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METHODS FOR DETERMINING TRANSITION
PROBABILITIES FROM LINE

ABSORPTION

J. C. SLATER

Aasvmcr

Computation of quantum transition probabilities from measurements of
absorption in spectral lines. —The various steps are discussed, practical methods
being given for performing the calculations. The absorption coefFicient can be
found by the exponential law from knowledge of the intensity of absorbed and
non-absorbed light. In doing this, the intensity curve must be corrected for
slit width, and a simple method for this, applicable when there is good resolu-
tion, is given. Also methods are given for fitting constants of the ordinary
formula for absorption coefficient in a spectral line to the observed data.
Several points connected with half breadth, failure of the exponential law with
poor resolution, are discussed and finally formulas are given for finding the
atomic transition probabilities from the constants of the absorption formula.

HE experimental determination of the coe%cient of absorption in

the line spectrum of gases is beginning to be important, on account
of the connection between the strength of absorption lines and the prob-
abilities of transition between energy levels. The present paper contains
discussions of the various steps encountered in translating the experi-
mental data into atomic constants, and gives the necessary formulas, in

form adapted for practical use. It was formulated at the suggestion of
Dr. G. R. Harrison, who has recently made measurements of absorption
coeScients in the principal series of sodium and potassium, ' and who

thought that a brief resume of practical methods for reducing the data
of such experiments might be of interest to other experimenters in the
same 6eld. I am indebted to Dr. Harrison for many valuable suggestions
in writing the paper.

1. ExPQNENTIAL LAw oF ABsoRPTIoN

The product of experiment may be taken to be two spectrophotometric
curves. The hrst shows the intensity of light at each point of the spectrum
which has passed through the absorbing substance and reached the
measuring device, whether this be photographic plate or other arrange-
ment. The second similarly shows the intensity for the light which

was received when the absorbing substance had been removed. The
methods by which intensity of light is deduced from the observed photo-

G. R. Harrison, preceding paper in this issue.



graphic density need not be discussed here. These spectrophotometric
curves will not truly represent the intensity distribution in the light
which enters the spectrometer, on account of the finite resolution of the
instrument, arising principally from the finite slit width, and the first

step is to correct for this as far as possible. This correction is discussed
in section 2.

The desired result is the absorption coefficient for each wave-length;
that is, the relative decrease in the intensity of monochromatic light of
that wave-length, passing through an infinitely thin sheet of the absorbing
material, divided by the thickness of the sheet. The absorption coefficient
can be deduced immediately when the true intensities of absorbed and
non-absorbed light are known, provided we know also the distance x
which the light has traveled in the absorbing material. For if Io repre-
sents the intensity of the light before absorption, I the intensity after
traveling a distance x, and k(X) the absorption coefficient for wave-

length ), then by definition

dI/Idx = —k().) (l)
from which immediately follows

I=Ipexp I
—k(X)x},

where exp I } represents e raised to the power; and

k() )x = log(I/Io) =—log(Io/I). (3)

2. CORRECTION FOR FINITE RESOLUTION

In consequence of finite resolving power, the intensity distribution
in the light which strikes the spectrometer is not truly represented by
the resulting spectrum. If exactly monochromatic light should fall on the
slit, a broadened band would result, on account both of the width of the
slit and the finite resolving power of the optical system. As an approxi-
mation, we may suppose that this band has a sharply defined breadth
5 in units of wave-length on the spectrum, and that the illumination is

constant over the band. 6 in general varies with the wave-length, and is

assumed known. If the incident light is of continuous spectral distri-

bution, it may be considered made up of a great many monochromatic

components, extremely near to each other. Each such component

produces a band of width 6 in the observed spectrum, the intensity in this
band being proportional to the intensity of the monochromatic component
in the actual spectrum. At a given point of the observed spectrum, there
will be an overlapping of the bands from all actual wave-lengths within

a range of 6/2 on either side of the actual wave-length associated with

the point of the spectrum in question. Thus the intensity of the observed
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spectrum at a point of wave-length X is the average, from X —6/2 to
'4+6/2, of the actual intensity. We are given these averages, and required
to find the original curve.

