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THE RATIO OF HEAT LOSSES BY CONDUCTION AND BY
EVAPORATION FROM ANY WATER SURFACE

BY I. S. BOWEN

ABSTRACT

It is shown that the process of evaporation and diffusion of water vapor
from any water surface into the body of air above it is exactly similar to that
of the conduction or "diffusion" of specific heat energy from the water surface
into the same body of air. Because of this similarity it is possible to represent
the ratio R of the heat loss by conduction to that by evaporation by the formula

(T„—T.'t P
I I' P,)i 760—

where T~ and P~ are the original temperature and vapor pressure of the air
passing over the lake, and T„and P~ are the corresponding quantities for the
layer of air in contact with the water surface. The substitution of R times the
evaporation loss for the value of the conduction heat loss in the Cummings
equation for evaporation makes it an exact equation for the determination
of evaporation from any water surface in terms of the net radiant energy
absorbed by the water and the heat stored in the water.

'N his study of evaporation from lakes, Cummings' has assumed,
' - as a first approximation, that the determining factor is the in-

coming solar radiation, i. e. that the evaporation from any lake is

roughly equal to the radiant energy falling on the lake divided by the
latent heat of vaporization, corrected, of course, for heat stored in

the lake due to any change in its temperature. This would be strictly
true if we could neglect other heat losses such as conduction and con-
vection, for since evaporation increases rapidly with the temperature,
the lake would warm up to such a temperature that the heat lost by
evaporation would be just equal to that gained by solar radiation.
Wind and humidity would then not affect the total evaporation, but
only the temperature that must be reached before equilibrium between
evaporation and solar radiation is attained. The present paper is a
theoretical attempt to evaluate losses by conduction and convection
in terms of easily measurable quantities, and hence to determine
whether they are small enough to be neglected; and if not, how they
may be corrected.

In order to simplify calculations, we shall assume in the first part
of the paper that diffusion coefficients, conductivities, and densities
are independent of the temperature. We can write at once for the

' Cummings, Phys. Rev. 25, 721 (1925);Journal of Electricity 46, 491.
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mass m, of water vapor diffusing per unit time across a space of
length 1, and area a,

Dls (pl p2)/l

p~ and p2 are the densities of water vapor on the two faces of the space
and DI is the diffusion coefficient of water vapor through air.

If we multiply both sides of this equation by L, the latent heat of
vaporization, we get

1.222= Dga(Lp2 —Lp )2/l

and if let 0& and 02 represent the energy per unit volume in the form
of latent heat, the energy Qr. carried across becomes

Qr, ——D2a(82 82)/l— (3)

Likewise we can write the formula for the heat energy Qs carried,

by conduction, across the same space as above:

Q, = Ca(Ti —T2)/l

where C is the conductivity of the air in the space and T& and 12

are the temperatures of the two faces.
If we substitute C=DoC„d, where D2 is the "diffusion coefficient"

or diffusivity for the heat energy, C„ is the specific heat at constant
pressure, and d is the density of the air, (4) becomes

Q, = D2s(TiC„d T,C„d)/l—
Or if we let pI and q&2 be the densities of specific heat energy at the
two faces,

Q, =D2a(y2 y2)/l—
It is seen at once that (3) and (6) are of exactly the same form, the only
difference being in the values of DI and D~, which, in fact, differ

only by a few percent, (a relationship predicted by the kinetic theory).
This leads one to expect that heat losses by evaporation and diffusion,
and by conduction, will follow the same laws and will be affected in

the same way by convection.
Consider the case of a lake over which a wind is blowing (Fig. I).

Let y be the distance from the windward side of the lake measured
parallel to the direction of the wind. Assume that the velocity of the
wind at a distance x above the surface of the lake is f(22) and also that
this velocity is large enough so that the velocity of horizontal diffusion

is negligible in comparison with it. Then for any element of volume
dxdyds the amount of latent heat entering the volume per unit time
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from the lower side is D,—(BB/Bx)dy ds, while on the upper side the
amount leaving is

B0 B ( B0&
D, + ——

I
D, (dx —dyds.

Bx Bx g Bx)

The difference, if we assume Dq constant, is then D&(B'B/Bx')dxdyds,
When a steady state is reached this net gain must be carried away by
the air passing through the volume in unit time. The air in passing

Nfx)dxd's I

I

dx )
/

/

/dz
/

/
/

{x,y)

Dg Jpdz-

Fig. i.

through the volume dxdydz has its density of latent heat changed
from B to 9+(BB/By) dy; and since the volume passing per unit time
is f(x)dxds the total amount carried away is (BB/By) f(x)dxdyds

Equating these two quantities we get

B9 B'0—f(x) = D,
By Bx

and by similar reasoning,
Bp Bp

f(x) = Dg —.—
By Bx2

as the general equations determining 0 and y at all points above such
a lake. The boundary conditions are p=p&, 0=0& at x=0, and y=p2,
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0=02 at y=0. y2 and 02 represent the energy density, in the form
of specific and latent heat respectively, of the incoming air, and y&

and 0& represent the corresponding densities for the layer of air in

contact with the water.
Since it is impossible to obtain a general solution of these equations

for any function f(x) we will consider certain special values of f(x)
Case I. f(x) =X from x=0 to x=a and f(x) =0 from x=a to x= ~.

