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ABSTRACT

By analogy with the mathematical dehnition of degenerate systems, it is
suggested that systems which are interrupted before they have traversed a full

period, or which are in an external field which varies greatly in the time of one
period, be called physically degenerate, It is further suggested, in harmony
with the ideas of Ehrenfest and Tolman, that such systems show meak quan-
tization, the quantization becoming less and less complete as the degeneracy
increases. In the case of partially degenerate systems, the valves of the related
action variable and of the energy are grouped more or less closely about the
mean values which they would all have if the systems were completely quan-
tized. As examples, these ideas are applied to several problems, such as
glantization in a small or rapidly changing magnetic field (including Glaser's
results for the change of diamagnetic susceptibility of some gases with pressure,
experiments by Breit and Ellett and by Wood and Ellett on depolarization, and
the experiment of Gerlach and Stern in which atoms are projected into a strong
held), absorption in the higher lines of the principal series of an alkali (includ-
ing a discussion of quantization in hyperbolic and parabolic orbits), and the con-
tinuous x-ray spectrum, It is then pointed out that this assumption demands
the existence of quantum forces which have not been previously considered in

quantum theory and whose action is to stabilize the stationary states, bringing
the action variables and energy rapidly nearer and nearer to the proper values
as time goes on. The suggestion is made that these forces are responsible for the
large change of energy and action variables during a quantum transition.
From this point of view the adiabatic theorem appears in a simple light; when
the external parameters vary too rapidly, the quantization becomes poor, the
quantum forces become strong and put the atom into a quantized state again.
In any atom but hydrogen, quantum forces must be continuously acting to
oppose the interchange of energy and momentum between electrons and to
keep each electron quantized. These forces thus may prove to be important
in the solution of problems of the quantum dynamics of the constitution
of atoms, though they must be considered in connection with the dynamics of
the oscillators.

&HE quantum theory can hardly continue to deal with periodic systems
alone, and the natural approach to the study of non-periodic motion

is through those systems which are nearly but not quite periodic. The
quantum conditions as at present stated apply only to periodic mo-
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tions; it is natural to suppose that nearly but not quite periodic

systems are nearly but not quite quantized. One is thus led to the study
of weak quantization. The most interesting contributions to this problem
have been made by Ehrenfest' and his collaborators. In the present

paper certain aspects of the problem are discussed from a somewhat

diferent angle from that of Ehrenfest and Tolman, although the under-

lying ideas are very similar, and, passing beyond their results, an attempt
is made to draw certain conclusions regarding quantum dynamics.

PART I

Degenerate multiply periodic systems are ordinarily taken to be those
in which one or more of the fundamental or combination frequencies are
zero for all values of the momenta. In case the vanishing frequencies

are combination tones, it is always possible by a change of co-ordinates
to make them fundamentals, so that only this case need be considered.

Intimately connected with the degeneracy is the failure of the ordinary
quantum condition for the variable whose frequency vanishes. For the
quantum condition involves an integral about a complete cycle, which

is defined only by the motion of the system, and a degenerate co-ordinate,
having zero frequency, does not traverse a cycle in any finite time.
Thus, for example, an atom cannot be quantized in space unless it is in

an external field, for otherwise the frequency of precession of the direction
of the angular momentum, one of the fundamental frequencies, is zero,
since no torque acts and the axis points in an invariable direction.
Then we do not know what a complete cycle for this co-ordinate is; since
the axis is fixed, the direction about which it would precess is undefined,
and there is no unique way of applying a quantum condition to the
orientation. Once there is an external field, ho~ever, and the axis does
precess in a periodic manner, a cycle is defined and the conditions can be

applied.
This statement of the situation seems to imply a distinction between

the case where the frequency is strictly zero, and the case where it has

any value diferent from zero. Such a criterion is mathematical rather
than physical. In physics one meets with distinctions according as
dimensionless quantities are small or large compared with unity. By
considering the problem of degeneracy in this light, it can be put in a
much more comprehensible form. Instead of considering the mathemat-
ical degeneracy of a variable when its frequency is zero, we shall introduce
the idea that it is physically degenerate in proportion as the ratio of its

