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ABSTRACT

An attempt is made to present a consistent detailed theory of optical
phenomena, based on the suggestion recently made by the author in collabora-
tion with Bohr and Kramers. This suggestion is that atoms are radiating or
absorbing continuously, during their stationary states, and that transitions
influence radiation only in terminating the radiation characteristic of the old
state, and substituting that of the new. The atoms, on the other hand, are
supposed not to change their energy while radiating, but to change it discon-
tinuously on transition. This necessitates giving up the detailed application
of the conservation of energy in interaction between atoms and radiation.
In the present paper, an additional suggestion is made, namely that resonance
radiation is to be identified with the radiation carried out by the spherical
wavelets which, by their interference with the external field, also produce
absorption. This is practically a return to the classical picture of resonance
radiation. Statement of the theory consists formally of two parts: the description
of the behavior of atoms, and of radiation, when the two interact. The first
involves the statement of the probabilities of transition of atoms, and is taken
without change from Einstein. The probability of interruption of coherent
vibrations is also discussed. The second requires the specification of the
fields emitted by atoms in any steady state under the influence of any external
field. These consist of spherical wavelets of the frequencies of the various
quantum lines which the atom can emit or absorb in the stationary state in
which it is. For emission frequencies, wavelets are emitted even in the absence
of an external field; for absorption frequencies, external fields induce wavelets,
similar to the wavelets of linearly bound electrons in electron theory, which
on the one hand interfere with the external field to produce the phenomena of
dispersion, etc., and on the other carry out the resonance radiation in all
directions. Detailed descriptions of these fields are given. In a discussion of
the theory, it is first shown that the assumptions which have been made about
the field satisfy the correspondence principle, in that for large quantum numbers
the field aproaches that which would be emitted classically on account of the
interaction of an external field and a multiply periodic atom. On the other hand,
it is shown that the field has a character essentially like that of classical electron
theory, which is known to be in general agreement with experiments. Next,
the energy and momentum relations at interaction of atoms and light are
investigated, and it is shown that, although these quantities are not precisely
conserved, still the assumptions as to atomic and radiation processes have
been so made that they are conserved on an average over a great number of
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atomic processes. Finally the spectral resolution of emitted and absorbed
radiation is considered; the theory gives a minimum breadth for the lines, de-
pending on the finite length of wave trains resulting from the finite life in
stationary states, and it is shown that Kirchhoff’s law is obeyed, the emission
and absorption lines being of the same breadth. By way of illustration, specific
application of the theory is made to the simple examples of emission of light by
bombardment of electrons at the resonance potential, resonance radiation, its
quenching by presence of foreign gases, absorption, scattering, and dispersion.

I. INTRODUCTION

HE widespread feeling that the quantum theory of atomic structure

and the electromagnetic theory of light are inconsistent with each
other has tended to divide physicists into two opposing sections. Some,
in their enthusiasm for the quantum theory, are willing to overlook the
phenomena of optics; while others consider that the quantum theory
is discredited by its failure to deal with optical problems. Such an un-
fortunate condition has naturally inspired many attempts to harmonize
the two branches of theory. It has appeared from those attempts that
the supposition of exact conservation of energy and momentum in atomic
processes has been at the root of the difficulties. For in the quantum
theory the energy of atoms must change by jumps; and in the electro-
magnetic theory the energy of a radiation field must change continuously.
Once it is supposed that the total energy is the sum of the atomic energy
and of the energy in some sort of radiation field, and that this total energy
is conserved, there results the impossible situation that the sum of two
quantities, one changing discontinuously and the other continuously,
must be constant.

Two paths of escape from this difficulty have been followed with more
or less success. The first is to redefine energy ; the second to discard con-
servation. If atomic energy is to change discontinuously, then for con-
servation the energy of the field must change discontinuously also, and
theidea that the energy of the field exists in discrete particles immediately
presents itself. Einstein by his introduction of quanta of energy traveling
through space has been the principal exponent of this first method.
Optical theory on such an interpretation would be a set of laws telling
in what paths the quanta travel; for these laws would determine how
often an atom in any point of space would be struck by a quantum, and
this is immediately connected with the strength of illumination at that
point. A beginning of such a theory has been made by Duane,! who has
suggested relations determining the deflection of quanta passing through

1\W. Duane, Proc. Nat. Acad. Sci. 9, 158 (1923). See also G. Breit, Proc. Nat,
Acad. Sci. 9, 238 (1923).
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diffraction gratings or crystals. A method of procedure somewhat more
natural than Duane’s would be to take advantage of the fact that the
electromagnetic theory gives reasonable results, and to set up a sort of
ghost field, similar to a classical field, whose function was in some way
to guide the quanta. For example, the quanta might travel in the
direction of Poynting’s vector in such a field. The author was at one time
of the opinion that this method was the most hopeful one for solving
the problem. But any theory based on discrete quanta has the one
fundamental disadvantage that it must find a substitute for wave theory
even in explaining the nature of light itself, which the wave theory is
perfectly competent to deal with. Such a theory must inevitably face
the charge of lack of economy, since it introduces superfluous mechanism.

The other direction of escape from the conflict between quantum
theory and wave theory has been to retain intact the quantum
theory and as much of the wave theory as relates to the field, but to
discard conservation of energy in the interaction between them. This
is the point of view of Darwin? in a theory of dispersion which he put
forward, but which, it is understood, he no longer defends. Darwin
assumed that by the passage of light over an atom, the atom acquired a
probability of sending out a spherical wave train to interfere with the
external light, the probability depending on the strength of the incident
light. By the cooperation of many of these interfering trains, the familiar
phenomena of dispersion could be explained. The reason why such a
theory cannot be right is that, in very weak light, only a very few atoms
would be induced to send out wave trains, and these would not be enough
to interfere properly ; whereas it is known experimentally® that interfer-
ence patterns can be obtained with weak light as well as with strong.
In addition to Darwin’s theory, there have been other attempts to treat
the radiation field of quantum atoms by classical methods. Bohr* has
suggested that atoms must become sources of spherical wavelets when
external radiation strikes them. Ladenburg and Reiche® have given
formulas for dispersion based essentially on the idea of such spherical
wavelets. Neither of these suggestions has, however, gone as far as
Darwin’s theory in setting up a mechanism for the interaction between
waves and atoms.

2 C. G. Darwin, Nature 110, 841 (1922); Proc. Nat. Acad. Sci. 9, 25 (1923).

3 . 1. Taylor, Proc. Camb. Phil. Soc., 15, 114 (1909).

