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ABSTRACT

The electrons are assumed to have kinetic energy corresponding to the
thermionic work function W and to move on orbits which form a space lattice
with a constant b of the same order as that of the positive ions b~. At each
critical point of an orbit, each of the six directions are taken as equally probable.
Treating the problem as a kind of Brownian motion and applying the virial
theorem, the specific conductivity r is found approximately equal to 0.6X
Ne'{8'jh)eW/E, , when/ is the mean heat content of one degree of freedom of the
metal. The observed and calculated values of o {taking 8=8~) are in fair
agreement for Ag, Au and Cu. For Na, 0(obs. ) is twice a{calc.}.Better agree-
ment would be obtained if 8 were taken as 1.58&, but uncertainty as to the
values of W and as to the error introduced by applying the virial theorem to
discontinuous processes makes this of little significance.

'HE theory of conduction in metals, here presented, is based on the

properties of space lattices and the theory of Brow'nian motion.
Recently J.Frenkel' and Hojendahi2 developed views somewhat similar

to those to be given. There are differences in essential points betw'een

Frenkel's theory and that presented here, but some developments have

been modeled on Frenkel's views.
%'e shall regard a metal as a space lattice of positive ions in 6&ed posi-

tions (except for heat motion) and electrons moving on definite orhits

between these ions, their motions being subject to quantum conditions.

The paths of electrons we shall assume to form a space lattice in the

metal. On this lattice electrons move in a disorderly fashion, at least as

far as direction of motion is concerned. The space lattice constant 5 will

be very closely related to the lattice constant of the metal 5~, e.g. 5=5~
or 8 = f.5 8&. The quantum conditions for the electrons should be applied

between critical points of the lattice.
According to a well known theorem of mechanics, the mean kinetic

energy of the electrons at absolute zero will be equal to the energy neces-

sary to remove an electron from the metal, which in turn is equal to eR',
where S'is the thermionic work function and e is the electronic charge.
For a discussion of this assumption and numerical calculations, reference

' J. Frenkel, Zeits. f. Phys. 29 (1924).
~ Hojendahl, Phil. Mag. 48 {1924}.
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may be made to an article of J. J.Weigle. ' At temperatures higher than
the absolute zero w'e must have

~nm'=eg +gZ (1)
w'here v' is the mean square velocity of electrons, m the mass of an elec-

tron, and 8 the mean heat content of one degree of freedom of the metal.
The constant a will be of the order of unity, e.g. 1/4 or 1/8. Equation

(1) should not be interpreted as giving an increase of the heat content
of the metal over the value given by Debye's theory, but rather as an

expression of the fact that there is additional potential energy betw'een

electrons and ions due to the heat content of the body. In the theory of
electrical conduction the quantity aE can be neglected as compared with

elV.

Let 7 be the time betw'een instants of passing successive critical points

by an electron. According to quantum conditions, we have h/r = 2e W or
r =h/2eW

As soon as an electron reaches one of these critical points all the direc-

tions in which it can move become equally probable and assuming the
number of directions to be six, the probability that it will move a distance
26 in a single direction is 1/6. Similarly the probability of moving a dis-

tance k8 in a single direction will be (1/6)" '. The mean square dis-

tance that an electron w'ill move in one direction is therefore,

1+4(1/6)+9(1/6)'+ '

X'=62—
1+1/6+(1/6)'+ '

A different space lattice would change this expression only very slightly.

By employing a reasoning familiar from the theory of Brownian mo-

tion, we find that after crossing a critical point n times, the mean value of
the square of the distance of an electron from its original position will be:

r~' = nX' = 1.86'n

A type of reasoning similar to the above, but one which seems to the
writer more rigorous, leads to a factor 1.4 in place of 1.8 in Eq. (3). In
view', how'ever, of the approximate nature of the assumptions involved,

this alteration was neglected in the follow'ing. In the time t the electron
crosses n=t/r critical points and consequently r„'=1 Sent/r or, tak.ing

the component in one direction

x' = -'r„' =0.68't/r (4)

' J. J. Weigle, Phys. Rev. 25, 187 (Feb. 1925).
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According to an equation given by Einstein4 w'e also have

@2=2Dt

where D is the coefficient of diffusion of electrons. No gradient of con-

centration of electricity can occur in a metal and the coe%cient of dif-

fusion assumes a meaning only if w'e distinguish betw'een some class of

electrons and the rest.
The action of an electric field on electrons w'ill consist in imparting a

certain momentum in the direction of the field at a uniform rate. If we

consider the interaction of the electrons among each other it appears
obvious that this momentum wi11 be conserved. As however, from

statistical and thermodynamic considerations, this increase of' energy of
electrons cannot be permanent, it must be transferred to the positive

ions, thereby resulting in an evolution of heat. In an electric field there-

fore, the electrons w'ill at first acquire a mean acceleration, but very soon

the interaction with positive ions w'ill cause them to give up as much

momentum as they gain and their mean velocity in the direction of the

field w'ill then become constant in time.
An interaction of this kind wi11 be represented by a viscosity coeS-

cient p. In an electric field F the mean velocity will be (e/Ii)F and the

conductivity becomes o =
¹ e/p =¹'/p where ¹isthe number of valence

electrons per unit volume of the metal.
Our object now' will be to calculate p. The rate at w'hich momentum

is lost by electrons being px, we have

where M and I refer to positive ions and the summation is extended to
all positive ions and electrons.