' Ehrenfest and Breit, Zeits. f. Phys. 9, 207 (1922); Fhrenfest and Tolman, Phys.
Rev. 24, 287 {1924),
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frequency to some fixed quantity of the dimensions of a frequency is

small compared with unity.
It is easy to find a fixed quantity having the dimensions of frequency

with which to compare the frequency itself. Degenerate systems are of
interest principally for two reasons, their lack of quantization under
ordinary conditions, and the failure of the quantum conditions to be
preserved when the system is carried adiabatically through a degenerate
case. Ke recall that the explanation of the failure of quantization was
that the variable never traversed a cycle. It seems reasonable to say
that a system is physically degenerate if its variable has had time to go
through only a part of a cycle. The fraction of a cycle which has been
passed through since any given instant is the product of the frequency
and the length of time which has elapsed, or the ratio of the frequency
to the reciprocal of that time. It is then very reasonable to define a
physically degenerate system as one in which one of the frequencies is

small compared with 1(T, where r is the length of time in which the
motion has been going on. If the motion has been progressing since the
atom entered its stationary state, then the average value of 1 is the
average life in the state, or 1)T is the probability of leaving the state in

unit time, which has the dimensions of a frequency.
Degenerate systems are of particular importance, also, in the applica-

tion of the adiabatic theorem; for as an external parameter is varied

slowly, the quantum conditions are continually satisfied, except in the
very important case in which the system passes through a degenerate
state. For the theorem to hold, the external parameter must vary so

slowly that it remains approximately constant over one period; but if

one of the fundamental frequencies becomes very small, a period of that
frequency is very large, and if the external parameter changes at any
reasonable rate it will change decidedly during one period, so that the
conditions of the theorem are not met. Evidently, in this case, a definition

of physical degeneracy is immediately provided: A system is physically
degenerate if the external field changes so fast that the adiabatic theorem

does not hold. This amounts to saying that the product of the relative
change in the parameter per unit time, and the time of one period, is

large; or that the ratio of the frequency to the relative change of the
parameter per unit time is small. This is the same kind of condition we

had before; but now T is the reciprocal of the relative change of the
external parameter per unit time; that is, it is the time in which the
parameter changes by an amount comparable with itself. If, for example,
the parameter varies periodically, 1~ 1 is a small constant times the
frequency of variation.
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Suppose that physical degeneracy be defined as just suggested, for

the two cases of interrupted motion and of motion in a varying field.

We then meet the problem of quantization. The conventional statement

is that mathematically degenerate systems are not quantized; undegener-

ate ones are. This, again, is an unphysical sort of definition; and we

amend it to say that the completeness of quantization approaches zero

with the quantity vT, v being the frequency in question; that is, the

quantization is less and less complete in proportion as the system is more

and more degenerate physically. This statement covers both cases we

have considered. We ask more closely as to the meaning of the complete-

ness of quantization. When quantization of a particular co-ordinate is

complete, all systems have one or another of a set of definite values for the

phase integrals, or action variables, connected with that co-ordinate;

when there is no quantization, the various systems have values of the

related action variable which are spread in a uniform fashion over a large

range of values. An intermediate state of quantization would be one in

which, while all systems do not have precisely the same values of the

action variables, still they are grouped more or less closely about the

mean values. Thus it is to be supposed that, as vrincreases, the systems,

having for vT=O all values of the action variable associated with the

frequency v, have their values of action cluster closer and closer together
until finally for vT= infinit, all have precisely the same value. Now the

energy of a system is a function of the action variables; so that, if, with

incomplete quantization, there are systems with many values of the
action variables, there are also systems with a variety of energies. Thus,

as vT increases, the energies draw closer and closer together, if we leave

out of account the effect which the incomplete quantization of other
variables would have on the energy. This diffuseness of energy values

results, if we apply Bohr s frequency condition, in a diffuseness of the

resulting spectral lines; and this may be connected with the diffuseness

in the spectrum of the oscillators producing the radiation, on account of
their finite time of oscillation. This connection will not, however, be
discussed in the present paper.

A number of examples will illustrate the many applications of these

ideas to familiar problems of quantum theory. Perhaps the most complete
example is the problem of quantization in a magnetic field. Let us first

consider a static magnetic field. Then T represents the length of life of a
stationary state, or 1/T equals on the average the probability I' of leaving

the state. The frequency which may become degenerate is the frequency
of precession; it is the Larmor frequency eH/4smc if the Zeeman effect
is normal, or a small number times this if it is anomalous. This frequency



vanishes with H, the external magnetic field. The associated action
variable is the component of the angular momentum in the direction of H;
and since the total angular momentum is independent of the field, this

amounts to a constant times the cosine of the angle between the axis of
the atom and H. Our statement is now that the strength of the quantiza-
tion is measured by (eII/47rmc)/I', which equals the average number of