4 N. Bohr, Zeits. f. Phys., 13, 117 (1923)

® Ladenburg, Zeits. f. Phys. 4, 451 (1921); Ladenburg and Reiche, Naturwissen-
schaften, 11, 584 (1923)
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An attempt was made by the writer, in a note to Nature, enlarged upon
in collaboration with Bohr and Kramers,® to contribute slightly to the
solution of these difficulties. In the present paper, the suggestions made
in those papers are developed into a more specific theory. The views
suggested there had foundations similar to those of Darwin, and of
Ladenburg and Reiche. It was supposed that energy was of two kinds,
the continuously changing energy of the field and the discontinuously
changing atomic energy, and that there was no exact conservation, but
only a statistical conservation, so that the average rate of decrease of
radiation energy would equal the average rate of increase of atomic
energy, or vice versa. It was assumed that atoms under the influence of
external light were induced to send out spherical wavelets of light, much
like those sent out by the oscillators of Ladenburg and Reiche and not
entirely dissimilar to Darwin’s, and that those spherical wavelets inter-
fered, giving the phenomena of dispersion, interference, etc. In addition,
it was supposed that excited atoms emitted wavelets even in the absence
of a field, to account for luminous radiation.

None of these points, as we have seen, was particularly original. But
there was one suggestion in the paper, essentially new, which appeared
to afford a more reasonable picture of optical phenomena than we had
previously had. That was the suggestion that the wavelets sent out by
an atom in connection with a given transition were sent out, not as a
consequence of the occurrence of the transition, but as a consequence
of the existence of the atom in the stationary state from which it could
make that transition. On this assumption, the stationary state is the
time during which the atom is radiating or absorbing; the transition from
one state to another is not accompanied by radiation, but so far as the
field is concerned, merely marks the end of the radiation or absorption
characteristic of one state, and the beginning of that characteristic of
another. The radiation emitted or absorbed during the stationary state
is further not merely of the particular frequency connected with the
transition which the atom is going to make; it includes all the frequencies
connected with all the transitions which the atom could make. Then the
atom is under no necessity of knowing what transition it is going to make
ahead of time. In particular, the atom during a stationary state is
supposed to be spontanceusly emitting radiation of the various fre-
quencies connected with transitions to states of lower energy, and to be
capable of absorbing radiation connected with transitions to states of

¢ J. C. Slater, Nature, p. 397, 1924; Bohr, Kramers, and Slater, Phil. Mag. 47, 785
(1924); also Zeits. f. Phys. 34, 69 (1924)
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higher energy. Further, a ‘‘negative’” absorption is assumed, similar to
the ordinary absorption, but resulting in increase rather than decrease
of the energy in the external field, and with frequencies corresponding
to transitions to states of lower energy. Although the atom is radiating
or absorbing during the stationary states, its own energy does not vary,
but changes only discontinuously at transitions, as has always been
supposed. It is quite obvious that the mechanism becomes possible only
by discarding conservation.

The suggestion just described was of value in two different ways. In the
first place, it furnished an immediate solution of the difficulties concerning
dispersion and absorption by weak light. For all the atoms, in an ordinary
substance, are in the normal state, and hence take part in absorption of
radiation. Then the number of wavelets cooperating to produce the
effect would be as great for weak light as for strong. In the second place,
the suggestion makes possible a much more definite picture of the process
of interaction of light and atoms, in time and space, than had been
possible before. Light is emitted or absorbed in a perfectly definite time—
the stationary state. In particular, this provides for a theory of the
breadth of spectral lines, since that depends on the length of coherent
wave trains, or the length of time during which the atom emits a train.
It must be admitted that a theory of the kind suggested has unattractive
features; there is an apparent duplication between the atoms on the one
hand, and the mechanism of oscillators producing the field on the other.
But this duplication seems to be indicated by the experimental facts,
and it is difficult at the present stage to see how it is to be avoided.

Although the suggestions of the previous paper appeared to help
considerably in the task of making a consistent radiation theory, there
was one point in which the problem remained in a rather unsatisfactory
state. In the quantum theory, the emission and absorption of radiation
have been considered as completely separated acts, while in classical
theory they are combined into essentially a single process. It did not
appear in the previous paper how these two quite different points of view
could be combined. The difficulty appears only when light of a particular
frequency is being simultaneously absorbed and emitted by a group of
atoms. This includes the problems of scattering and of resonance radia-
tion. In the quantum theory of resonance radiation, it has been supposed
that atoms in their normal state could absorb energy, and pass to the
excited state; then after a certain time in the excited state they re-emit
the energy, just as they would emit it if they had been excited, say, by
electron impact, and thus return to their normal state. Translated into
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the language of the present theory, this assumption would be that the
atoms in the normal state emit wavelets which weaken the external field,
while those in the excited state spontaneously emit wavelets of large
intensity, just as if they were excited by impact, these wavelets forming
the resonance radiation. In the classical theory, on the other hand,
bound electrons are set into oscillation by the radiation field and emit
wavelets which on the one hand interfere with the field and weaken it,
producing the phenomena of absorption, while on the other hand, simply
by virtue of being wavelets, they carry out radiation which is the
scattered or resonance radiation. The connection of the two phenomena
is inherent in the field equations, not merely in the assumptions of the
classical theory as to the interaction of atoms and light. This connection
must then be assumed if we are to retain the present theory, which is
based on the field equations; and yet this is contrary to the quantum
assumptions.

When we examine the difficulty presented here, we see that the
assumed conservation of energy is again the cause of the trouble. The
reason why we wish the emission to take place during the excited state
and the absorption during the normal state, is simply a survival of the
more restricted desire to have the emission take place at the transition
from the excited to the normal state, the absorption at the transition
from the normal to the excited state. But we are giving up exact con-
servation, and no reason remains why we should not assume that res-
onance radiation is emitted, not in the excited stationary state before
the atom has its transition back to the normal state, but in the normal
state just preceding that, before the atom is raised by resonance to the
excited state. We shall now make this assumption, removing the necessity
of separating the acts of emission and absorption, and returning es-
sentially to the classical picture of resonance radiation.

