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ABSTRACT

Effect of viscosity on longitudinal vibrations in bars.—The theoretical devel-

opment is based on the assumption, due to Stokes, that the stress in the medium
due to viscosity is proportional to the first power of the time rate of shearing
strain. The equation of propagation of a plane longitudinal sound wave along
a slender bar is made to include the viscous stress which arises from the shearing
strain associated with this type of disturbance. Comparison tosh experiment.
Specimen bars are excited to longitudinal vibration by means of a high fre-

quency, sinusoidal alternating electric field impressed on a piece of piezo-electric
quartz cemented to one end of the bar. The amplitude of vibration is observed
by measuring the torque on a Rayleigh disk suspended in air immediately
off the other end of the bar. Resonance curves are obtained showing the
relation between the square of the particle velocity at the end of the bar and
the frequency of excitation. The experimental curves for hard drawn copper,
aluminum, and glass are in admirable agreement with those deduced from the
theory. Curves for soft annealed copper and silver, however, exhibit dis-
crepancies which indicate the presence of viscous forces varying according to
higher powers of the strain velocity.

Coefficient of viscosity as determined from longitudinal vibrations. —%here
the agreement is good, comparison of the observed with the theoretical reson-
ance curves yields the value of the coefficient of viscosity of the substance
multiplied by (1+0), where o is Poisson s ratio. The values obtained for this
quantity for Al, Cu, and plate glass, are 545, 2880 and 2440 c.g.s. units, respec-
tively. These are in the neighborhood of 10, in marked disagreement with the
values of 10' obtained by other investigators using quite different methods.
It is possible that irreversible changes involving dissipation of energy take
place in slow bending which are absent in rapid vibrations.

Velocity of sound in solids.—For aluminum, hard drawn copper and plate
glass the values obtained from the resonance frequencies are 5070, 3650 and
5710 m/sec. , accurate to about 1 per cent.

Measurement of small changes of elasticity af bars.—Changes of less than
.01 per cent can be detected by this method.

Differential frequency meter for measuring small changes of frequency in
a high frequency generating set is described, sensitive to a change of le» t»n
1 cycle per sec. in a frequency of 50,000.

HE f'ollowing research is an experimental study of the theory of
longitudinal vibrations in a viscous medium as developed by Stokes

The method involves a comparison between the observed resonance
curves of a vibrating bar and the theoretical resonance curves which

follow from the fundamental equation obtained by Stokes; The validity
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of the theory having been established, the coefficient of viscosity of the
medium may be calculated.

A. THE.os
Viscosity of matter is a term denoting the phenomenon of transfer of

coordinated molecular motion within the medium into random motion
or heat. The mechanism of this process lies evidently in those modifica-
tions in the normal intermolecular cohesive forces, which accompany
molecular collision. Such extra intermolecular forces, averaged over a
time interval long compared with their own periods, will constitute an
equivalent stress in the medium, and it is the object of any theory of
~ iscosity to evaluate this viscous stress in terms of the coordinated
motion (strain) which produces it. Now it is a matter of common ex.-

perience that viscous force, in Huid media at least, depends on the time
rate of strain and not on the strain itself. Hence the obvious first
approximation is to assume the viscous stress at any point in the medium
to be proportional to the strain velocity at that point. Stokes, ' however,
goes one step further than this. The most general type of small strain
in an isotropic medium may, by the method of the ordinary theory of
elasticity, be exhibited as a uniform dilatation accompanied by two
simple shears. Stokes argues that, inasmuch as the viscous forces arise
from the mutual actions of neighboring molecules, in the case of a dilata-
tion uniform in all directions these forces will on the average balance one
another and can therefore contribute nothing to the normal elastic stress
at the point in question. Thus in Stokes' theory viscosity is inseparably
associated with shearing motion, and the coefficient of viscosity p of a
homogeneous medium is defined by the equation S=p ds/dt, in which
ds/dh is the time rate of shearing strain and 5 the contribution of the
viscous forces to the corresponding shearing stress. It is now desired to
find the way in which these viscous stresses modify the equations of
propagation of a longitudinal sound wave in the medium.