cycles which the Larmor precession makes in the time of a stationary
state. When, then, H is small, the quantization becomes poor. That is,
the directions of the axes cease to be assigned to definite values, but are
merely clustered about those values as most probable ones. In the limit,

when H is zero, the emphasis on the "quantized" directions is completely
lost, the distribution of directions being entirely at random; and the

range of values of H in which the change occurs is that region where it is

of the same magnitude as 4rrmcP/e. If, then, we are to take a constant
field and increase P, the probability of leaving the stationary state, the
direction of orientation becomes less and less quantized until finally it is

not quantized at all. An interesting experimental application of this

result appears to be the discovery of Glaser' on the change of the dia-

magnetic susceptibility of some gases with pressure. Glaser finds that
the magnetic susceptibility of certain gases decreases from one definite

value to another when the pressure is increased at constant magnetic
field, the change coming in a rather sharply defined pressure range.
This he interprets as a change from a quantized condition at lower

pressures to a non-quantized one at higher pressures, the oriented
molecules having a greater diamagnetic effect than those oriented at
random. Now increasing the pressure increases the probability of
collision, and it seems inevitable that a collision would disturb the

periodicity of the precession, so that we can consider the time T to be
the average time between collisions, and P the probability of collision.
Then we see that increasing P should, in fact, decrease the completeness
of quantization and hence the susceptibility. Further, the range of
values of P in which the change should come for a given value of H, can
be found from the formula above; and if we calculate by gas theory the
pressures for which the probability of collision is of this order, we find

closely the range of pressures actually determined experimentally by
Glaser. It is also found by Glaser that the range of pressure, and hence
P, increases with increasing magnetic field, as we should expect.

We may also consider the case of the quantization in a variable mag-
netic field. The simplest case is that of a periodically varying field.
Here we shall expect the quantization to begin to fail, for constant H

' (~laser, Ann. der Phys. 75, 459 (1924'.



and increasing frequency of the field, when the frequency of the field

approaches that of the Larmor precession, for the frequency of the field

is of the same order as the relative change of the field in unit time. This
case appears to find an application in the recent experiment of Breit
and Ellett3 on the depolarization of resonance radiation by an oscillating
magnetic field. Wood and Ellett' find that the depolarizing eEect of a
steady field increases as its Larmor precession becomes of the same order
of magnitude as the probability of leaving the excited state, so that this
effect is apparently connected with the strength of the quantization of
the excited state. Breit and Ellett then take a field which is just strong
enough to depolarize, but have it of an oscillating frequency. So long

as its frequency of vibration is small compared with the probability
of leaving the state, it depolarizes; but when its frequency becomes

greater than the probability, the depolarizing effect decreases. This
would be interpreted by saying that in the first case the time T was the
time of a stationary state, and hence unaffected by the field, while in the
second case it was the shorter time in which the field remained approx-
imately constant, which decreased in inverse ratio to the frequency.
Since the Larmor frequency is kept throughout of the order of magnitude
of the initial 1jT, the depolarizing effect is unchanged until the stage is

reached where the fluctuations of the field predominate over the prob-

ability of leaving the stationary state, in dequantizing eHect. Then T
and vT begin to decrease, and this seems to be what is necessary to
destroy the depolarization. Thus this phenomenon is in harmony with

the view that a limitation of 1, either by variation of the external

parameters or by limiting the life in the stationary state, has the same

efkct.
Another case of quantization in a magnetic field is the experiment of

Stern and Gerlach. ' Here silver or other atoms are produced with a
considerable thermal velocity in a region of practically no magnetic
field and are then shot suddenly into a strong and variable magnetic
field. As they enter the field they are presumably unquantized, for the
Larmor frequency in the stray fields they had previously been in was
not great enough to produce quantization. An approximately constant

' Briet and Ellett, Phys. Rev. 25, 888 (abstract) (1925).
4 Wood and Ellett, Proc. Roy. Soc. A103, 396 (1923);

Eldridge, Phys. Rev. 24, 234 (1924); and particularly Breit, Phil. Mag. 47, 832
(1924). Breit (loc. cit., p. 840) adopts precisely the present point of view regarding
the diffuseness of quantization in weak fields.