If resonance radiation is emitted by atoms in the normal state, it
follows that the atoms which are raised to the excited state by resonance
do not radiate spontaneously any light of the resonance frequency, as
they would if they were brought to that state by some other agency.
We are then under the necessity of distinguishing those atoms that are
brought to an excited state by resonance from those that are brought
there by some other agency, and endowing the latter with a spontaneous
radiation which the former do not possess. It should be clearly under-
stood, however, that it is only spontaneous radiation of the resonance
frequency which atoms brought to the excited state by resonance must
be supposed not to possess; they have spontaneous radiation of all the
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other frequencies which an atom brought to the excited state by impact
would have. And also they are supposed to be capable of ‘“negative’”
absorption at the resonance frequency, as well as at other emission
frequencies, so that they radiate some small amount of energy of the
resonance frequency in this way; but we shall see that this is no greater
than the energy radiated by each atom in the normal state.

One advantage of this picture of resonance radiation over the usual
one is that it furnishes an explanation of the possibility of strong polar-
ization of resonance radiation. This explanation is precisely that of the
classical theory; the dipoles which produce the radiation are all called
into play by the field, and vibrate in the direction of the electric vector
of the field. This phenomenon, on the other hand, is extremely difficult
to understand on the more usual interpretation.

On the basis of the assumption made in the previous paper concerning
the emission of radiation during stationary states, and the present
further assumption about the emission of resonance radiation during the
normal state, it is possible to arrive at a complete and detailed picture of
the interaction of radiation and atoms. Such a picture will be presented
in this paper, in numerical detail. Although of course there may be many
things about such a detailed theory which will turn out to be wrong, still
it seems of considerable interest to know that the ideas presented here
can be carried through consistently. The picture in the first place
satisfies the primary requirements that all actions take place in time
and space as we ordinarily think about them, and that the behavior
outside the atom is described by Maxwell’s equations, while the atom is
described according to the theory of energy levels. But there are further
conditions which the theory must meet. It must lead to optical results
similar to the classical theory, for this is known to be empirically true.
On the other hand, it must lead to formulas which satisfy the cor-
respondence principle; the recent papers of Kramers? and of Van Vleck?
show how this is to be done.

Finally, and most important, the probabilities of transition, and the
behavior of the field, must be so related that energy and momentum are
conserved on the average, in spite of the lack of exact conservation.
And they must be so related that, in thermal equilibrium, the atomic
energy distribution will be Boltzmann’s, and the radiation energy dis-
tribution will be Planck’s. In the next section we shall state the theory
which is being suggested. Then there will be a section in which it will

? H. A. Kramers, Nature, May 10 1924, p. 273; Aug. 30 1924, p. 310.
8 J. H. Van Vleck, Phys. Rev. 24, 330 (1924)
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be shown that this theory satisfies all the various requirements enumer-
ated above. Finally, we shall give a section with a number of examples
of the application of the theory in important particular cases.®

II. STATEMENT OF THEORY

Probabilities of transition of atoms. Consider the energy levels and
transitions of an atom. By Bohr’s frequency condition, we associate
with every transition between two energy levels 7 and j a frequency
vi;=v;;, given by the equation hvi]»=]E,'—E,-|, where E; and E; are the
energies in the two states. By Bohr’s correspondence principle, we
associate also with each transition a certain amplitude D;;=D,;, which
is some sort of mean of the amplitude of a certain harmonic in the actual
motion of the atom, taken by a method not yet known for motions inter-
mediate between the initial and final states of the atom. This amplitude
is supposed to be connected with the probability of transition, or with
the intensity of emitted or absorbed light. In particular, if D;; is zero,
the transition does not take place. These two constants, »;; and D;;, for
each transition, are the only atomic constants which enter into the theory
of the interaction of the atom with light.

Let us now fix our attention on an atom which enters a particular
stationary state 7, at a particular instant. We assume, following Ein-
stein,!® that as soon as it enters the state, it acquires separate probabilities

9 Since this paper was written, my attention has been called to a recent paper by
R. Becker (Zeits. f. Phys. 27, 173, 1924), treating similar problems by somewhat similar
methods, and based also on the assumptions of the paper by Bohr, Kramers, and the
author. In several important points, Becker's treatment differs fundamentally from
that of the present paper. The most important of these is the matter of resonance
radiation, on which a new assumption is made in the present work. Becker supposes
that the probability of forced transition is compensated, not by the term (Ep) alone
in the interaction of external radiation and the forced oscillators, but by the whole
quantity 2('15)2/30'& (E’;b) for these oscillators, the first part of which we identify with
resonance radiation. On account of the two signs in the second term, one for the positive
and one for the negative oscillator, these quantities have different magnitudes for the
two oscillators; and Becker is under the necessity of choosing different p’s for them, in
order to secure conservation of energy, thereby losing his connection with the corre-
spondence principle except in the limiting case where the resonance radiation can be
neglected. Further, although he does not calculate it, his assumptions do not appear to
satisfy the conservation of momentum, except again in the limiting case where resonance
radiation is negligible. In the question of broadening of spectral lines, Becker agrees
with the present work in making the broadening depend symmetrically on the properties
of the two states; but his methods do not lead to such a definite theory of broadening
as is given here, and he does not make the connection with probabilities of interruption
which is at the basis of the present work.

10 A, Einstein, Phys. Zeits. 18, 121, 1917.
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for having transitions to each of the other stationary states of which the
atom is capable. In particular, it acquires a probability 4 ;. ;d¢ of having
a transition in time df to each state j of lower energy, where!!

Ai_.jz 167r4Vij3€2D1']2/3C3]l . (1)

We shall call this the probability of a spontaneous transition, or of
spontaneous emission. Next, it acquires an additional probability of
transition to any state j of either higher or lower energy, if there is an
external radiation field present whose spectrum includes energy in the
neighborhood of the frequency »;;. In particular, if the specific energy
density is independent of frequency through a small region of frequencies
about »;; (that is, as we shall later see, if it is constant over the absorption
line) and equals p(v;;), the probability of transition to state j in time d¢
will be assumed to be B,. ;0(v;;)dt, where

Bi-j=2ﬂ'3€2Di!‘2/3h2 . (2)

If p(v) is not independent of v, the expression for this part of the prob-
ability will be assumed to be of the form

S Bi.i(v) p()dvit 3)

where B;.;(v) is a function of v of the nature of an absorption curve,
with a sharp maximum at »=v;;, and such that S B;.;(»)dv=B..;. The
precise formula for B, ;(») will be given later, in (12). Then in the
particular case where p(¥) =a constant=p(»;;), we can take it out of the
integral in (3), and arrive at the formulation first given. The kind of
transition contemplated in (3) will be called a forced transition. If it is
a transition to a state of higher energy, it will be called forced absorption,
or merely absorption; if it is to a state of lower energy, it will be called
forced emission. In addition to these probabilities of transition, the atom
in the 7th state may be subject to collisions which can result in a change
of stationary state, We may write the probability of such successful
collision in time d¢, resulting in a transition to state j, as K;,;dt. Ifjisa
state of higher energy than i, the collision will be one of the first kind;
if j is of lower energy, it will be of the second kind. The quantity K,.;
must be supposed to depend both on the number of particles per unit
volume which are capable of colliding successfully with the atom in
question, and which consequently possess the proper energy; and on the
specific properties of the atom. No attempt will be made at present to
evaluate this quantity.