If the coordinate axes coincide with the principal axes of strain, the
components of elastic stress accompanying displacements 1'~, v, ~~, in an
isotropic medium are given by expressions of the type, "-
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' stokes, Camb. Phil. Soc. Trans. '7, 287 (1845); Math. and Phys. Papers I, p. 75.
2 Ravleiah. Thenrv Af Sn»nrl. T'f. n. 313
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It will be observed that, in these equations, the bulk modulus k appears
only as a coefFicient of a dilatation and the modulus of rigidity n only as a
coef6cient of shears. Hence, on Stokes' assumptions, if the coefFicient

n be replaced by the operator (n,+pB/, Bt) the contributions of the viscous

forces to the total stress will be fully taken into account. ' Accordingly,
the principle stresses in an isotropic viscous medium will be given by
the expressions
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The equations of motion in the medium may now be written in the form,
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' (4)

The boundary conditions appropriate to the propagation of a longi-

tudinal wave along a slender bar whose axis lies parallel to X are that the
resultant elastic and viscous stresses parallel to Y and Z be separately
equal to zero. These conditions applied to Eqs. (2) and (3) yield the
relations

Q= R =0,
Bv Bw BN

(T
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where 0 is Poisson's ratio. Thus the resultant longitudinal stress in the
bar is given by

8u 4 Bu 4 8 QI'= k(1 —2o')—+—(1+rr)n —+—(1+0)p—'
Bx 3 Bx 3 BxBt

(6)

' Ibbetson, Mathematical Theory of Elasticity, p. 4&&
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A physical interpretation of this analysis shows that the type of strain
associated with longitudinal vibrations in a slender bar is an elongation
of amount Bu/Bx per unit length accompanied by a lateral contraction of
amount n BN/Bx per unit length. Such a strain involves two simple shears
each of amount (2/3)(1+0)BN/Bx in mutually perpendicular planes at
angles of 45' with the direction of elongation. Phenomena resulting from
the viscous forces called into play by these shearing motions form the
subject of the present investigation.

If the values of I', Q, and 2|! given by Eqs. (5) and (6) be now sub-

stituted in Eqs. (4) these become

d 2p

p =0,
dt'

d N
p =0.

dt2

where 6 is Young's modulus.
Due to the finite cross section of the bar the boundary conditions

assumed in the derivation of Eq. (7) are not exact. Lateral stress and

consequent lateral motion will exist. In physical terms, the inertia
associated with this lateral motion will produce a decrease in the effective
value of 0, the ratio of lateral contraction to longitudinal extension in the
bar. In an argument based on energy considerations, Rayleigh has
shown that the effect of lateral motion in a circular bar of radius r and

length 1 is to increase its natural period T in the ratio T/T'=1/(1+6/2),
where 6=m'n'rr'r'/2P, and m is the number of half waves in the bar.
Thus, since G=2(1+&r)n,

and the effect of neglecting the modi6cation in the viscous stress due to
the inertia of the lateral motion will be to make the y calculated from

Eq. (7) too low by an amount pD. In the present experiments this correc-
tion is less than the experimental error.

B. APPARATUS

1. THE V&BRAnNG SVSrEM

Fig. »s a diagram of the vibrating system used throughout these
experiments. A piece of piezo-electric quartz 2 in. long, 1 in. wide, and



3/16 in. thick is cemented with a very thin layer of hard shellac, softened

by heating, to one end of a bar of the material under investigation having
the same breadth and thickness. The slab of quartz is so cut from the
crystal that the optic axis lies parallel to Y and an electric axis parallel
to Z. Thin sheets of tinfoil are pasted on the X-7 faces of the quartz.
If a sinusoidal potential difference be established between these sheets of
tinfoil a pressure strictly proportional to the potential difference will be
developed in the quartz, ' and this pressure will be communicated across
the boundary to the bar. In this manner it is possible to set up in the bar
longitudinal vibrations of great purity.
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Fig. 1. The vibrating system.