As the transfer of momentum takes place in a disorderly fashion w'ith

regard to coordinates, we have also, by the virial thorem,

Or

—yQxx = gMXX

p d Md'———(x') =——(X') 3fX—
2 dt 2 dt2

Considering that no diffusion of positive ions takes place and w'ith

regard to Eqs. (4) and (5) we find

(0 3b'/r) p =IID= MX. '= F. .

4 Einstein, Ann. der Phys. (1905).
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~/~ x'dx3
E=RT (10)

WT)',
The equations (6) and ('7) represent an application of the virial theorem

to a discontinuous process and Eq. (9) can therefore be only approxi-

mately correct.
From (9) it follows that

e*—1

The mean heat content of one degree of freedom of the metal can accord-

ing to Debye be written as

p =3.3 r E/"s2

and if we consider (2) the expression for conductivity o becomes

1 eS'
g = Se'—=0,6$e'—:

3 3 vE jg

(11)

(12)

Ke shall now give a brief discussion of the limitations of the theory
and compare the numerical values obtained from Eq. (12) with those

actually observed.
In the first place as regards the variation of electrical conductivity with

temperature it was shown above why (12) cannot be exact. Polarization

of the ions and the quantity aZ in Eq. (1) will, probably, be only of
secondary importance. Qualitatively, however, the curve showing the
heat content of solids is similar to that representing the resistivity of a
metal and indeed formulas like 1/g~ TC„or 1/o ~hv/(I" 'r —1) have

been proposed by various authors. ' Quantitatively, the agreement

is not very good; even for temperatures as high as O'C the theory gives a
temperature coefficient of resistivity 20 percent higher than observed

(Ag, Cu, Au).
As regards the actual value of conductivity there are difficulties in the

numerical interpretation of the quantity 5 in Eq. (12). For lack of any
better value this was taken to be equal to the space lattice constant of
the metal considered.

Below is given a table of observed and computed values for some

univalent metals. The low calculated value of o for Na will be explained
below. lV for Cu, Ag, Au was taken as 4 volts.

Metal: Na Cu Ag Au
o &(10~ (obs.): 22 64 67 45

{calc.): 10.6 61 50 47
(1/o) (4r/d T) (obs.): .0050 .0043 .0040 .0039

(calc.): .0046 .0054 .0049 .0046

' Mien, Berl. Ber. 1913 (Part 1);
Gruneisen, Verh. Deutsch. Phys. Ges. 15 {1913)and 20 (1918);
%'ereide, Ann. der Phys. 55, 589 {1918).



AI.J'RED 8'OLI'

In view of the fact that the variation of resistivity with temperature
is given only approximately, no exact agreement can be expected between
the observed and calculated values of conductivity. If we consider that
according to recent measurements the value of conductivity of a crystal
of Cu is about 15 percent higher than that given above, we hnd that the
order in which the metals Cu, Ag, Au are placed by the theory agrees
with experiment.

There is one more point where the theory can be tested experimentally.
According to Eq. (1) we have

r = b/e = h/2eW or e = (2eW/h)b

and on the other hand

v'e' = +2eW/rs .
Metal:
&v&

Na K Cu Ag Au

.8 . '7 12 12 12 (X10s)
38 .39 .7 .8 .8 (X10s)

As a matter of fact we should have v (~s2 but the difference between
the calculated values seems rather too large to be explained by that alone.
In particular in the case of Na it seems to indicate that 5 is greater than
the space lattice constant, a result which also explains the low' value of o.

obtained from Eq. (12).
It might seem at first sight that from the values of +p' and v given

above we might calculate the value of 5 and then substitute in the formula
for conductivity. On account, however, of some uncertainty as to the
numerical value of TV only slight importance can be attached to that
procedure.

In conclusion, it should be pointed out that an exact theory of conduc-
tion can probably be given only w'hen the properties of the positive ions
of the metal are taken into consideration. A considerable improvement
could, how'ever, be obtained by taking into account the discontinuous
variation of momentum of electrons instead of using the virial theorem
as has been done in this paper.
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