' For general description of method, see Gerlach and Stern, Ann. der Phys. 74, 673
(1924).
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field is then suddenly applied to them; its magnitude is of the order of
12,000 gauss, so that its Larmor frequency is of the order of 1.7 X10"per
sec. At any subsequent instant, then, the time T will be the time which

has elapsed since entering the field, or the time in which the field where

the atom is changes by a considerable fraction of itself, whichever is

smaller, and the strength of quantization will depend on v T or 1.? /10"T.
1f, then, T is large compared with 6X10 " sec. , the atom will be we11

quantized. Now the velocity of the atom is the thermal velocity, of
the order of 5X10' cmjsec. , so that if the field is 5 cm long, it takes
10~ sec. to traverse it. This, then, is the order of the time required for
the field at the atom to change by a large fraction of itself, so that the
process is perfectly adiabatic as far as the change of the field is concerned,
except, perhaps, at the very beginning, when the atom suddenly enters
the field. The quantization ~ould be expected to be good except for the
insignificant time of the order of 6 X 10 "sec. just at the beginning.

Quantization in a magnetic field forms the best example of a degenerate
system as it is the most familiar, but many other less familiar cases are
no less significant. For example, suppose we are considering hydrogen
atoms in various excited states. Corresponding to each total quantum
number, there are, if the relativity precession be considered, states with
various azimuthal quantum numbers. If each atom existed an infinite
time in its stationary state, they would all have precisely one or another
of the "allowed" values of angular momentum; but now suppose the life

of the stationary states to be decreased, by increasing the pressure or
by some other method; then the ratio of the relativity precessional fre-

quency to the probability of leaving the state decreases. Thus the
quantization decreases and the values of angular momentum and of
the minor axes of the elliptical orbits are no longer confined to definite
values but are distributed over all values, clustering, however, about
these as means. Finally, as the life gets very short —so short that but
a fraction of a complete precession is made in one stationary state —the
angular momentum is distributed evenly over all possible values, with

no clustering at all about the multiples of h/2s. .

Another case is furnished by absorption in the higher lines of the
principal series of an alkali. There the excited orbits are very eccentric
and of frequency decreasing as the principal quantum number increases,
until for an infinite quantum number the frequency becomes zero, the
orbit becoming parabolic. But, in the limit, the life remains finite under
ordinary circumstances, so that a point must be reached in the scale of
ascending quantum numbers, above which the fundamental frequency
is small compared with the probability of interruption, and the electron



makes only a part of a circuit of its orbit before it is interfered with.
At this point, then, the quantization must become diffuse, so that for
greater values a continuous range of energies and angular momenta is

possible. As we pass to the parabolic orbit, the tendency to quantize
completely disappears. This case diHers from the previous ones in that
here all variables become degenerate, the largest frequency vanishing
and periodicity ceasing. When this stage is reached, it is a transition

only of degree, not of kind, to the hyperbolic orbits, which may likewise

be supposed to be interrupted after finite leiigths of time; a finite part of
a hyperbolic orbit is not diHerent in kind from a finite part of an ellipse.
It appears from this that hyperbolic orbits should show no indication
of sharp quantization. This situation would find application in the
related problems of the continuous absorption beyond the limit of the
series, and the continuous x-ray spectrum. In the first case, the final orbit
is supposed to be of hyperbolic type; hence its action variables and

energy are distributed continuously, and by the frequency relation the
absorption spectrum is continuous. In the second case, the initial state
consists of a free electron and an ion or atom, so that the electron may
be considered to be describing an orbit of generally hyperbolic nature;
and the final orbit is presumably sometimes of the same kind, sometimes
an elliptic, quantized orbit. As in the orbits of hyperbolic type, we should

expect that there would be complete absence of quantization in any other
completely non-periodic type of motion which appears as the limiting
case of complete physical degeneracy. A free electron in a metal, for
example, if it really bumps about from atom to atom, must be expected
to show practically no quantization of the ordinary kind. An extension
of the ideas described here seems to oHer the most hopeful method of
attack on the problems of non-periodic motion in the quantum theory.