The following mathematical analysis of the vibrating system is based
upon certain assumptions, namely:

1. The effect of the shellac cement is negligible. The experimental
results justify this assumption.

2. The effect of dissipation through radiation into the surrounding air
is negligible. This follows both experimentally and from a theoretical
development in which radiation is included.

3. The effect of viscosity in the quartz is negligible. Unpublished
results on the dissipation in vibrating quartz plates obtained in this
laboratory by C. G. Stone indicate that the viscous coefFicient of quartz
is extremely small. The validity of this assumption is further experi-
mentally verified in what follows. The equation of propagation of a
plane wave of sound in the quartz is accordingly

in which u is the particle displacement and V2 is defined by the equation
V, = QG2/p2, where G2 is Young's modulus for quartz and p2 its density.

The present experimental method demands an expression relating the
particle velocity at the end of the bar with the frequency of excitation of

' %. G. Cady, Proc. Inst. Radio Eng. 10, 83 (1922).
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the system. If the potential difference E impressed on the quartz is of
the form

g —P eint
7

it follows that the piezo-electric pressure II developed in the quartz may
be represented by the equation

The amplitude of vibration at all points in the system will vary harmon-

ically with the time and

~i (nt+kss) +g t'gi(nt —ksx)

will be a solution of Eq. (8) giving the motion in the quartz provided that

t't, = u/V2.

Similarly
(9)g ~int+(tz+ik, ) s~g ~~int —(a+ik, ) z

1 + 1

will be a solution of Eq. (7) giving the motion in the bar provided that

2 Ã p
0,

3 pi Vi'

kg =—u/Vr r

p' =—(1+~)p,

and 16 n'u"/9pPV„' is small compared with unity. The constants 2„
A ~', and A2, A 2' are evaluated with the aid of the equations expressing
the continuity of pressure and velocity at the boundaries. Thus at
X Zj

and at x=o,
G, [du/dx], +11=0;

4
G2 [du/dx] g+ 1I =G, (du/dx] ~+ p'[d'u/dxdt] —„

3
[du/dt], = [du/dt], ;

and at x=1.,
—p' [d'u/dxdt], +Gi [du/dx]g 0, ——
3

where the subscripts 1 and 2 refer to conditions in the bar and quartz
respectively. The values of A&, and A&' obtained from these equations
are substituted in Eq. (9), which then constitutes a complete solution for
the motion in the bar. Thus it readily follows that

I Vol'=110'[cos y —1}'/ [[VPpPcos'y+V&'p&'sin'y} [cosh'z —sin'(ut —P) }
+su(V2/V, )pzp'sin y cos y sin h2z] (10



where
~

Vo ~=theamplitudeof theparticlevelocityat theendofthebar,

u =nL/V, , y=n1/V, ,

2 n'L U&p&cos ys= — p, ', P=tan '
3 pyUy V2p2sln y

IIO'( cos y
—1}'-

iP' (2—

I Vg'pg'cos'y+ V2'pg'sin'y} I [4n'L'/9p, 'V/+K] p"+cos'(w P) }—
(11)

8n'Vgp2L ssn y cos yE=
9p&V, '( VPpecos'y+ Vz"-pz'sin'y}

where

Since z is of the order of 10 ' the hyperbolic functions may be replaced

by their series expansions and the third and higher powers of s discarded.
When this is done Eq. (10) becomes

In this expression all the terms on the right hand side except p,
' and IIp

are known.
The observations recorded below were all taken for frequencies between