If a and E are small and the lake large, then the layer of air from x=o
to x =a will have its temperature changed to that of the water and will

become saturated with water vapor, i. e. , its specific heat density will

change from p2 to p& and its latent heat density from 02 to 0&. Evidently
the ratio R of heat lost by conduction to that lost by evaporation is

since this is the ratio of the two kinds of energy taken on by each cubic
centimeter of the air passing over the lake.

Case II. f(x) =0, from x=0 to x=a; f(x) =X, from xn to x= ~.
If the area of the lake is small and the velocity X large, then the water
vapor and heat diffusing through the stationary layer from x=0 to
x=a, will be carried away immediately and we can assume y=p2,
0=02 at the layer x=a. Under these conditions the rates at which heat
and water vapor leave the water surface are determined solely by dif-
fusion and the ratio between them is simply equation (6) divided by (3).

D&(0 & 0 2)/»(ei —t ~) (10)

Case III. f(x) =Ax" from x=0 to x= ~. Professor Epstein has
obtained equation (11) as a solution for this value of f(x)

1
K. n+2

(n+2) 2Dg y

~n+2
e do.

9 = 8y+ (82—8&)—

0

But the rate of diffusion from unit area of the water surface, i. e. ,

diffusion across the plane x=o, is

('8oi

i») *=0

E
Dg(9g —Hg)

(e+ 2)'D&y

E

1
A+ 2

(12)
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where

Similarly

f' m+2S=
i e da.
0

1

( Q p
m+2

D (~ -~)i
& (zz+2)'Dzy)

S (13)

which gives at once

Qa f Dz i "+' (yz —yz iR=—'-=
f

—
I

Qr. &Dz) &ez —&z)

This ratio is independent of y and therefore holds for every square
centimeter of the lake and also for the lake as a whole.

DISCUSSION

Case I represents a condition where the whole quantity of air under
consideration is completely changed in temperature and moisture
content to that of the layer of air in contact with the water. For this
reason diffusion is not the limiting factor and hence the diffusion co-
efficients do not enter into the formula for the ratio of the heats lost
by the two processes. It is obvious, however, that if conditions are such
that diffusion does enter, it will be in such a way as to increase the loss

by the process having the larger diffusion coefficient relative to the
loss by the other method. Hence under any conditions of wind we may
say, since D»D2 that

R((~ —.)/(~. -~.)
Case II, on the other hand, represents conditions where diffusion

is the completely determining factor, the heat and water vapor being
immediately carried away after diffusing through the stationary layer.
If, however, these are not immediately carried away, they tend to
build up the temperature and vapor density on the upper side of this
layer, and thus decrease the gradient in the stationary layer. This
in turn tends to slow down further diffusion. But the process with
the&larger diffusion coefficient will build up faster, and hence willlbe
retarded more than the one with the lower diffusion coefficient. Hence
we can write

R~ Dz(yz —pz)/Dz(ez —Oz) (16)
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The results of Case III support these conclusions since for all values
of n~0.

i
—

I i i
~-—

i i

(D2 ~ (ps
LDll (tl ll2) Dl Etll '92)

(17)

Negative values of n are without physical meaning since they would

involve an infinite velocity at x=0. The upper limit of R in (17)
corresponds to the case f(x) =K, f e.,. a wind of uniform velocity.
The values between this limit and the limit set by Case I correspond
to conditions where f(x) is a decreasing function of x, and hence do

not correspond to actual conditions over a lake.
The above discussion shows that R lies under all conditions between

the values given by Case I and Case II. For these two very simple

cases, however, it is no longer necessary to assume D, C, and p inde-

pendent of the temperature.
Thus in Case I, if we consider the changes in an amount of gas that

would occupy 1 cc at O'C, the amount of heat necessary to warm it
from the temperature of the air, T„ to the temperature of the water,
T~) 1s

P
g, =d,C„(T. T.)— —

760

where do is the density of air at 0 C, 76 cm, C„ is the specific heat at
constant pressure, and I' is the pressure of the air in mm. Likewise
the amount of heat taken on in the form of latent heat when this
amount of air is brought to saturation at the temperature T„ is

p T pT—
QI, =L

273 )
where as before p, and p„are the densities of water vapor in the in-

coming air and in the layer of air in contact with the water respectively.
Therefore

P
d,C„(T. T.)——

760

pulT1ll paTaiiI
273

(20)

co(T/273)~'(T„T)—
R=

LDy, p(T/273)~'(p~T —p T )760//P
(21)

Similar consideration, which take into account the known tempera-
ture coefficients of heat conduction and diffusion, give for Case II
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where Co and DI, O are the value of the conductivity and diffusion
coe6cient at 0 C. Kinetic theory gives y& = y2 = —,', while experimental
data indicate a somewhat larger value, but still make yI = y2.