PEART II

The suggestion that the strength of quantization depends on v7' carries
an implication of greatest importance in regard to quantum dynamics.
Assume a collection of atoms which at a given instant enter a stationary
state, and suppose that none of them have anything to interfere with
their periodicity for some time after that. Then, after a time 7, the
average strength of quantization will depend on vT; but this increases
with the time, so that the quantization must become better and better
as time goes on. That is, the energy and momentum of the various systems
must cluster closer and closer about mean values with increasing time.
As a necessary result, the energy and momentum of any individual atom
must move closer and closer to the perfectly quantized value as time
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goes on. After a short enough time interval, any co-ordinate can be

regarded as degenerate, while after a time of the order of a few vibrations

of the principal frequency, the principal variables become properly

quantized. This implies a mechanism by which the energy and action
variables can be varied, wholly apart from classical mechanics, and

varied in such a way as to bring them nearer and nearer to quantized

values. Since the energy and momentum are generally considered to be

changed only by the action of forces, it must be supposed that there is a
quantum mechanism which exerts essentially a stabilizing force, pulling

the systems into their properly quantized orbits. This is a conception

very diferent from the conventional one, by which the quantum part
of atomic dynamics is considered simply as a restriction on the constants
of integration of the orbits. Nevertheless, it seems to be demanded by
many things.

Perhaps the best example of the need of some such extra-mechanical

force is seen in Stern and Gerlach's experiment where atoms from a
region where there is no magnetic field, or at least where the magnetic
field is so small and so rapidly changing that atoms will not be quantized

in it, suddenly emerge into a strong field. They will be originally oriented
in all directions, and hence will have all values of magnetic energy. Yet
when the atoms are quantized —which in the experiment actually
happens —they have definite values of energy, so that each must have

gained or lost in the process of quantization, energy comparable with its
whole magnetic energy. This is an amount much greater than can be

gained or lost in this time by mechanical means. Einstein and Ehrenfest6

have calculated the change of magnetic energy classically, on account
of the radiation accompanying the Larmor precession, and find it of an

order of magnitude altogether too small to account for the comparatively
large and sudden change. This fact they consider a serious difhculty
connected with the experiment, but it is a perfect example of the present
theory, and the change of energy involved in orientation is to be thought
of as produced by the quantum forces which we have introduced.

It is possible to apply the conception in a more ambitious way:
to the dynamics of quantum transitions. As an atom enters a stationary
state, we should expect according to our theory that its energy and
action variables can have values anywhere inside a wide range. Is there
any objection to supposing that they may have the values which they
had as they left the last state? There does not seem to be. It seems
permissible to suppose that the part of the change of stationary state

~ Einstein and Ehrenfest, Zeits. f. Phys. 11,31 I'1922).



which occurs instantaneously is not the change in energy and action

variables, but the change in the orbit toward which the stabilizing forces

impel the atom. If the atom is well quantized in an orbit, so that these

forces are not active, and there is a sudden change in the orbit toward

which the forces are acting, the atom will hnd itself very badly quantized,
and the forces will suddenly commence to act violently. In the course of
a few vibrations, however, any given action variable will be forced to
approximately its proper value, which will be approached more and

more closely as time goes on. On this view, the energy and action
variables would change continuously; the two kinds of action, transitions
and stationary states, which have previously been considered as entirely

separate, would appear simply as two aspects of the same kind of dynam-

ical action, the transitions being the periods when the quantum forces

are very active, the stationary states when they are relatively quiescent.
The lower a frequency is, the longer would take the transitional part of

its motion, and for a frequency of the kind we have called degenerate,
the variable would be always in a situation of transition, never reaching

a real stationary stat- whose characteristic would be the completeness

of the quantization. In a system that is degenerate in all its variables,

so that the orbit toward which the quantum forces impelled the motion

changed in a time comparable with a period, the quantum forces would

be continually active, never becoming quiescent, so that such a motion

would be completely inexplicable on classical dynamics. The free electron

in its interaction with an atom would be an example of this.
The adiabatic theorem, and the cases when it breaks down, appear in

a. simple light. If an external parameter varies slowly, then at any instant
the variables have all gone through many vibrations since their periodic-

ity was appreciably affected, so that the quantization is good, remains

good, and the quantum forces remain small. The classical forces alone,

as is known, are enough in this case to produce the changes in the orbit.
As soon, however, as the external parameters vary too rapidly, the

quantization ceases to be good, the quantum forces become strong and

attempt to pull the atomic system back to its original stationary state
or into some other. In this situation, the ordinary dynamical forces are
known no longer to tend to keep the action variables constant, but to
vary them, so that if only the classical forces acted, the system would

become permanently unquantized if a parameter varied suddenly. With
the quantum forces, however, the effect is much like a quantum transition
and results in the atom going to a quantized state again. All intermediate

stages between the adiabatic and the transition-like action would occur,
with different grades of suddenness of change of the conditions,