1 The formulas given for Ai.; and Bj.; in terms of Dy and v;; come directly from
the correspondence principle, and have often been derived.
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All of the probabilities enumerated above are supposed to operate
simultaneously and independently. We shall denote by P;.; the total
probability for a transition from state 7 to state j in unit time. Then we
have

Pi;=(4i.;0r 0)+/S Biri(»)p()dv+Ki.; 4)
where the notation (4;.; or 0) means that the term A4,.; is present if
the state j is of lower energy than the state 7, but not in the opposite case.
We shall further denote by P; the total probability of a transition from
state 7 to any other state in unit time. Then

Pi=3 (j)P:i.;, (3)
the summation being over all j’s.

Probability of interruption of coherent vibrations. The radiation field
emitted by an atom will be described by giving the electrical moment or
polarization of an oscillating dipole, from which the field of the atom can
be computed by the Hertz solutions of the field equations. It will be
assumed that this polarization, which we shall denote by p;, is the sum
of a number of partial polarizations, p;.;, each connected with a separate
transition to another state j, the natural frequency of the partial polariza-
tion p;.; being »,;. This analysis of the total polarization into a number
of partial polarizations is analogous to the analysis of the actual multiply
periodic polarization of the atom into a number of terms, one for each
harmonic present in the motion. We shall speak of a term p;.; as an
oscillator. An oscillator can consist of two parts, (1) a spontaneous part,
independent of the external field, present only when the energy of
state j is less than that of state 7, and when the atom was not raised to its
state ¢ by resonance radiation of frequency »;;, and (2) a forced part,
similar to the oscillation of a bound electron under the action of an
external field on classical theory, and with the same sign as in classical
theory if the state j has greater energy than 7, but with the opposite sign
if state j has less energy. These parts of the oscillator will be referred
to as the spontaneous oscillator, and the positive and negative forced
oscillators. We now wish to consider the length of time during which the
vibrations of the oscillator p;.; remain coherent. This determines the
inherent breadth of spectral lines; and, taken in connection with Dbppler
effect, etc., it determines the observed breadth.

An atom in the ¢th state has a probability P; of suffering in unit time
a transition, after which of course it will no longer be in the 7th state.
Thus there is a probability P; that the vibrations of each of the oscillators
pi.; will simultaneously cease. But we shall assume that, in addition to
this probability P; of ceasing its oscillation altogether, each oscillator
pi.; has also an independent probability P; of suffering an interruption,
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in which it ceases its oscillation as if it were leaving the state, but im-
mediately begins again as if it were entering the same state. This term
P, is the same as the probability that an atom in the jth state will leave
that state. It is thus different for the various oscillators p;.; of the state
7 connected with different j’s, so that the interruptions of this kind come
at different times for different oscillators. Each oscillator may be
interrupted a number of times in the course of a stationary state. The
combined probability that an oscillator p;.; will suffer either an interrup-
tion or a complete cessation is the sum, P;+ P;. Either an interruption
or a cessation is supposed to result in a complete breaking off of coherence
in the emitted radiation. On the other hand, the coherence is supposed
to be perfect in the time between these interruptions; spontaneous
oscillators vibrate exactly sinusoidally, and forced oscillators act like
bound electrons with no damping, so that the whole lack of coherence
in the radiation arises from the interruptions, and the finite length of
wave trains. The reason for the introduction of the interruptions of
oscillators without transitions of the atom is to preserve Kirchhoff’s law
in cases where oscillators of atoms both in the state 7 and in the state j
take part in emission and absorption of radiation of frequency »;;. In
order that the emission and absorption lines may be of the same breadth,
which Kirchhoff’s law demands, the time of coherent vibration must be
the same for oscillators p;.; and p;.;. This we have secured by making
the probability of interruption for each equal to P;+ P, which is symmet-
rical in 7 and j. Itremains, of course, to be shown later that the equality
of time during which coherent vibration is emitted or absorbed is a
sufficient reason for actual equality of breadth in the spectral lines of
absorption and emission.

The radiation field of an atom: Spontaneous oscillators. We assume that
the spontaneous part of the oscillator p;.;, which we shall denote by
pi*.;, has when it occurs an amplitude eD;;, where e is the electronic
charge, a frequency »;;, and a phase determined by chance. This com-
pletes the formulation, except for stating when a spontaneous oscillation
occurs. We have already stated that such an oscillator is present when
the following two conditions are satisfied: (a) The energy of state j is less
than that of state 7; (b) the atom was not brought to the state ¢ by
resonance radiation of frequency v;;. We shall now slightly amend the
condition (b), and make it more precise, bringing in the idea of interrup-
tions as outlined in the preceding paragraph. The restatement of (b)
will be: The interruption of the oscillator p;.; just preceding the time
of continuous vibration which we are considering was not a result of
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the probability term (3). There are then two cases in which, according
to (b), spontaneous polarization p..; is absent: First, when the atom has
just entered the state < from the state j, on account of the term (3) in the
probability of transition from state j to state 7, but when the oscillator
pi.; has not yet had an interruption while the atom has been in the state
1; second, when the atom has been in the state 7 long enough so that the
oscillator p;,; has had interruptions, and when the last previous interrup-
tion was on account of the term (3) in the probability P; of interrup-
tion which this oscillator possesses. In justification of this precise
assumption we see that a consequence of it is that when there is no
resonance, so that S B,.;(»)p(»)dv=0, all the atoms in the state 7 have
spontaneous oscillators p*;.;. Further, when no atoms reach state ¢
except on account of this term, none possess spontaneous oscillators;
for P; can contain no terms except (3), and hence no oscillators pi.;,
either after a transition or an interruption, satisfy the condition (b).
Thus in the two limiting cases, of complete resonance or complete lack
of resonance, the assumption is what we should desire. In intermediate
cases, the justification of the assumption will come by showing that
conservation of energy results from it.

