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AasTRAcT

Making different assumptions as to the behavior of electrons inside a solid

body, statistical deductions for the thermionic currents in the corresponding
cases are made. All the formulas obtained are of the type i =AT~e ~~~ and
diHer only in the values of A and a. The following cases are investigated.

(1) The electrons inside a body are assumed to behave like a perfect gas.
In this case a comes out 1j2. {2)The electrons are assumed to be arranged in

a space-lattice with the same dynamical properties as the ordinary crystal-
lattices. For this case a = —1. {3a) All electrons are assumed to be moving on

quantized orbits with the same quantum number and energy. For this case
a =2. The case (3b) in which the electrons inside the metal are assumed to be
divided into S groups, each group i moving in an orbit with the quantum
number i, is more complicated and will be discussed in a separate paper. The
experimental results are at present not accurate enough to decide between
these values of a.

I. The problem of emission of electrons from hot bodies is usually

regarded as a problem of evaporation. Therefore thermodynamic con-

siderations applied to the thermionic effect lead to expressions similar

to those applied to evaporation.
The thermodynamic expression for the vapor-pressure' is

P=const. T ~~ 'p')~~ e )~&

X being a constant (the heat. of evaporation), c the heat capacity of the

solid, c„ the heat capacity of the vapor at constant pressure, and 8 the

gas constant.
At this point the pure thermodynamic method is exhausted. Kithout

making further hypotheses as to the connection between c, cp and R, hypo-

theses which are more of a kinetic character than thermodynamic, we

are unable to determine the power of T in (1). For monatomic gases

we have c~= (5/2)R, and assuming the validity for the solid of the law

of Dulong and Petit we have c=3R. Then (1) reduces to

P = const. X T &e ~~~~ .

The effect of different kinetic assumptions on the final result is explicitly
seen in diferent kinetic deductions of the vapor-pressure formulas; due

to this difference of assumptions involved, P. Ehrenfest and V. Trkal, '

' W. Nernst, Theoretical Chemistry, 10th German ed. , trans. by N. Godd, p. 68 (1923)
' Ehrenfest and Trkal, Amst. Proc. 23, p. 182 (1920).
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D. Enskog' and R. H. Fowler' arrived at different values of the power of

T, although all their formulas are of the same type as (1}.
The formulas for the number of electrons emitted by a hot body

also vary according to the assumptions involved.

The purpose of the present investigation is to deduce on a purely
kinetic basis formulas for the thermionic current, under different special
assumptions as to the behavior of electrons inside the metal. All the
formulas will be of the type

i =~ Z'e-o/~ (2)

the exponent c depending on the assumptions involved.

Even without any kinetic investigation, by pure thermodynamic

reasoning we may find the physical meaning of the hypothesis which

leads to a=2. Formula (1) may be applied to the electrons outside the
metal. Remembering now that p is connected with no by the expression

p = no&7 (5)
and no is connected with i by

i = npe+k T/2s. m, ,

we see that to a power d of T in (1) corresponds a power of T equal to
d —

2 in (2). To obtain therefore @=2 in (2) we must have

(c—c„)/R= 5/2 . (4)
Now there can be little doubt that if it is admissible to consider the

outside electrons as a perfect gas, we must consider it as a monatomic
one, so that we have in any case

c„=(5/2)R . (5)
It follows immediately, then, that (4) may be obtained only by put-

ting c=0, that is by assuming the energy of the internal electrons to be
zero, or at least independent of the temperature. This assumption in

slightly different forms is made by both S. Dushman and S. Roy. '
In any other case we will obtain values for c different from 2; and as

it is evident that the assumption c=0 is only a more or less close ap-
proximation, we see at once that a = 2 is also only an approximation.

II. We now proceed to the investigation of different possible typical
assumptions as to the electrons inside the metal.

These may be of the three following kinds:
(1) The electrons inside the metal are free and behave like an ideal gas.

Their energy is only kinetic.

3 Enskog, Ann. der Phys. 'F2, 321 (1923).
' Fooler, Phil. Mag. p. 30 (1923);on p. 31 is given a comparison of di6erent formulas.
~ Dushman, Phys. Rev. 21, 623 (1923};Roy, Phil. Mag. 4V, 561 (1924).
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(2) The electrons are bound, and form a space-lattice, like the positive

ions, and are held in their equilibrium positions by quasi-elastic forces,
the displacements being small.

(3) The electrons are bound, but do not form a space lattice. They
move on quantized orbits. The orbit of an electron may belong either to
a single positive ion, or to the crystal' as a whole. As J. Frenkel points

out, this second possibility is the most probable from the point of view of
electrodynarfIi cs.

In all three cases it is assumed that outside the hot body the electrons
behave like a perfect gas. As to the statistical methods of treating our

problem, we will use that employed by M. Born in his deduction of the

formula for vapor-pressure. '
III. Case (I). Electrons assumed to be free Suppo. se from X electrons,

available for distribution, n are outside and n inside the metal. Denote
the work necessary to remove all n electrons from the metal by G=eg,
g being the average work per electron. Denote further by p; (i = 1, 2 ...3n)
the momenta of the outside electrons; then the total energy of these

electrons is

E, =(1) 2m)gp +nt, (6)

m being the mass of an electrons.
In the same way, for the inside electrons we find

E;=(1/2m) Qp"
p being the momenta.

The probability that the electrons 1, 2, 3, ... 3n are outside while

(n+1), (n+2), .. . X are inside the metal is

-(l(kT) (Ee+Ei)
dgI ~ ~ ~ dp3ndg I ~ ~ dP 3n

qi and q being the coordinates of the outside, and inside electrons
respectively. The integration over these variables is to be taken over all

the outside volume V and all the inside volume V' of the metal, respec-
tively. The integration over p; and p is to be taken from —~ to + ~.
This gives

W' =A e "'t"rU"U'"(27rmhT)'~'

' J. Frenkel, Zeits. f. Phys. 29, 214 (1924).
' M. Born, Atomtheorie des festen Zustandes, Encykl. der Math. Wiss. , Band

V~, Heft 4, p. 705.