The quantum forces which have been suggested may be applied, by
virtue of one of their simplest properties, to some of the difFicult problems
of quantum dynamics. Their aim appears to be to get the atom in a
quantized state, which is a multiply periodic motion with proper values
for the action variables, and to keep it there; their action is roughly
analogous to a sort of restoring force for atoms that stray from their
proper orbit, so that they must be supposed to oppose any force which
tries to remove the atom from a quantized orbit. Of course, in speaking
of force, the word is used in the sense of generalized co-ordinates, and
not as forces literally acting toward definite points of the path. In
hydrogen, the coulomb forces and the relativity forces are capable of
maintaining the atom in a multiply periodic, quantized orbit. Thus,
when the atom remains in its stationary state, the quantum forces do
not oppose the classical ones. Likewise they do not oppose external
fields, such as constant or slowly changing magnetic or electric fields,
which would also result in quantized orbits; but the radiation resistance,
and the forces from external radiation fields, both do tend to change the
atom's action variables. They must then be expected to be opposed by
the quantum force, which will not allow them to aHect appreciably th
moron of the system. Since the quantum forces must be supposed
capable of exerting powerful action, they are presumably able completely
to counteract the effect of such forces. The reaction of such eEects on
the quantum forces appears in quite a diHerent way, namely, in the in-

duction of quantum transitions.
For any atom but hydrogen, if we consider only classical forces and

consider each electron as a system by itself, to be quantized by itself,
there are large classical forces tending to change the energy and action
variables of each separate electron; for in the interaction of electrons,
if it is classical, energy passes from one electron to another during the
cycle. In such a system, then, powerful quantum forces are set up
tending to oppose this interchange of energy, angular momentum, etc. ,

between the various electrons, and tending to force the individual
electrons into multiply periodic orbits, each quantized by itself. If the
quantum forces succeed in this, they will still have to act all during the
motion, opposing some of the classical forces. But the result will be
exactly the kind of motion which we believe occurs in atoms —-multiply
periodic motion of the single electrons, with no interchange of energy
or other quantities between the different parts of the atom in the course
of the stationary state; that is, just the kind of motion we should have if
each electron were in a central field. A hint is thus given of the direction
in which to approach the problems of atomic dynamics, namely, the
introduction of quantum forces, opposing some of the classical forces,



and allowing only those to act which help to maintain each separate
electron in multiply periodic motion. Only in the case of hydrogen do the

forces necessary to do this become vanishingly small, so that only in this

case can we expect the classical dynamics to provide a basis for discussing

stationary states; and even in this case we cannot expect to discuss the

stability of the orbits by classical mechanics.

In spite of the apparent hopefulness of this line of attack on quantum

dynamics, it would be foolish to suppose that it was sufhcient in itself to
solve the problem; for it must be recalled that the dynamics of stationary
states represents but one of the two aspects of atomic mechanics, the

other being the dynamics of the oscillators, each connected with two

stationary states. In hydrogen, the Bohr atom has shown that the
dynamics can be discussed with great ease from the first standpoint, and

this leads one to the conviction that such a treatment is possible in other
cases also. But there are reasons for believing a discussion to be possible

on the second basis also, and for thinking that that might be simpler

than the first for complicated atoms; for the action of an external oscillat-

ing electric field of optical frequency on an atom is most simply treated

by considering the oscillators directly, and in an atom of more than one

electron, the field of one electron on another is probably of this form.
Thus it seems reasonable to suppose that we could consider the dynamics
of such an atom by treating the reactions of the oscillators connected
with the various electrons on each other directly. Such an idea was in the

mind of the author when he suggested a mechanism of oscillators to de-

scribe the reaction of an atom to light; it has occurred also to Bornv and

presumably to others. It seems probable that both of these methods of
attack on quantum dynamics will prove fruitful, and will eventually be
found to be related. The most useful method of procedure seems to be to
work on both methods together, trying to fiit them into a single consistent
scheme, the connection between them being presumably in the nature of
extensions of the frequency condition and the correspondence principle.

In a subject which has been thought about by as many physicists as

this undoubtedly has, it is naturally impossible to claim much originality,
in spite of the small amount which has been written about it specifically.
I have had the pleasure of discussing certain parts of this paper with Dr.
Breit, who holds very similar opinions to mine on most of the questions.

My thanks are due, also, to Professor P. W. Bridgman for valuable sugges-
tions regarding quantum dynamics, and to Professor E. C. Kemble and
Dr. L. A. Turner for their criticisms.
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June 8, 192S

' Horn, Zetts. f. Phys. 26, 379 (1924).