The radiation field of an atom: Forced oscillators. Before stating in
detail our assumptions about the forced oscillators, there are several
approximations and simplifications which are to be made in the present
paper, and which will be described. First, in absorption formulas and
similar places, we shall work only to the first order in 1/(v;;-»). Then we
shall replace 1/(v;2—»?) by 1/[2v:;(vi;—»)], etc. This will in future be
done without comment. Second, we shall assume that the atoms have
equal probability of orientation in any direction, and shall work through-
out with average values over all orientations; or, what amounts to the
same thing, we shall assume that the atoms are isotropic.’? We shall
further assume all states to have the same a priori probability. It is
probable that a more complete theory, in which these simplifications
were not made, would encounter only additional complications, without
additional difficulties of an essential kind.

It will be assumed that the spectral resolution for the external electric
field is

E,= X (n) A,,c08 2mvpt~+ By sin 2mv,t vo=n/T (6)
where T is a very long time. There are to be similar resolutions for
E, and E,. The coefficients 4,, of the field should not be confused with
the terms A4 ;.; in the probability of transition.

12 See Van Vleck, l.c.,® note 25, p. 344.
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We are now ready to write our detailed assumption about the forced
part of the oscillator ;. ;, which we shall call p/;.;. We assume that the
last interruption of the oscillator came at time #,. Then for times after
t,, and until the next interruption, we assume that its value, averaged as
stated over all orientations of the atom, is®

e2D.,-2 A,,z

2 (n) —

/i" z= i
(o) o=t =

{ cos 2mv,t —cos 2 it — (vij—vato] }
V"

B .
+-——‘— { sin 27!'11”1— sin2w [Vijt— (V,'J‘—Vn)to] } (7)
Vij—Vn
with similar values for the y and z components. The positive sign is to
be taken for positive oscillators, where the energy in the jth state is
greater than in the 7th, the negative sign in the opposite case of negative
oscillators. Eq. (7) can also be written

82D,',‘2 An;
(pli.)= % Z(n) { [1—cos 2m(v;j—vn) (t—10) |cos 2mv,t
124 Vij—Vn
+ [sin 2w (vi;—va) (t—to) |sin 2wt}
Bn.t 8
+——————{ [1—cos 2n(vi;—wa)(t—to) |sin  2mpt ®
Vij—Vn

— [sin 27 (vij—va) (t—to) Jcos  2mwat}

The polarization is seen to depend on the time (¢—¢,) which has elapsed
since the last interruption. In most applications, we are interested only
in .the average of (p’;.;) taken over all values of (t—¢,). This is found
in Note 1, and is
e e?D“2 Vij—Vn
(P i=)a= £——2 ()
P 12k Wii—va |2+ [(Pi+P)) /27 ]
n (Pi+P))/2r
[V,']'—Vn] 2+ [(P,+ Pj)/27r ]2
A variation of this equation is obtained by substituting for D;; from (1);
this gives simply a different form for the constant. In terms of this value
we can write the whole average moment for all the oscillators p;.; com-
bined. We shall be interested in the particular form which this equation

2(A nz COS 27vnl+ B,y Sin 27v,t)

(A nz sin 27yt — By cos 2mv,t) - 9

13 The polarization (7) can be considered as being derived in either of two ways.
In the first place, it follows directly from the correspondence principle. In the second
place, it results if we apply the conditions of conservation of energy and momentum
on the average. Both these conditions will be discussed in the next section. It is note-
worthy that the two independent requirements lead to the same result; or, expressing it
differently, that the same assumption can satisfy both conditions.
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takes at frequences », which are outside any of the absorption lines, so
that (v;;—v,) > > (P;+P;)/m for all j’s. Then the formula is

A T A T8
> (n) [Zm———%a i X0l <u,~3—VI>‘]

X [An €08 27yt + Bo,sin 2aw,t] ,  (10)

c3

64rt

ENWiai) =

where 7 is to be summed over all states for which the energy is greater
than for the state 7, and s over all states for which the energy is less. This
concludes the formulation of the polarization of the dipole connected
with an atom in the 7th state, and consequently of the radiation field
emitted by such an atom during its stationary state.

I11. DiscussioN oF THEORY

The correspondence principle. The polarization assumed in the pre-
ceding section satisfies the condition of the correspondence principle,
that it should degenerate for high quantum numbers to the polarization
which would be produced in the actual orbital motions of the electrons
in the atom under the same external field. This has been shown both by
Kramers and by Van Vleck, in the papers quoted above. We begin with
formula (10). We suppose any particular stationary state to be described
by a set of quantum numbers #; . . . #,. Let the state 7 be described by
a particular set 7, . . . n,/, and let the state » be described by #,'471,

.. n,' 47, where some of the 7’s may be positive, some negative. Now
let us pair off with this state 7 a particular state s whose quantum numbers
are my'—7, ...n,"—7, Then the transitions from state ¢ to r, and
from 7 to s, are connected by the correspondence principle with the same
harmonic in the actual motion. As we approach high quantum numbers,
the constants D;, and Dy, »; and v, for these two transitions, will
approach each other. Then the difference between the two terms, one
positive and the other negative, in (10), corresponding to those particular
transitions, will become relatively small as the quantum numbers become
large. We note that 4,.; contains a factor % in the denominator. Then
a set of two terms, paired as described, will be the difference of two
quantities which, in the limit of high quantum numbers, approach each
other, divided by #. Now if we replace this difference divided by %, by
a derivative with respect to a phase integral J, as is usual in correspon-
ence principle, the resulting formula is, to the approximation with which
we are working, precisely the formula found for the polarization pro-
duced classically in the multiply periodic atom by the external field.
It is noted that we used the formula (10), which holds only at a distance



QUANTUM THEORY OF OPTICAL PHENOMENA 409

from absorption lines, in this deduction. This is simply because the
breadth of spectral lines is a characteristic quantum theory phenomenon,
for which we can expect no classical analogy. The classical multiply
periodic system would give no sharp lines at all, for its energy and
frequency would change with the time.