To obtain the probability that any n electrons are outside and any n'

inside the metal, we have to multiply W' by N!/n! n'! This gives

W=A(N&/n(n'&)e ""' V"V'"'(2grmkT)g (10)

The equilibrium state is defined by the maximum of log O'. Using Stir-
ling's formula, log n! =n log n n—, and putting d logW/dn=0, we End

log n= g/k—T+log (N —n)+log V/V' (11)
or

n(N n) = (V/V')e gigr (12)

We introduce now the concentration ne ——n/ V of the outside electrons
and n~'=n'/U' of the inside ones. ne' may be considered as constant
because n'=X —n is approximately equal to X; N being about 10"
larger than n. ' Ke obtain

n() = n()'e g./&I', (13)

and for the thermionic current we obtain 6nally the expression

g= Qke'n 'g/2rrmT'e «gr (14)

Iv. Case Z. EIectrons assumed bound in a space-lattice. The n electrons
arranged in a space-lattice perform vibrations with 3n frequencies
v; (g = 1, 2, .. . 3n ). Their potential energy is in general a function of the
coordinates of all electrons and ions in the space-lattice, but by the intro-
duction of normal coordinates' it can be brought to the form

i=qn'

lZ "v'", (15)

while if p are the momenta corresponding to the normal coordinates q

the kinetic energy is equal to
i=3«
lZ! '".

i=1
We have therefore,

i=3 rg'

K gZ(P'"=+~ q'"),

while the expression (6) remains for the outside electrons.
Ke follow now the method used by Born in the deduction of the

vapor-pressure formula, and find

log n = g/k T+ log V ——(3/2) log T+(3/2) log (2svggm/k)
or

no ——(2rrv&'m/k)g"T '"e ' 'r
g Richardson, Emission of Electricity from Hot Bodies, 2nd ed. I', 1921) p. 40.
' M. Born. loc. cit.' p. 593.

(lg)
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where

P = V'.0 f, ~

Hence

i = (2m rave'e/k) T 'e e»-r- (2O)

V. Case 3. E/ectrons assumed bound in orbAs. This may be subdivided
in two sub-cases:

(a) All electrons inside the metal move on orbits with the same quantum

number, i. e. with the same energy e.
(b) The n' electrons inside the metal are divided into s groups, each

electron of a group i (i = 1, 2, ... s) nmving in an orbit with the quantum
number i and having thus the energy e;; the number of electrons in the
i-group is n Thu. s n'= g;n

For the subcase (a) we have

—n'e/ JcT —Ee/1'T
IV =He J e dpi ~ ~ ~ dpi

8, being given by (6).
Thus

H"=de '~ ""'re """rV"(27rmkT)3"'2

(21)

(22)

To obtain W we multiply only by X!/n!n'!, but do not need to multiply

by n'l as all orbits are similar. In the case of a space-lattice formed by
n electrons, two electrons chosen at random differ in general by their
frequences as there are 3n frequencies for n electrons. There is thus
a physical difference between them, while in the case of absolutely
similar orbits no such difference exists. Thus we finally obtain by com-

puting Wand putting 0 logW/dn=O,

log n log (S—n) = lo—g V —(g —e)/k T+3/2 log (2s mk T)

or introducing again no, and putting n' for E—n

or
n, =n'(2smk)' 'T' 'e g-

i = 2~g, '~ygp2T2q —«—e) ~k~ .

(23)

(24)

The factor T' in this case is due to the fact that we have assumed the
energy E; of the electrons in the crystal to be n'e, i. e. independent of T,
and therefore we have in (1) c=dE/dT=O.

In the subcase (b) things are much more complicated. We have

(25)
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and to obtain 8'we must multiply W by

W is a function of n and of any (s —1) of the n,' the remaining one n

being given by the equation

8+ g'1l~ = 7

Ke have the equations

dW/dn=0; dW/dn~'=0;. . . dW/dn =0

from which we find n and n, '.
The explicit solution of the problem requires the knowledge of the

function giving the energies e; in terms of quantum numbers. We may
also simplify the problem by assuming that the partition function of
the inside electrons is not considerably altered by the emission, and
therefore n are known functions of e; and T.

The case Bb seems to be the most plausible and will be investigated
in another paper. We did not apply the quantum theory when dealing
with space-lattices. This, of course, limits the application of our consider-
ations to high temperatures, when the quantum theory degenerates into
the classical one and the law of equipartition holds with greater ap-
proximation. Experimentally we nearly always use this range of tem-
peratures.

It is noteworthy that the experimental results do not allow us up to
the present time to make a choice between the different cases discussed
in this paper. In a quite recent article" Dushman, Rowe, Jessie Ewald
and Kidner give the results of very accurate measurements on tungsten,
molybdenum and tantalum. They find that the points representing
log i —2 log 1as a function of 1/'T fall very accurately on a straight line.
Unfortunately, a very close agreement is obtained also in plotting
log i —', log —I' (which corresponds to a=-', ) or logi+ log T (which cor-
responds to u= —1). Using the values given in the Table V of the article
mentioned, plots were made and it was found that no preference can be
given to any of the expressions.

RESEARCH DEPARTMENT,
WESTINGHOUSE ELECTRIC AND MANUFACTURING CO.

EAST PITTSBURGH, PA.
March 26, 1925.

'" Dushn:an, Roice, Ewald and Kidner, Phys. Rev. 25, p. 338 (1925).