37 and 60 kilocycles, while the resonance curves themselves are only
about 100 cycles wide. It follows that as the frequency is varied in the
neighborhood of a resonance point the term in p" remains sensibly
constant. Resonance will therefore occur when cos (w —P) is a minimum,

i.e. , when

(u —P) =(mm —~s~),

where m is the number of half waves in the bar. This gives the following
relation between V&, I. and the resonance frequencies of the system, viz. ,

and

2/OL/Vg =m+6

f'= a resonance frequency,

8=P/

2. THE POWER SET

Fig. 2 is a diagram of the oscillating circuit supplying power to the
vibrating system. The vacuum tube is a 250 watt General Electric Co.
type P pliotron. E is a standard Kelvin electrostatic voltmeter, and C2

a vernier condenser. The set is capable of producing a very pure sinu-

soidal voltage across the quartz ranging in value from 1 to 5 kilovolts and
in frequency from 35 to 65 kilocycles. The voltage is regulated by vary-
ing the current in the 6eld coils of the generator.
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3. THE VIBRATION INDICATOR

Variations in the particle velocity at the end of the bar are measured

by observing the torque on a Rayleigh disk suspended by a fine quartz
fiber in the air immediately oH the end of the bar.

Flg. 2. The power circuit.

Fig. 3 is a schematic diagram of this apparatus viewed from above.
The Rayleigh disk, 0.2 cm in diameter and 0.005 cm thick, is stamped
with a die from a sheet of aluminum and mounted on the tip of a fine glass

Fig. 3. Schematic diagram of the vibration-meter.

sta~. Near the top of the staff are placed two mirrors, back to back. One
of these carries a small magnet. The whole is hung so that the disk comes
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about 0.2 cm from the center of the end of the bar, which fills an aperture
in the plane surface I'I". The whole apparatus is in a space in which the
earth's magnetic field has been carefully neutralized by coils not shown in

the figure. The plane of the disk is adjusted to make an angle of 45'
with the surface I'I". In this position a spot of light reflected from one
of the mirrors falls upon a fiducial mark on a scale.

%hen the bar is in vibration there is a torque on the disk tending to
set it parallel to 2'2', due to the vibration of the air in which it is situated.
The moving system is returned to its original position by balancing this
torque with an equal and opposite magnetic torque produced by sending
a suitable current through a pair of Helmholtz coils, Hi and H2, Fig. 3.
%hen a balance is obtained, as indicated by the position of the spot of light,
the vibration torque will be proportional to the current in the coils, which

is then read from a milliammeter. The magnitude of the vibration torque
is proportional to the square of the velocity of the air about the disk. '
It is assumed that the motion of the air at the disk follows that of the end
of the bar. It therefore follows that the currents observed on the milli-

ammeter should vary with the frequency of excitation of the vibrating
system in accordance with the relation expressed by the right hand
member of Eq. (11). The theoretical working formula of the instrument

is, therefore,

Z'Icos y —1}'
T=c , (13)

~ V12pimcos2y+V 2p 2sin2y} I [4n4I2/9p 2V 6ylt jpl2+cos2(gl P) }

where T= torque in milliamperes,
2'= root mean squared voltage applied to quartz,

c =a constant.
The constant c includes the piezo-electric constant of the quartz and the
ratio between the mean squared velocity of the end of the bar and the
corresponding torque in milliamperes on the Rayleigh disk.

If the prolongation of the glass staB does not pass through the center
of the disk there will be another torque on the disk due to the radiation
pressure of the sound. To eliminate this it is necessary to take another
series of observations with the disk rotated through 180'. This procedure
reverses the radiation torque and leaves the velocity torque unchanged.
The reversa1 of the moving system is accomplished by means of a tem-
porary magnetic field in the two small coi1s N& and X2, which are mounted
to rotate by hand about a vertical axis. The present disk gives identical
results in both positions.