Optical phenomena and classical bound electrons. 1t is a very remarkable
fact, pointed out by Van Vleck,* that although the classical dispersion
by a multiply periodic system involves complicated terms, still the
quantum dispersion formula (10), where differences are substituted for
derivatives, consists of a series of terms each of which behaves formally
like the contribution of a bound electron on the classical theory. It
appears that this is the real explanation of the fact that it has been
possible to obtain a dispersion theory capable of representing the truth
so well by means of the classical theory of elastically bound electrons.
Even within the absorption lines there is a similar situation, in which
our assumptions, derived with the multiply periodic system in mind, still
give results suggesting linear oscillators. On examination, it will be seen
that the complete forced polarization, on the present theory, is the sum
of two parts, that given by (10), and terms in the natural frequences v;;,
which reduce the amplitude of a forced oscillator to zero at the beginning
of its vibration. Formula (7) consists precisely of these two terms, one
having a frequency »,, the other »;;, and the second having such a phase
that the two cancel each other at £=#,. But the use of the two kinds of
terms amounts to setting up our polarization by analogy, not with the
steady forced perturbation of a classical multiply periodic system, but
with the perturbations as they build up from zero.’* This is necessary in
order that we may explain the broadening of lines by a mechanism of
interruptions such as we have used. But the result of it is that (7) is
precisely the kind of forced motion which a classically bound electron
would have while its amplitude was building up from zero, and the
formulas which result from it are just the ones to which we are led by
Lorentz’s theory of broadening of lines by collisions.

The present theory, then, arrives at qualitatively the same kind of
forced polarization as the classical theory, although no suggestion of
linear restoring forces lies at the bottom of it. But it is known that for

¥ Van Vleck, l.c., p. 346.

15 Kramers and Van Vleck retain merely the terms in their results which vibrate with
the impressed frequency. But if also the terms representing the building up of the
perturbations from zero are retained in the classical derivation, it is found that the

whole forced polarization can be written as a derivative with respect to a phase integral.
When this is replaced by a difference, the terms are exactly the terms of the formula (7).
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the explanation of optical phenomena, the classical theory is qualitatively
satisfactory. We may then expect that the present theory will have the
same success. Quantitatively, the classical theory was not so fortunate.
The present work suggests why that may have been true. The constant
of the polarization of a classically bound electron depends on e/m, and
this is the same for all electrons. But experimental values were found
which almost invariably differed from the true value of ¢/m. On the
present theory, the constant is different, involving the amplitude D;;,
which can have almost any value. Whether the polarization predicted by
the present formulas is in accord with experiment is largely a question
for the future. In the matter of broadening of lines, too, the classical
theory found itself rather unable to deal with the situation. The present
theory, with its result that the broadening depends on P;4 P;, leads to
definite results which, it seems, may be useful in explaining the ob-
servations. Of course, we must always remember that there are other
causes of broadening in addition to the intrinsic broadening connected
with the probability P;+P;, Doppler effect, Stark effect from neighbor-
ing atoms, etc.

Conservation of energy. The present theory has just been shown to be
in accordance with the correspondence principle, and to be qualitatively
similar to classical dispersion theory. Now we shall approach the more
difficult tasks of showing that the conservation of energy and momentum
are satisfied in general in the interaction of radiation and atoms, on the
average, and that the theory leads to the proper relations in thermal
equilibrium. Energy and momentum we are assuming to be of two kinds,
the atomic energy and momentum of the atoms in their stationary states,
and the radiation energy and momentum located in the field of the
oscillators. The energy and momentum arising from the electrostatic
part of the field of the oscillators, their so-called constitutive energy,
is not included; its place is taken in the general scheme by the atomic
energy. Now if energy and momentum are on the average conserved,
it must be because the average rate of decrease of the discontinuously
changing atomic quantity equals the average rate of increase of the
quantity in the field, or vice versa. We shall find, in fact, that not only
is there conservation in general, but that there is also conservation
among the particular frequencies. That is, the rate of decrease of atomic
energy and momentum in consequence of a particular transition <—j or
Jj—1, is just compensated by the rate of increase of the corresponding
quantities in the field on account of the oscillators p;.; or p,.; of the
atoms in the two states. We must then compute the quantities involved
in these statements, and verify their correctness.
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Let us consider a situation in which the number of atoms in each
stationary state is independent of time. This includes almost all the
problems we are interested in. Let the number of atoms in the ith state
be N; and in the jth N;. Then N,P;.; atoms make the transition i—j
per second, and N,P,.; make the transition j—i. Let us suppose for
convenience that the ith state has larger energy. Then in each of the
transitions 4—7, atomic energy decreases by /v;;, and in each transition
j—1 it increases by the same amount. The rate of decrease of atomic
energy on account of these transitions is then (N;P..,—NP;.:)hvi.
Now we can substitute the expression given in Eq. (4) for the P’s. The
terms in K;.; and K;.; in the resulting expression are supposed to be
compensated directly by increase of energy of colliding bodies at col-
lisions. Then the part of the rate of decrease of atomic energy connected
with emission or absorption of radiation of frequency »;; is

L’V,'A ,gjhui,‘-i-(Ni—N,-) fBi*,‘(V)p(V)thV,‘j . (11)

Next we must find the rate of increase of energy in the field on account
of the oscillators p;.; and p;.;. This is a simple problem in electro-
magnetic theory. We have an oscillating dipole exposed to an external
field and wish to know the rate at which the energy of the field increases
on account of the presence of the dipole. This is known to be the sum of
two parts: the rate at which the dipole would radiate if the external
field were absent, but if the dipole still had its same amplitude, which is
2(5)2/353, if p is the moment; and the additional rate of radiation on
account of interference with the external field, which is — (E- {7). A term
of the first kind arises from both the spontaneous and forced parts of the
polarization, that from the spontaneous oscillators representing ordinary
emission of light, and that from the forced oscillators being resonance
radiation. A term of the second kind arises only from the forced os-
cillators, for the spontaneous oscillators are not in any phase relation with
the field E, and the average of (E-p) for them is zero. We shall as a
matter of fact find that the term N;A4,,;hv;; in (11) is compensated by
the term 2(5)2/363 for the whole polarization, spontaneous and forced;
while the remaining term is compensated by the quantity — (Ep) for the
forced oscillators. In Note 2 the necessary computations are made. Itis
there found that the rate of radiation from a spontaneous oscillator of
amplitude D;; and frequency v;; is 4. ;hv;;. In order to state the results
for the forced oscillators, it is most convenient first to give our definition
of B;.;(v). We assume that it is given by

(1/m) [(Pi+P;)/2x]

B;.i(v)=B..; .
®) [v.;—v )2+ [(Pi+P))/27])?