If we substitute in these formulas the following experimental data:
d, = .001293, Do ——.206, Co ——.0000566, C„= .241, L = 585., p, T, /273 =
P /9 41X10', p T /273 =P /9 41X10', where P. and P„are the cor-
responding partial pressures of water vapor expressed in mm of mer-

cury, we get

Case I.

Case II.

( T„—T, 't PZ=.501/
E, P„—P, j760

(T T, i P—' "'iP.-P. )760

(22)

(23)

Case III, however, shows that under ordinary conditions where f(x)
is an increasing function of x, the true R is nearer Case II than Case I.
Hence we may take as the most probable equation

(T„—T, PZ=.46~
& P„—P, 760

(24)'

This equation is, of course, valid only for value of T low enough
that the volume of the air is not appreciably increased by the water
vapor evaporating into it and also that the water vapor on diffusing
into the cooler air above does not condense and fall back to the water
surface. This last condition is only violated under certain extreme
conditions since the air is being warmed by conduction nearly as fast
as its dew point is being raised by the diffusion of water vapor into it.

As an example let 1„=20'C, T, =15'C, Relative humidity=. 5,
P =760 mm. This gives R=.21 which indicates that while the ratio
is small and can be corrected for by the aid of this formula, yet it cannot
be neglected. It may be noted that if we let R= —1, this becomes, as
it should, the standard formula for the determination of P, by means
of the wet and dry bulb thermometer.

CONCLUSION

If we put in the form of an equation Mr. Cummings" statement
of the relation between evaporation and radiant energy, we have

I=S+I.E+E (25)

' Since the above was written, a somewhat similar formula has been derived em-
pirically from wet and dry bulb data. D. K. Dean, Power 62, p. 754 (1925).
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where I is "the radiant energy. . . . integrated over any time interval"
or Perhaps a little more explicitly, the solar and sky radiation corrected
for reflection, minus the back radiation, S is the "heat represented by
the change in temperature of the water, " JE is "the heat represented
by the evaporation (Z) during the same time interval, " I., of course,
being the latent heat of evaporation, and X is a "relatively small cor-
rection" to cover other losses. These other losses, however, are due to
conduction and convection which we have put equal to R times the
losses by evaporation, i. e. , R(I-E), where R can be determined by
Eq. (24). Substituting this value of X in (25) we have

I=S+I.E(1+R) (26)

which is an exact equation for any body of water that is thermally
insulated on the sides and bottom (a condition holding for most lakes)
since it takes into account all processes by which heat can be lost or
gained.

Consequently if we know 5, E and 8, which can be determined

easily in any small insulated test jar, we can, following the method

proposed by Cummings' use this slightly modified formula (26) to
determine I or, vice versa, if we know I and can measure S and R,
we have a means for calculating the evaporation Z from a large body
of water where it cannot be measured directly.

Such a body of water, however, is very nearly a black body over a
very wide range of wave-lengths, since throughout the infrared even

a thin layer of water absorbs almost completely, while in the visible

this is true if the water is deep enough, as in a lake or if the inside of the
vessel is properly blackened, as can be easily done for any test jar.
In addition the reHection at the surface due to the difference in index
of refraction is small throughout the visible and infrared to 20fM, '
which is well beyond the maximum of the back radiation. On account
of this fact I as determined by Eq. (26) becomes at once, with only a
very small correction for reflection, the value of the net radiation ex-

changed with a black body at the temperature of the water. Thus such
a jar of water can be used to determine the net heat radiated by a black
body at night or received by it during the day time.

In a succeeding article Mr. Cummings will present the results of experi-
ments designed to check the modified form of his equation, Eq. (26),
under a series of widely diA'erent condition. Since this Eq. (26) depends
on the determination of R as given by Eq. (24), these experiments will

' Rubens and Ladenburg. perh. d. Phys. Ges. 11,16 (1909).
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also serve as a test of Eq. (24) as well. His preliminary experiments
indicate that these equations will be verified completely.

In conclusion the writer wishes to thank Professor Epstein for his
derivation of Fq. (11).

NORMAN BRIDGE LABORATORY OF PHYSICS,
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