' Rayleigh, op. cit.' lI, p. 44.
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4. THE DIFFERENTIAL FREQUENCY-METER

Changes in the frequency of excitation of the vibrating system in the
neighborhood of a resonance point are measured by adjusting the note
from a calibrated audio-frequency oscillator to consonance with the beat
frequency obtained by coupling the power set to a small oscillator whose

frequency is maintained constant.
Fig. 4 is a diagram of the circuits employed. Circuit I is an oscillator

designed to supply a very constant frequency differing by about 2500
cycles from that of the power set. Both these frequencies are impressed
on the grid of the detector tube II, which rectifies the 2500 cycle beat
note. This beat note from circuit II is, in turn, mixed with an audio-

frequency note from circuit IV and impressed on the grid of tube III, to
which is connected a loud speaking telephone.

TO POWER SKY

Rr I

'I I I-- I-
Il

Fig. 4. The di6'erential frequency-meter circuit.

The audio-oscillator IV has been accurately calibrated by comparing
its note with that from a siren. C4 is a vernier condenser which will vary
the frequency about 300 cycles in 2500. A scale on C4 indicates directly
the difference between the (audio) frequency corresponding to any
setting on C4 and the frequency when C4 is 0.

It follows that any small change in the frequency of the power set will

be given at once by the difference in the scale readings on C4 correspond-
ing to values of C4 which produce consonance between the audio note and
the beat note. As consonance may readily be determined to better than
one beat per second, the apparatus measures a change in frequency of the
power set of one part in 50,000.

5. METHoD oF MANIPULATIoN

The operation of making a complete run on a specimen bar is as
follows:

The vibrating system, having been prepared as described above, is
suspended in position by fine threads and grounded to prevent stray
charges from affecting the disk.



2. The earth's magnetic field is carefully neutralized so that the Ray-
leigh disk swings under the negligible torque of the fine quartz fiber.
The disk is then conveniently held in position by a current in the rotating
coils.

3. A resonance frequency is selected by varying C, (Fig. 2). C2 is

then adjusted until the system is vibrating on the lower portion of the
resonance curve.

4. C4 (Fig. 4) is set at 0 and C& adjusted for consonance between the
audio and beat notes.

5. The vibrating system is carried back and forth through resonance

by varying Cm, torques being observed on the milliammeter and corre-

sponding frequency difI'erences on the condenser C4.

6. The absolute resonance frequency is measured with a precision of
1j4 per cent on a wave meter especially calibrated by the U. S. Bureau
of Standards.

C. RESULTS

The method just described offers two points of attack in the verifica-
tion of Eq. (11), namely, (a) comparison of the observed harmonic re-

sonance frequencies with those calculated using Eq. (12), and (b) compar-
ison of the experimental resonance curves with those given by Eq. (13).

i. HARMONIC RESONANCE FREQUENCIES

Eq. (12) predicts the harmonic resonance frequencies of the vibrating
system with great precision. The method of using this equation was to
calculate V~, the velocity of sound in the medium, using the observed
values of fo and L and the computed value of 5. For calculating 5 suf-

ficiently good values of V& were obtained by setting 5 =0 in Eq. (12), and

af V2 by vibrating the quartz by itself. V& should, of course, remain
constant irrespective of the value of f, and L.

The results are shown in Table I.
TABLE I

Material

Glass 97.2 cm

Aluminum 90.0

39)020
41,720
44, 480
37,400
40, 230
45, 550

13.265
14.215
15.142
13.308
14.258
16.154

5.718)&10' cm jsec.
5.706
5.711
5.059
5.079
5.077

Copper 91.67
58.14
24.60
24.60~

43,920
44, 250
45,000
41,900*

22.083
14.076
6.072
5.717~

3.647
3.655
3.646
3.606*

~ Made with a piece af quartz 1 inch long.
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Used simply as a means for determining the velocit ofe oci y o soun in solid

device
ia e precis~on of the method is seen to be limited onl b hi i e ony yt atofthe

evice used for measuring the absoluteu e resonance "requency.

