 the stress-energy tensor T' of classical electrodynamics, compris-

ing the stress-system X,', X„'. . . Z, ', the energy-Hux (Poynting's)
vector S' and related density of momentum G' and the energy-density
8" as deducible from the equations of Maxwell and Lorentz, Bateman
has successively added new tensors' designed to remedy defects of the
classical theory. The fundamental one of these tensors, and the only
one that will be considered here, is T', having as components

g2P
S '=C26, = —2P--

BxBt

' H. Bateman, Phys. Rev. 20, 243 (1922); Bull. Nat. Res. Council, 24, p. 99 (1922);
Messenger of Mathematics 52, 116 (1922); Ibid. 53, 145 (1924); Phil. Mag. 49, 1 (1925).
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where P is a retarded scalar potential dehned by

and consequently satisfying the diAerential equation

B'f O'IIt O'P 1 O'P
+ +Bx' By' Bs' c' Bt'

Since the right side of this equation is an invariant with respect to the
Lorentz transformation, as is also the differential operator on the left
side, it follows that the potential P is such an invariant. The tensor T'
is then readily shown to be a symmetrical world-tensor' with the same
transformational properties as T'.

The components of the body-force associated with T' are determined

by relations of the type

BX BX„BX, BG
+ — -+-

Br By Bs Bt

which are identical in form with the relations between the classical
body-force

1
F =p(E+ —y&&H)

and the tensor T'. The results may be combined in the vector equation

F'= 20m }pv'I (~'/c2) }—
Corresponding to the classical energy-equation, we have also

BS"
v F'+divS'+ — =0

Bt
provided that

lt —IP+ I —(c'/c') }=0

(2)

(4)

It is possible to proceed in another manner, following the usual treat-
ment of classical electron theory. If we assume Eq. (2), then by an inte-

gration of F' over all space and a reduction by means of Green's

Theorem, the expressions previously labeled as X ', X„'. . . Z, 'and 6'
are obtained and seen to have physical meanings consistent with the
names assigned to them. Details wi11 not be given; the process, though
rather lengthy, is direct, and offers no essential difficulties. Eq. (I) fol-

lows as a corollary. In the same way, starting with an integration of the

~ M, v. Laue, Die Relativitatstheorie, 4. AuA. , 1. Bd., p. 102.
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activity of the body-force, I' ~ v', we can derive the rest of the tensor
T' and Eq. (3), if

d—[p+1—(c'/c') [ =0 .
dt

The last assumption, which is not altogether the same as Eq. (4), may
be granted, since it amounts to the conservation of charge as combined

with the Lorentz transformation.

MASS AND RADIATION REACTION

The reaction on an electron of its own Beld will now be considered.

The electron will be taken as spherical when at rest, with a volume

charge distributed symmetrically about the center, but otherwise

arbitrarily. The motion of the electron will be unspecified except for

the supposition that there is always a reference system of the type dealt

with in the restricted theory of relativity in which the electron is momen-

tarily at rest, with acceleration and derivative of acceleration not varying
from point to point, and that, relative to this system, the electron is

spherical and has the stationary distribution of charge.
On these assumptions, the classical reaction, so far as it depends on

the acceleration (f) and derivative of the acceleration (f), is'

(f/6vc') J pdV J p'dV'(1/(R'+R" 2RR'cos 8—)'")+e'f/6rrc'

where p and p' are the densities of charge at volume elements d U and d U'

which lie, respectively, at distances 8 and R from the center, along radii

vectors enclosing the angle 0.
To get the extra-classical reaction, we start with Eq. (2). Here, to

allow for the rest-system used, we put v =0. The part of P due to element

of charge de at a field-point relative to which the position of de is given

by the vector r is

de [+1—(v'/c') ]/4vr [r(1+(r v/cr)) I

where the bracketed quantities must be assigned the values pertaining

to the previous time t —[rj/c. This expression, reduced by means of
known series expansions4 so as to involve only magnitudes evaluated at
the time t becomes, as far as terms in f,

delt'1 1 f. r 1—
I
—+ f ~

[4z & r 2 rc' 3c'

' L. Page, Introduction to Electrodynamics, pp. 5& 52.
4 Ref. 3, pp. 39, 40.
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Next, changing de to p'd U', multiplying by 2V'pdU, and integrating
twice through the electron, we have, omitting the electrostatic term that
contributes nothing,

f
dVcos a(f gp)

47rc'f

f
p cos g,dS

47'-c'

p'dV'(E'cos 8 —E) ef
+4R'1R"—2RR'cos 0 6~c'

p'd U'(R'cos 0—R)

4R'+ R' —2RR'cos 8 R=a

dp
cos'P d V

dR

ef
gpg ~cos PdS

6mc'

where a, tl are the angles between R, and f and f, respectively. The sur-
face integrals arise from the infinite discontinuity of V'p at the surface,
R=a.

