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REFLECTION OF RADIATION FROM A FINITE NUMBER
OF EQUALLY SPACED PARALLEL PLANES

BY T. H. GRONWALL

ABSTRACT

Equations are derived for the fractions of the incident energy which are
absorbed, reflected and transmitted by n+1 equally spaced parallel planes,
taking account of all possible internal reflections, in terms of the corresponding
fractions for a single plane, a, r and t respectively. When a and r are very small,
as in the case of x-rays incident on a crystal surface, they may be computed
from measurements of the reflected fraction R~ for E large, and of the trans-
mitted fraction T„ for &z small.

1. Introduction. In dealing with the refiection, transmission and
absorption of radiation in a crystalline medium, we assume the mole-
cules of the medium to be situated in a number of equally spaced parallel
planes (and to have the familiar lattice arrangement). We assume that
when a ray of intensity I strikes one of these planes, a part of it, which

we denote by rI, is rejected, another part tI transmitted, and the
remaining part aI absorbed, so that

r+t+a= 1.
These constants r, t and a are assumed to be the same for all planes.

Let us consider n+ 1 of these planes, numbered 1, 2, . . . , n, n+ 1,
and a ray of intensity I striking the first plane; taking into account all

possible modes of refiection at one or more of the planes, a certain part
T„I will be transmitted across the n+1 plane, another part R„I will

be reHected, that is, will emerge on the same side of the first plane as the
incident ray I, and the remaining part A„I is absorbed by the n+1
planes; we evidently have

E +7 +A =1.
Our problem is to express R„and T„(and hence, by (2), also 3„) in

terms of r, t and n, and it is obviously permissible to assume I=1 in

the following discussion.
2. Determination of R„and T„ for m=0 and n=1. In the case of a

single plane (n = 0) it follows at once from the definitions that

Rp=r, Tp=t .
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In the case of two planes, numbered 1 and 2, a ray of unit intensity
striking plane 1 gives a reflected ray r and a ray t penetrating plane 1,
and when the latter ray strikes plane 2, it gives a transmitted ray t t =
t' and a ray tr reflected from plane 2 toward plane 1. At the latter plane,
this tr gives a ray t tr=t'r penetrating the plane toward the side of
the incident ray, so that t'r is a component of the total reHected ray
R&, while a ray r tr =tr' is reflected toward plane 2. This tr' penetrates
plane 2 in the amount t tr'= t'r', which forms a component of the total
transmitted ray T&, while a ray r tr'=tr' is reflected toward plane 1,
giving at the latter a component t tr' = t'r' of R& and a ray r tr' = tr'
reflected toward plane 2, where it gives a component of T& equal to
t tr4 = t'r4 and a ray r tr' = tr' reHected toward plane 1. Continuing
in this manner, we find for the sums of the components of the trans-
mitted and reHected rays the expressions

T =t'+t'r' jPr4+ .

8)——r+t'r+t'r'+t'r'+ .

or summing the geometric series to the right

(4)

3. The two diff'erence equations for R„and T„Proceeding to. the gen-
eral case, our first step consists in setting up two difference equations
(that is, recurrent formulas) connecting T„+& and R„+~ with T„and R, .

Consider the n+ 2 planes numbered 1, 2, . . . , n+ 1, n+ 2; these we

divide in two layers, the first layer consisting of the planes numbered

1, 2, . . . , n+1, and the second of those numbered n+1 and n+2.
The plane numbered n+1, common to both layers, is called the bound-

ary plane between them. It will be convenient to separate the reflected
ray R in the ray r reHected directly at plane 1 and the remainder R'
reflected at other planes after penetrating into the layer, so that

~n+1 & +~ n+1

and (3) and (4) show that

R0' ——0, Rg' ——t'r/(1 —r') . (6)

Now consider a ray of unit intensity striking the first layer at plane 1;
the ray T„+& transmitted through both layers is made up of components
which we classify according to the number of times they cross the
boundary plane between the first layer and the second. The component
crossing the boundary plane once is obtained thus: let t ' be a ray which
is transmitted into the second layer after a certain number of trans-
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missions and reflections in the planes of the first layer. Since the in-

tensity of a transmitted ray is multiplied by t in the passage through a
plane, it follows that the intensity of P„ immediately before passing
through the boundary plane is I,„' t '. Passing through the second
layer, which consists of two planes, the intensity becomes t„'t ' T&,

and our component is the sum of 5„'t ' T~ extended over all partial
rays t'„; the sum of the latter being T, the component of Tn+l arising
from all partial rays crossing the boundary plane once is T„t ' T&,