If the true spectrum has an intensity which varies greatly in the spec-
tral region 6, the problem cannot be solved. This is the case where the
instrument has not sufhcient resolving power to resolve all the structure
of the spectrum, and the structure cannot be deduced from the observa-
tions. On the other hand, if the spectroscope is of sufficient resolution for
the spectrum which is being observed, it is easy to set up approximate
methods of solving f'or the true spectrum. It should be noticed, however,
that it is not in general possible to tell by examination of the observed
spectrum whether there is unresolved detail or not; only our general
knowledge of the nature of the spectrum in question can tell this.

In case we can be sure that the true intensity varies so little in a region
of the order of 6 that we can express it by a power series of a few terms,
we can find the true curve from the observed one by a method given by
Runge. "- Since this method does not seem to be well known, we give here
the first approximation to it, obtained by supposing that the true intensity
curve can be approximated by a parabola in a region of the order of h. Let
the true intensity be f(X), the observed intensity p(X). Then we approxi-
mate f(X) at X=Xo by a parabola passing through the points f()io),
f(4 6/2), f(ho+5/2). This curve we may call fo(X); its equation is

fo(&) = f(&o)+ [f(&o+~!2)—f(&o—~/2) ] (&—&o)/~+

2 [/(lio+~/2)+f(~o —~/2) —2f(~o)1(li —&o)'/~'
~

as may be seen by substitution. Then y(Xo) is the average of f(X) from

Xo—6/2 to ho+6/2; and we may approximate by substituting fo(X) for
f()i).

Xo+&/2

oo(Xo) =— fo())dX= f(Xo)+ [/(X +do/2)+f(X 5o/2) 2f(ko)]/6 (5)

To the approximation with which f(X) can be replaced by a parabola, the
quantity

/(ho+6/2)+ f(Xo—6/2) —2f(Xo), (6)

which is the only variable part of the coefficient of the square term in (4),
must be independent of ) 0, for the coefficient of the square term of a
parabola is independent of the choice of origin of coordinates. Then if

(5) is regarded as defining p()~o) as a function of Xo, p equals fP o) plus a

' See Paschen, Ann. der Phys. M, 71Z (1897)
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quantity relatively independent of Xo, that is, p isf slightly shifted bodily

upward by an amount one sixth of (6). From the resulting similarity of
the curves for st and f, we may then replace (6) by

s (&o+&/2)+s (Xo &—/2) 2—s (Xo), (7)

so that (5) becomes

f(&o) = s'(&o) —4'(&o+ ~/2) +p(&0 —~/2) —2p(&0) ]/6

This suggests a simple construction for fP, ),0when y is given: Connect
the points y(Xs+b/2) and yPO —6/2) by a straight line. The line X =lto

wiH then pass through y(XO) and through the mid point of the straight
line. The intercept of X =kp between the straight line and the cp curve

equals one half of (7), so that one third of the intercept is the constant in

(8), to be subtracted from the y curve to 6nd the f curve.

3. CONSTANTS IN LINE ABSORPTION FORMULA

The formula of dispersion theory for the absorption coefficient may
be written, if we are interested only in wave-lengths X which are near
enough the natural wave-length )0 so that X —Xo can be neglected in

comparison with ) 0,

k(X) = constant/[(X —)I o)'+constant'] .

The two constants in combination determine the integrated absorption,
while the second alone regulates the breadth of the line. For practical
purposes, a convenient form for the constants proves to be that given

by the equation

k(X) x =Cglog. 10/ [(X—Xo) '+CiCs],

where x is the length of path, as in (2) and (3), and the quantity log. 10
is inserted so as to bring the 6nal formula in terms of logarithms to base

Io, for convenience in computation. Then we can immediately write,
from (3),

Cg/ [(X—Xo)'+Cycm] = logyo(IO/I) 1

(X ho)'=Ci[—1/loggp(Ip/I) Cm] . — (10)