2. THE REsoNAxcE CURvEs

Resonance curves typical of the lar e
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Fig. 5.

Resonance curves of vibrating bars.
Material I

Co er
fo

pper 24.6 cm 45,000
Copper 91.7 43 920

Glass 97.2
Annealed copper 24. 6 45,000

Glass
97.2 39,020

Aluminum
97.2

.0 45, 550
44, 480

of ordinates for curve F is double that for the others 4
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1400 volts
2200
2000
2000
1500
1400



It is not possible to obtain points on the higher parts of the curves
since the curves in this region are extremely steep. A very small Ructua-

tion in the frequency of the power set results in a large increase in the
amplitude of vibration and a correspondingly large increase in the piezo-

electric reaction of the vibrating quartz on the power set. This, in turn,
produces a further change in frequency. The result is that, in passing
through resonance, when the curve reaches a certain steepness the
electro-mechanical system becomes unstable and the frequency jumps
abruptly to some point on the other branch of the curve.

The process of expressing the experimental data in the form of Eq. (13)
involves the determination of the two arbitrary constants c and p'.
These are evidently mutually independent. The observed values of c

proved to be constant within a few per cent as long as the bar was left
undisturbed in its position relative to the disk. The values of p,

' were

reproducible under all circumstances.
The average values of y,

' = (1+0)p, for the materials investigated are as
follows:

Aluminum

Copper. . . ~ . .
Glass. . . . ~ . .

p,
'= 545+4 c. g. s. units

p,
' = 2880+46

p' = 2440+ 53

The glass strip was cut from a plate of automobile windshield glass and

had a specific gravity of 2.52. The aluminum was sawed from a piece of
commercial sheet aluminum having a specific gravity of 2.63. The copper
came in the form of hard drawn copper bar having a specific gravity
of 8.85.

In order to verify the assumption that any dissipation in the quartz is

negligible, experiments were made on eight copper bars varying in length
from 9j..67 cm to 24.60 cm. The resulting values of p' showed no sys-
tematic variation.

Curve C (Fig. 5) was obtained from the same bar as Curve A after the
copper had been annealed by heating to a cherry red and plunging into
water. The indicated shift of the resonance frequency is not significant
as the curves were superimposed arbitrarily. Curves taken on a long
annealed copper bar and on a bar of hne silver show the same charac-
teristics. It is impossible to represent the observations on these sub-
stances by means of Eq. (13). In addition to the change in the shape of
the curves, the harmonic frequencies of these bars did not follow Eq. (12)
but fell oB consistently from the calculated values as the frequency in-

creased.
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D. DrscUssrox

The results obtained with aluminum, hard drawn copper, and glass

indicate that the equation of Stokes accurately expresses the propagation
of sound in a solid medium for which the coeScient of viscosity is com-

paratively small. When substances of greater viscosity are examined,

marked discrepancies appear. Now it will be recalled that the assump-

tions upon which Stokes' development is based are 6rst, that Hooke's

law is obeyed in the medium, and second, that the viscous forces vary as
the first power of the relative particle velocity. For the amplitudes of
vibration obtained in the experiments now under reviewer (about 10 ' cm)
the first assumption probably remains valid. It seems likely, how~ver,

that, as the viscosity of the medium increases dissipative forces appear
which vary according to higher powers of the velocity of strain.