Any ray transmitted through both layers must evidently cross the
boundary plane an odd number of times. Hence the next component
of T„+& crosses the boundary plane three times and is obtained by
taking the component T„t ' arriving at the boundary plane and multi-

plying it by R&'t ', thus forming a component which has crossed the
boundary plane and been rejected in the interior of the second layer,
but has not yet crossed the boundary plane the second time. Observe
that we multiply by R&'1 ' and not by R&1 ' = (r+R&')t ', since we are
not concerned with those rays that are reAected at the boundary
plane without penetrating into the second layer. This component
T„t ' R&'t ' we multiply by R '5 ', thus obtaining a component
which has crossed the boundary plane twice and been reAected in the
interior of the first layer, but has not yet crossed the boundary plane
for the third time. The third crossing of the boundary plane and trans-
mission through the second layer multiplies our component by T&., so
that the component of T„+& resulting from crossing the boundary plane
three times will be

where each multiplication point stands at a crossing of the boundary
plane. Similarly, the component which crosses the boundary plane
five times is

Tnt ' El't ' Rn'j ' El't ' En't ' T~

and so on. I inally T„+& is the sum of all these components, so that

T„+&——T„t 'T, [1+RE'R„'t '+—(Rg'R~'t —')'+ ],
or by (4) and (6)

ITn ~~n t ~+n
T.+i=—— 1+—-+

(
——

~
+ .

&2 $ &2 q $ &2 p

The geometric series to the right converges, since R &1 by (2), so
that R„'&1—r by (5) and rR„'/(1 —r') &r/(1+r) &1; summing the

series, we obtain



280 T. H. GROK@'ALL

t
Tn+1 =

1 —r2
(7)

Turning our attention to the reHected ray R +& and reasoning in

exactly the same manner, we have first the component R„which does
not cross the boundary plane, then the component crossing the bound-

ary plane twice which is T t ' R&'t ' T„, next the component
T„t ' R~'t ' R„'t ' R~'t ' T„crossing the boundary plane four
times, and so on, their sum being

R„+,—R„yT„R,'t- [1+R,'R.'t-+(R, 'R.'t-)'+ ],
whence, replacing R„and R„+& by r+R„' and r+R„'+& according to (6)
and observing that the series to the right is the same as in the expression
for T +g,

r
R'„+i——R„'+

1 —r'

T2

r
1 — -R.'

1 —r2
"

Equations (7) and (8) are the desired difference equations.
4. Solution of the difference equations for R„and T„. We now introduce

the notation

whence, by (6),

p„= 1 — —R„',
1 —r2

(9)

pp=1, pI=1
Pr'

(1—r')' (10)

since 0&R„'&1 r, it follow—s from (9) that

1
(p &1.

1+r
(11)

Introducing p„ in Eqs. (7) and (8), these take the form

t T
Tn+ I

pn
(12)

r2

p~ —p~+i =—
(1—r')'

T2

pn
(13)

From these, we form a difference equation of the second order for p„by
eliminating T„ in the following manner: in (13), replace n by n+1 and
in the result, substitute the value of T„+~ from (12), whence
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r2 T2n+1 t2r2

(l 22)2 (1 22)4

T 2

pn+ipn
2

In the last expression, we substitute the value of T„2 taken from (13)
obtaining

t2 p p
Pn+i Pn+2=

(1—r')' p-+up-

t2 ( 1

(I-r')' & p.+2 pn &

Transposing terms, we obtain the difference equation of the second
order

t2 1 t2

Pn+2+ ' =Pn+1+
( —')' P.+2 ( —')' (14)

which shows that the expression to the right remains unchanged in
value when n is increased by unity. Starting with n =0, and increasing
it by a unit at a time, it follows that the right hand member of (14) has
the same value for any n as for n =0, so that

t' 1 t2

pn+i+ —— ——=pj.+
(I-r')' p- (f-r')' po

and calculating the expression to the right by means of (10), we find

t2 1 t2

pn+i+-- — ' —= 1+
(1—r')' p 1—r' (15)

This difference equation of the first order is thus a first integral of (14),
and is in its turn reduced to a directly integrable linear difference
equation in the following manner. From (11) it is seen that p„ is positive,
and from (13) that p )p„+2. The sequence p2, p4, . . . , p„, . . . is thus
decreasing toward a limit p:

lZnS pn=p,
n2 222

(16)

and (11) shows that

1 ~p(i
1+r

From (15) and (16) it is seen that p satisfies the equation

t2 1 t2

p+ ' =1+
(1 22)2 p 1 r2

and solving this quadratic in p,

2(1 r')p=1+t' r'+Q(1+t2 ——r'—)'—4t2
2
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To determine the sign of the radical, we observe that (&1—r by (1),
so that (17) gives

1—r'

on the other hand, the product of the roots of (18) equals t'/(1 —r')',
and consequently (19) shows that the second root of (18) is less than
l/(1 —r'). Hence p is the greater of the two roots of (18) and corre-
sponds to the plus sign before the radical. Resolving the expression
under the radical sign into factors, we thus obtain

2(1—r')p=1+l' r'+Q—(1+t+r)(1jt-r)(1—t+r)(1 1 —r)— (20)

As n~ ~, R„ tends toward a limit 8, which equals r+(1 —r')(1 p)/r-
by (5) and (9), so that, according to (20),

R =—[1 t'+ r'—Q(1+—t+ r) (1+t—r) (1 t+ r) (1—t——r) ]
2r

(21)

An expression for this 8, which is the refiection in an infinite number of
equally spaced parallel planes, was found in an entirely different way
by K. W. Lamson in form of an infinite series, the sum of which was
shown by the author to be (20).'