Thus, if 9,—Xo)' is plotted against 1/logqo(IO/I), a straight line should

result, if the absorption coefFicient really follows the formula of dis-

persion theory. This straight line has a slope C~, and intersects the
axis of abscissas at a point whose coordinate is C~. The two constants
can be read oR at once from such a curve, simply by drawing the best
straight line through the observed points, and 6nding its slope and
intercept.
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A case more likely to arise in practice is that in which the absorption
coefficient is the sum of a term like (9), and a term which is approxi-
mately constant over the line. The latter can arise from continuous ab-
sorption, band absorption which does not vary greatly with wave-length,
or small absorption on account of partial overlapping of neighboring
lines. If we let E(X) be the total absorption coefficient, which should

occur in (3), k(X) the part of it due to line absorption, given by (9), and
k' the constant part, then X(X) =k(X)+k'. Instead of (10), we have

() —1~0)
' =Ci Cg

log „(I,/I) —k'x/log, 10
(11)

When (X—Xo) is plotted against 1/[logyo(IO/I)], this equation is easily
seen to give, not a straight line, but a hyperbola. The most feasible way
of solving for the constants of this equation seems to be to hnd by trial
the value of k'x such that when (X —X,)' is plotted against 1/[loglo(IO/I)—
k'x/log, 10], the result is a straight line, and then read off Ci and C2

as before. This amounts to 6nding by trial a hctitious value of Jo equal
to the actual I, multiplied by exp j —k x },or the intensity which the
incident beam would have if subjected to the continuous absorption but
not to the line absorption, and treating this as the incident intensity for
line absorption. The same method can be used if the true incident in-

tensity Jo is not well known, the intensity being simply adjusted by
trial until the resulting curve is a straight line. It is found in practice
that the constant k'x can be readily determined by a small number of
trials. This method not only serves to determine the constants of line

absorption when continuous absorption is also present, but it also fur-

nishes a rather sensitive determination of the amount of continuous ab-

sorption, separating it satisfactorily from the line absorption.

4. PossIBLE ERRQRs IN THE CAsE oF vERY NARRosv ABsoRPTIVN I INEs

Experimenters are inclined to specify a line by its half breadth and

area, or by some such method, and this will be discussed in the present
section. Errors are likely to appear when lines are described in this
manner, because the shape of a line varies as we pass through the absorb-
ing medium. Suppose we have a substance with a narrow absorption
line, and pass white light through a moderate length of it. If we have
the proper length column, almost all the light will be removed in the
wave-lengths in the center of the line, while considerable light will get
through of the wave-lengths at the edge of the line. But suppose now the
length of column is greatly increased. Very little more light from the



center of the line will be absorbed, simply because there is very little
left to be absorbed; but light from the edges, where the absorption coefFi-

cient is much less than in the center, but still appreciable, will be ab-

sorbed, so that light from a wider band of wave-lengths will be removed
from the spectrum. As the length of the absorbing column becomes

greater and greater, light is removed from a broader and broader region,
until finally, if a long enough column could be used, the light from the
whole spectrum would be absorbed. Under these circumstances, it is

plainly of no direct significance to speak of the half breadth in the spec-
trum of the transmitted light.

Analytically, we can easily see the same thing. If the absorption coeffi-

cient has the value given in (9), then from (2) we have

I=Io exp{ —Cglog, 10/[(lh, —Xp)'+CiCg] I, (12)

where as before exp denotes the exponential. For small values of C~ (it
will be remembered that C~ contains x, the thickness of the medium, as
one of its factors), this can be approximated by

I =Io{1 —C log, 10/[() —),))'+C,C, ] I . (13)

If here C~ were to change, that would not change the shape of the ab-
sorption line, which can best be defined by (Io I)/I0. Bu—t when the
exponential can no longer be replaced by its first two terms, (Io I)/Io-
no longer remains of the same shape.

In the region where (13) holds, the half breadth is the distance be-
tween the two points where (Io I)/Io has ha—lf its maximum value. It is

immediately seen to be

2+C1C2

in wave-length measure. In this same region, the area under the curve

(Io I)/lo, integra—ted over all wave-lengths, is

s log. 10+(C&/C2) (15)