(12)
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This satisfies the condition that J Bi.;(»)dv=B..; and gives a de-
pendence on » which has precisely the form of the absorption curve.
Then we find, in terms of this function, that the average rate of radiation
by a forced oscillator as described in (8), on account of the term 2(p)?/3¢3,
is
Ai..jhll,;j
P+P;

S Bii(n)p(v)dv . (13)

Further, the rate of radiation by a forced oscillator on account of the
term — (E-p) is

+hvi; S Bi.i(v)p(v)dv (14)
the positive sign referring to the forced polarization p/;.;, the negative
to P'Ii-»i-

The total increase of field energy on account of the term — (E-p) arises
from N; dipoles with the polarization (14) taken with the positive sign
and N; with the same polarization but the negative sign. It is thus
exactly the second term of (11) (where now we are to understand that
the function (12) is substituted in (11) ) so that the rate of decrease of
atomic energy on account of forced transitions is just equal to the rate
of increase of energy of the field on account of the interaction between
the forced oscillators and the field, connected with the term —(E‘p).
It remains to show that the first term in (11), the rate of decrease of
atomic energy on account of spontaneous transitions, is equal to the rate
of increase of radiation energy on account of the term 2(p)2/3¢3 for all.
the oscillators, spontaneous and forced together. To do this, we must
find the number of atoms in the state ¢ which have spontaneous os-
cillators. This is NV;, multiplied by the fraction of N;whose last previous
interruption was neither an interruption of an oscillator in the sth state
on account of the term (3) in its probability of interruption P; nor a
transition from state j to state ¢ on account of the same term in its
probability of transition. In Note 3, it is shown that this fraction is

1_Ni+Ni S Biei(n)p(v)dv .
N P+ P,
Then thft total rate of increase in energy of the field on account of the
term 2(p)?/3¢3 is the sum of N;A4;.hw;; multiplied by the fraction (15),
increased by (V;+ N ;) times the quantity (13). Thatis, itis
Ni+N; S Bi.j(0)p()dv
N; P+P,; )
(Ni+N)Aisjhwi;
P.+P;

(15)

N{A,‘.jhl’,‘j(l -

/\Bi_.,(V)p(V)dV: AV{A i..jhl/,'; . (16)
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This is equal to the first term in (11), so that the conservation of energy
is secured.

Conservation of momentum. In stating the laws of probability for
transitions, no mention was made of the momentum gained or lost by
an atom in its transition. We shall make the same assumptions as
Einstein.l® In the first place, in every transition from state ¢ to j, in
which the atom either gains or loses energy hv;;, it is assumed that the
momentum of the atom in some direction changes by kv;;/c. The direction
is determined as follows: (a) If the transition is a spontaneous one,
on account of the probability 4.,;, the direction is random. (b) If the
transition is a forced one, we can state the condition most simply if the
external field happens to be a plane wave. Then the momentum is in
the same direction that the wave is travelling, or the opposite direction,
depending on whether the induced transition is an absorption, with
increase of atomic energy, or an emission, respectively. When the
external field has not this simple character, we must analyze it into many
plane waves travelling in all directions. We can write the probability
of an induced transition as a sum of terms, one arising from each plane
wave. We can then say that the chance that the direction of the momen-
tum lies in any solid angle is equal to the fractional contribution to the
total probability of transition made by waves whose wave normals lie
in this solid angle (or, for induced emission, whose directions lie in the
opposite solid angle). That is, we regard each plane wave as con-
tributing an independent probability of directed momentum interchange
in its own direction.

From these assumptions, we can find the average rate of increase of
atomic momentum in any direction. The spontaneous transitions con-
tribute nothing, for the direction of impulse in such transitions is random,
and the average in any direction is zero. In treating the induced tran-
sitions, we can consider separately the effect of plane waves in different
directions. Let us fix our attention on a solid angle of directions, say
dw, about a particular direction #, and let us denote by p,(v)dw the
energy density in the particular plane waves whose wave normals are
included in this solid angle. Then the contribution of these waves to
the probability of induced transitions is J* Bi. j(#)pn(»)dvdw. The number
of transitions per second from the ith to the jth state induced by this
part of the field is N; times this probability, and from the jth to the 7th
state IV; times it. We may say that in each of the transitions of the first
variety, atomic momentum in the direction of 7 decreases by hv;;/c,
while in each transition of the second variety atomic momentum in the
same direction increases by the same amount. Thus the net rate of
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increase of atomic momentum in the direction #, in consequence of these
transitions, is

(N;i=N)hvii/c S Bi.(v)p,(v)dvdw (17)

It is next necessary to compute the change in momentum of the field
in any direction. In the first place, there is no momentum change on
account of spontaneous radiation or resonance radiation, for in each
of these cases the energy is carried out in spherical waves, which on the
average carry no momentum. The only momentum change results from
the interaction of the external field with the wavelets emitted by the
forced oscillators. Here again we can separate the external field into
a collection of plane waves, and consider only those whose directions lie
in the same solid angle as before. In treating the interaction of such a
plane wave with the wavelet of a forced oscillator, we need take account
only of that part of the polarization of the oscillator produced by the
electric field of the particular plane wave in question; for any other term
in the polarization will have a phase which is statistically independent
of the phase of our plane wave, and the effect will cancel on the average.
Then we must find the rate of change of momentum in the field on
account of interaction of a plane wave, and a spherical wave in a phase
relation to it. It can be shown generally that in such a case the momen-
tum of the field in the direction in which the plane wave is travelling
decreases at a rate equal to the rate of decrease of energy in the field,
divided by ¢. For the rate at which the energy of the field decreases,
in consequence of the interaction of an external field and the field emitted
by an oscillator of moment p, is (E‘p), and the rate at which the mo-
mentum of the field decreases is the vector [bXH]/ ¢. Now let us analyze
the plane wave into components polarized at right angles to each
other, and consider one of the components. In general, these components
will be independent of each other, so that we need consider only the
interaction of each with the part of the polarization which it produces.
Choose the x axis as the direction of E, the y axis as the direction of H.
Then E.=H,. Further, for the part of the polarization we are interested
in, p is in the x direction. Then (Ep) =E,,j§,,, and [pX H]/c is a vector at
right angles to both x and y—that is, in the direction z, or the direction
of the wave normal—with an amplitude (p.H,)/c= (E.p.)/c. Thus the
result is proved.