Returning to Eq. (15), we subtract from it Eq (18), .obtaining

t2 (1 1 l
P P=

(1—r) Ip p )

making the substitution

(22)

the preceding equation becomes

and writing

(23)

' K. 9/. Lamson, Physical Review, N. S. 17, 624 (1921), Eqs. (2) and (3).
Lamson, l.c. Eq. (5). This formula contains two misprints: the minus sign between

t' and r' should read plus, and a minus sign should be inserted between r' and the square
root. For the proof, see T. H. Gronwall, Annals of Mathematics, ser. 2, 23, 282 (1922).
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so that ts) 1 by (19), this reduces to the linear difference equation
in or„:

&a+&= p (~ +1) (24)

This may be written

p& (' p&

~my&+ —= p ] 4&n+= —
~

p2 —] g p2 —1p

and this last equation is integrated immediately, giving

p,
2

~„+—, —=u'"
~

~a+
p2 —1 & p —1p

Since po = 1 by (10), we have &vo ——pt'(1 —p) by (22), so that finally

p2 ( p p2.+—-=i +
p2 —1 &1—p p2 —1) ,'25)

Having thus determined or„explicitly as a function of r, t and n, we
obtain R„by the combination of (5), (9), and (22):

1 ii
R„=——(1—r')p

I
1+

r nr
(26)

For T„, we find from (13) and (22)

1+Gon

p2

(1—r')' co„

GOn+] COn

~nn+I

or replacing cv, +& by its expression from (24) and using (23),

tm (p,' —1)co„+u'
T. =—.

- n
r2 GOn

(27)

5. APProximate formulas for calculating r ond a from exPenmental
values of R and T„. In experimental work, it is possible to determine
the reHection in a section of the material of sufficient thickness to
allow us to regard the number X of planes contained in it as infinite,
that is, 8 is measured. Then the transmission T„ is measured in a
section as thin as possible (n of the order 10'). Now both r and a are
very small (of the order of magnitude 10 '), and a is several times less
than r. This suggests writing

a r=a, (28)

so that a(1, and expanding p, ts etc. in powers of r. By (1) and (28)
we have

t=1—(1+a)r, '
(29)
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whence

=1+(1+a)r+(1+a) r +(1+a)ar +
t =1+2(1+a)r+3(1+a) r +4(1+a) ra+ . (30)

It is convenient to introduce the notation

P +=a(2+ a),
end from (29) we find

(1+a)'=P'+1, (31)

Q(1+t+r) (1+t r) (1—t—+r) (1—t r) = 2P—r Q1 —[(1+a)r —~~P2r2]

or expanding by the binomial theorem

Q(1+t+r) (1+t—r)(1 —t+r)(1 —t —r)

1 1 1= 2Pr 1——(1+a)r ——r —(1+a)r ——

2 8 16

whence by (20) and (21)

(32)

p 1
(1 r')p = 1—(1+—a P)r —(1+a —P)r' — Pr' — ——(3—3)

2 8

1
R= 1+a—P+ —P(1+a P)r+ Pr'+ . ——

2 8
(34)

In the last equation, it is sufficient to retain the constant term, so that
R= 1+a—Qa(2+a), whence, solving for a,

a = (1—R)'/2R, P = 1+a R= (1 R')/2R .— —(35)

This determines u in terms of the measured R.' To find r from the meas-
ured T„, we expand p in powers of r by means of (23), (30) and (33):

whence

t =1+Pr+sP(1+a+P)r'+ .

p 1 1
1——(1+a—2P)r+ .

p2 —1 2Pr 2

(36)

(37)

From (33) and (37) it follows that

p p,
' 1—+ —,—= —

] 1+a+P+—+ .
1 —p p2 —1 r 2P

(38)

'1 Actually, (34) gives a as a power series in r, the constant term being (35), and the
next term (1—R')'/8R' r which is small enough to be neglected.
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where the terms not written out contain the first and higher powers of r.
Solving (27) for a&„, we find

t2

&v = [p —1++(p —1) +4p r T t 2 ],2r'T '

where the radical is taken with the plus sign, since co„ is positive by (24).
Using (36) and (30), we find that the lowest term in r inside the bracket

is (2P+2IP'+T„')r, so that, with the aid of (37),

Dividing (39) by (38), taking the natural logarithm on both sides and

expanding the logarithm of the right hand member in powers of r,
we find

p
M +

p 1log- —= log
p p,+

1 p p 1

P+v'i3'+ T ' +-
T2 2P—+

1
1+a+P+—

2P

By (25), the expression to the left equals 2n log p, , and since log p =
Pr+ by (36), we finally find, retaining only the lowest powers of
r on either side,

1
r =—log—

2nP 1
1+a+P+—

2P

f1+v'P'+ T ' +-
T„' 2P

(40)

Since a and P are known by (35), this determines r in terms of the
measured T„, and finally (28) and (29) give a=ar, t=1 —(1+a)r