By the use of Gauss' Theorem, the surface integrals may each be proved
equal to the negative of the sum of the corresponding classical and
extra-classical volume reactions, so that for any centrally symmetrical
distribution of charge (which may be very different from the distribution
designed by Bateman to secure equilibrium within the stationary elec-
tron') the f and f reactions vanish.

The vanishing of the f reaction is interpreted to mean that the mass is
zero, and this is in agreement with the result in the Anal section where the
case of uniform (or quasi-stationary) motion is treated. By introducing
(in the last three of his papers') new tensors to remove certain surface
discontinuities in the components of T'+T' for the stationary electron,
Bateman succeeds in rendering the mass diA'erent from zero—the actual
value obtained, regardless of the way in which density varies with distance
from the center, is three times the mass of a Lorentz electron with a
uniform surface distribution. But the f reaction remains zero. This
result seems to indicate that radiation is impossible. When, however, the

0

' This distribution is obtained by putting F'+F'=0 inside the stationary electron.
The advantage it enjoys over other distributions is that, when additional tensors are
introduced, it leads to the exact relativistic relation between energy of the stationary
field and rest-mass; without the additional tensors, this energy is zero, as well as the
rest-mass.

Bateman, however, repeatedly states that the resultant body-force should be postu-
lated to vanish everywhere. While this is in the spirit of relativity mechanics, it may
be pointed out that for the immediate purposes of his analysis such a generality is not
essential. In one of his papers (Messenger of Mathematics 52, 122 (1922)) Bateman
appears to make elaborate use of it, but his results there can readily be derived without
it.
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energy radiated by a point charge is considered, it develops' that the
energy radiation vanishes, on the average, only for periodic motion.

MOMENTUM OF THE FIELD FOR UNIFORM MOTION

That the mass of an electron is zero may also be inferred from the
vanishing of the total momentum of the field of an electron in uniform

(or quasi-stationary) motion. Batemanr obtains this result by using a
transformation formula applying to tensors in the restricted theory of
relativity. The momentum in question is thus shown to be a multiple of
the total energy of the field of a stationary electron with his equilibrium
distribution of charge, and this he has found to be zero.

Khile the argument can be modified so as not to involve any particular
distribution of charge, another deduction requiring only central symmetry
and using simpler relativity transformations may easily be made as follows:
As can be shown by changing to the reference system in which the uni-

formly moving electron is at rest, the electromagnetic momentum of its
field is

(gC') 'sin'8d V
c'V'1 —(s'/c')

where the integral is extended over all space. 4 is the electrostatic
potential due to the electron; d V is in polar coordinates so that 0 has its
usual significance, the polar axis being the direction of motion (velocity =
v) in the original reference system. It remains to calculate the extra-
classical momentum, whose effective density is

27 BPGs
c'v 8x8t

if the electron moves along the x-axis. The integration will again be
carried out in the rest-system. As may be inferred from the definit'ion

of P and its invariance with respect to the Lorentz transformation, or
may otherwise be proved directly, on changing the reference system P
becomes 4. Applying the Lorentz transformation to the differential co-

' In his later papers, Bateman regards compensating negative energy radiation as a
blemish in his theory. It is hard to gather from the context whether the tensor introduced
in Messenger of Mathematics, 52, 125 (1922) is meant to remove this blemish; if so, it
does not serve its purpose, for calculation shows that it leaves the radiation of energyin
stutu duo.

~ Messenger of Mathematics 53, 147 (1924).
' L. Silberstein, Theory of Relativity, p. 214.
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efficient and to the element of volume, we have for the extra-classical
momentum

2v

or, by symmetry,
2v

cq'cd V
3c'V'1 —(s'/c')

(6)

The trigonometric factor in the integrand of (5) may be replaced by 2 /3.
The sum of (5) and (6) is reducible to a surface integral by Green's

Theorem, and this surface integral vanishes since 4 and V'4 are finite and
continuous at the surface of the electron and vanish at infinity.

The writer is greatly indebted to Professor Leigh Page of Yale Uni-

versity.
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UNIVERSITY OF CINCINNATI1

September 14, 1925.