Closely connected with the change in shape of a line, described above,
is the fact that the exponential law (2) does not hold if the observed,
rather than the true, intensities are used. For suppose an extreme case,
in which the slit was so broad that monochromatic light would be spread
out into a broad band compared with the natural breadth of the line we
are interested in. Then, from the formulas in sections 2 and 4, we should
have the observed intensity equal to IofdX exp {—k(X)x I, the integral
being over the band of width 6, within which kP, ) varies greatly. This
does not by any means vary with x as an exponential function, so that
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the method of section 1 cannot be used to determine the absorption
coefticient. In this case, which is essentially the situation where the
resolution of the instrument is insufhcient to resolve the detail, there

seems to be no direct way of finding the absorption coefficient from the

data. %hen the resolution is sufficient, the only correct method seems

to be to apply the slit width correction, obtain the absorption coefficient

from the exponential law, (2) or (3), and work with this coeScient.
This seems not to be generally appreciated by experimenters.

5. CONSTANTS IN THE QUANTUM THEORY OF ABSORPTION

(17)

' J. C. Slater, Phys. Rev. 25, 395 (192S)

A quantum theory of dispersion and absorption has recently been

proposed by the author, ' leading to an absorption formula of the type (9).
The connection between the constants C~ and C2 and the theoretical

constants will now be derived. The derivation could be made, as usual

in dispersion theory, by considering the amplitudes and phases of the

wavelets emitted by the atoms under the action of radiation; but the

same result can be more easily obtained by direct use of the energy

principle. It was assumed in that paper that if light whose energy density
in frequencies between v and v+dv was p(v)dv, shines on atoms in the ith
stationary state, then there was a probability B(v)p(v)dv that each atom

would, in unit time, have a transition to the jth state, with increase of

energy hv0, where vo is the frequency of the transition i j. B(v) is a f-unc-

tion of v, characteristic of the transition i-j, and its value will be given

in (17). The energy going into the increased atomic energy was further

shown to be abstracted, on the average, from the radiation of frequency

v passing over the atoms. If then there are N atoms per unit volume in

the ith state, there are Edx in a sheet of unit cross section and height dx;
and if light of density as specified above shines along the x axis, energy

Ndx B(v)p(v)hvgv per second will be abstracted from the light and

communicated to the atoms. An amount of energy cp(v)dv, where c is

the velocity of light, flows through the sheet in a second. Thus the

fraction of the energy of the light which is removed by passing through

the sheet is Xdx B(v)7Iv0/c. This is the same as the fractional decrease in

intensity, so that we have by (1)
dI/Idx = k(X) =—XB(v)7Ivo/c (16)

It is further assumed in the paper quoted that

(1/x) (&'+»)/2x
B(v) =B;,"[v—v, ]'+ [(I';+I';)/2x ]'



vrhere 8;; is the same as Einstein s coefticient of probability 8, and I';
and I'; are respectively the probabilities of leaving the states i and j.
The quantity I';+I'; determines the broadening; and since there is no
need for the present purpose to confine ourselves to the specific theory
of broadening involved in this formula, we shall write P in place of P;+P, ,

and make no explicit connection between P and other quantities. Ke
then have

k(X)x=
EB;;xhvo P

2x [v —va] + [P/2x]
(18)

To compare this with (9), we substitute for X in terms of v. We shall

suppose X to be measured in angstrom units. Then v=c/(XX10 ').
Treating (v —vo) as a small quantity, which is allowable with the approxi-
mations we are making, v —v0

———10'cP, —Xo)/X02. Then (18) becomes

SB;;xhPXo' 1
k(Qx=

2x'c' 10' [y—$0]'+ [Pit,o'/2xc10']'
(19)

By comparison, we see that this is of the same form as (9), and that the
constants are given by

Cg ——XB;;xhPXg'/2s'c'10' log, 10; C,Cg ——[PRO'/2s. 10'cj'. (20)
From these we solve for the two constants B;; and P/2rr determimng
the total absorption and breadth of the line

~c log, 10 Ci P 10'c
B;;= —

g
——;—= QC)C. .

Ãxhho C2 2x
(21)

Finally, we may determine Einstein s probability A;; from this by the
equation A;;=(8s.hvo'/c')B;;, disregarding the effect of a priori prob-
abilities. Then

Sm'c log, 10X 10'4 Ci
A;;=

&x&o4 I C2
(22)

It is to be recalled that in Eqs. (19) to (22), X, is to be expressed in

angstrom units.
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