The tangential and normal coe6cients of viscosity of various solids

have been measured by other investigators using methods radically
different from that here described. In these researches the tangential

coefficient of viscosity is obtained by observing the logarithmic decre-
ment of a torsion pendulum, the elastic member of which is a fine wire of

the material under examination. ' The normal coefFicient of viscosity is

calculated from the logarithmic decrement of a pendulum consisting of a
Hat strip of material clamped at the upper end and loaded at the lower

end. ' The strains in the medium are of the same order of magnitude as
those produced in this investigation. The periods of vibration, however,

are of the order of 1 second. The values for the coefficients obtained by
these methods are uniformly of the order of 10' c.g.s. units, to which

must be compared the values of the order of 10' c.g.s. units given above.
The magnitude of the difference between these figures indicates that the
two widely different methods of investigation employed have, in fact,
dealt with two entirely diferent phenomena. Indeed, it can readily be
shown that if the coefficient of viscosity for sound vibrations of a metallic
bar were of the order of 10' the bar would be wholly incapable oF sustained
vibration. The motion would be aperiodic. In accord with this view

twn suggestions appear worthy of notice.
The 6rst deals with the period of vibration. It is possible that a slow

bending or twisting of a substance in which the elastic limit is not ex-

ceeded nevertheless produces minute irreversible changes in its internal

" C. E. Guye and others, Arch. des Sciences 26, 136 (1908); 29, 289 (1910); 30,
133 (1911);Journ. de Phys. 1912, p. 620.

Iokibe and Sakai, Phil. Mag. 42, 397 (1921).
' Honda and Konno, Phil. Nag. 42, 115 (1921).
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structure accompanied by loss of mechanical energy. If the time re-
quired to produce such changes was of the order of a second, a possible
explanation might be found for the apparent diHerence in response of the
medium to rapid and to slow vibration. ~ The second suggestion deals
with the method of support of the specimen. In the pendulum experi-
ments the specimen was clamped rigidly at one end. This introduces the
possibility of losses of energy ~n the meChum near the point of attachment
which are not contemplated in the theoretical treatment of the pendulum.
Boudouard' has shown that a large part of the effect of the viscosity of
the medium is, in fact, localized in a region very near the point of support.
Boudouard experimented with thin strips of iron about 25 cm long
clamped in a vise at one end and excited to transverse vibration at 30
cycles per second by means of an electromagnet. The strains produced
in this way were kept mell below the elastic limit of the iron. In spite of
this the strips broke in two after a period of excitation which varied from
five minutes to fourteen hours according to the carbon content and heat
treatment of the specimen. The break invariably occurred near the point
of support and the broken material showed striations.

In the opinion of the writer a satisfactory solution of the problem
demands the development of a method for measuring the coefficient of
viscosity of solids which will not necessitate clamping the specimen and
which will operate continuously over the range of frequencies between
1 and 100 cycles per second. The industrial importance of this problem
has been dealt with in a paper by Henry Le Chatelier. '

In conclusion, attention is directed to the fact that the apparatus
developed in this research is capable of measuring a change in the elastic
coe%cient of a freely suspended solid of one hundredth of one per cent.
Irrespective of the shape of the resonance curves, a change in the re-
sonance frequency of the vibrating system of 2 cycles in 50,000, or 0.004
per cent, can be measured. Since f'0 varies as the elasticity it follows that
a change in the elastic coef6cient of 0.008 per cent will produce a measur-
able change in fo The met. hod may be used safely up to a temperature
of 80'C, above which there is danger of softening the shellac cement
between quartz and bar. As an example of this application of the
apparatus, it may be noted that a change in resonance frequency of 23
cycles in 44,000 was observed when an iron bar was placed in a longi-

* When a specimen of iron is magnetized it is known that marked changes in the
internal structure of the iron persist for several seconds after the application of the
magnetizing Geld.

' Boudouard, Comptes Rendus 150, 696 (1910);152, 45 (1912).
' H. Le Chatelier, Revue de Metallurgic 1909, p. 888.
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tudinal magnetic 6eld. Further researches on the relation between
magnetization and elasticity are in progress in this laboratory.

The writer wishes to express his appreciation of the kindness of Pro-
fessor J. H. Morecroft, who loaned from his laboratory the high power
oscillator and the excellent piece of quartz used in these experiments,
and to acknowledge his indebtedness to Professor A. P. Wills, whose
counsel and encouragement have been of much help in the course of this
research.
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