The rate of increase in energy of the field on account of the term (E-p)
has already been found, in (14). Then we see, by the result above, that
the rate of decrease in momentum of the field in the direction # of the
wave normal of our plane waves, on account of a positive forced oscillator
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p’iaiis ij/c S Bi.i(#)p.(v)dvdw, and by a negative forced oscillator the
negative of this. The total rate of decrease of momentum of the field in
this direction, on account of the interaction between the plane waves
whose normals are included in dw, and all the atoms, is just equal to (17),
the rate of increase of atomic momentum on account of the same part of
the external field. Thus the conservation of momentum is satisfied.
Spectral distribution and thermal equilibrium. It is assumed that in
thermal equilibrium the atomic energy is distributed according to
Boltzmann’s distribution, and the radiation energy is distributed among
the various frequencies according to Planck’s law. Then the mechanism
of interaction between atomic energy and radiation energy must satisfy
the condition that it disturbs neither of these distributions. This involves
two distinct conditions. First, the laws of probability of transition must
be such that the atomic distribution is not affected by interaction with
black radiation; second, the radiation emitted and absorbed by atoms
must be such that the energy density of Planck’s law is not affected by
the interaction. The first of these conditions is automatically satisfied
by the assumptions of probability that we have made; for these assump-
tions were taken directly from Einstein, and were made by him simply
to secure the result we desire. As a result of the assumption regarding the
probability of transition, together with the value hv;; of the energy
change connected with a transition, the distribution of energy between
stationary states is not affected by the presence of black radiation
of the temperature of the atoms. The additional assumptions about
momentum, in a similar way, bring it about that Maxwell’s distribution
of velocity among the translational coordinates of the molecules is not
affected by radiation. On the other hand, the condition that the energy
distribution in the field is not to be affected by the interaction is a new
condition, which must be proved. In the first place, the conservation
of energy, which we have already verified, shows us that there can be no
net increase or decrease in the energy of the field on account of the
oscillators connected with the two transitions 7—j and j—<; for in
thermal equilibrium as many atoms make this transition in one direction
as in the other, so that the atomic energy does not change in consequence
of the transition, and hence the energy of the field cannot change either.
But it must be shown that this transition not only does not change the
total energy of the field, but also does not alter the spectral distribution.
To do this, it is necessary to show that emission and absorption lines have
the same spectral distribution; that is, that Kirchhoff’s law is obeyed.
We must therefore investigate the spectral distributions. For generality,
we shall not limit ourselves to thermal equilibrium for the moment.
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The spectral distribution of the absorption curve is given directly from
the absorption probability coefficient B,.;(»), or from the term in the
forced polarization (9) out of phase with the external field; we can best
specify the distribution from the ratio B;.;¥)/B;.;, given in (12), for
this is a quantity which integrates to unity. It is easily shown that this
function represents a narrow line whose width in frequency measure,
between the points where the curve has half value, is (P;+P;)/m. Now
we must compute the spectral distribution of the radiation emitted by
the forced oscillators, and see if they have the same distribution. This is
a task in Fourier analysis, and is carried out in Note 4. There it is shown
that the relative distribution of intensity in the radiation of the spon-
taneous oscillators is in fact Bi.;(v)/B;:.;. The distribution for the
resonance radiation is naturally dependent on the spectral distribution
of the incident light which induces the-polarization, and is a rather com-
plicated function. But in the case of thermal equilibrium, the external
field is a field of continuous radiation, and the energy density can be
considered constant over the absorption line. In this special case, the
spectral resolution of the resonance radiation also reduces to B.. ;(»)/Bi.;.
Thus Kirchhoff’s law is verified, and the conditions for thermal equilib-
rium satisfied. In the more general case where the inducing light is not
of uniform energy density, there seem to be no experiments to test the
results of Note 4 as to the spectral resolution of the resonance radiation;
but it seems likely that such experiments could be devised, and it would
be of considerable interest to try them.

IV. EXAMPLES OF APPLICATION OF THE THEORY

In treating a specific problem by the methods outlined here, the first
step is to find, either from atomic models or in some other way, the values
of the constants D;; and »;; associated with the various transitions with
which the problem deals. Next, the probabilities of transition must be
ascertained. The term 4;.; can be at once computed. If the value of the
external radiation field is given, we can find S Bi.;(»)p(»)dv. In case
p(v) is constant over the absorption line, this is simply Bi.;o(¥:;), where
B;.; is directly computed. If on the other hand p(v) is not constant, we
must perform the integration, using (12) for B;.;(»). The formula in-
volves the probabilities P;+ P;, and hence implicitly Bi.;(») itself; but
in practical cases this term is negligible, for p(v) is almost always so small
that B;.;p(vi;) can be neglected in comparison with 4,.;, We must,
however, evaluate the rest of the probability before such an integration
can be performed. The remaining terms in the probability arise from
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collisions. We do not at present know the exact formulas for these
probabilities, but approximate formulas can be easily set up.

Having determined the probabilities of transition, the next task is to
find the number of atoms in each stationary state. To do this, we first
set up a set of equilibrium equations, stating that the number of atoms
in each stationary state is to be independent of time. For the ith state,
for example, we find as the number of atoms entering the state per
unit time from all other states, NoPq.i+NpPs.i+ ..., and as the
number leaving per unit time N;(Pi.s+Pis+ ... )=N;P; Then the
condition that NV; be independent of time is

NoPooi+NyPyoi+ - = =+ + = =N;P;=0. (18)

There will be one of these equations for each of the stationary states.
Thus there is a set of homogeneous linear equations, one equation for each
variable. The solution of these equations presents interesting results,
which however need not concern us here. So far as I know, the general
equations were first set up and solved by Mr. S. Rosseland, although he
has not published them. It can be easily shown that the determinant of
coefficients always vanishes, so that the equations always have an
infinite number of solutions, and determine the ratios of the N’s. When
an additional condition specifies the total number of atoms, the N’s are
determined.

When we have found the number of atoms in the various stationary
states, we can investigate the energy interchanges involved in the
radiation processes directly from the principle of conservation. Thus
we can compute the amount of energy absorbed on account of the term
Bi.;p(vi;), and the amount radiated either spontaneously or as resonance
radiation. We can further find the amount of kinetic energy brought
to or from the system by collisions. In the steady state, such as we are
assuming, there will be energy equilibrium; that is, the energy brought
into the system, by radiation and collisions, will equal the energy taken
out, by other types of radiation and collisions. In general, there is no
equilibrium in each mechanism separately, however; radiation will be
flowing in, in some frequencies, in which there is absorption, and out in
others, where there is fluorescence, resonance, or emission of other types;
and kinetic energy will be flowing in, in collisions of the first kind, out in
collisions of the second kind. The atoms in general travel from one
state to another in cycles, being excited by one agency, returning to the
normal state by another, so that the number making a particular tran-
sition in one direction is in general different from the number making it
in the other. Only in the special case of thermal equilibrium is there
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equilibrium in each separate agency, and an equal number of atoms
making each transition in each direction.

We can now go on to discuss in detail the radiation emitted and
absorbed. We consider each natural frequency »;; separately. Then in
the first place we may find the reaction of the atoms on the external field.
To do this, we separate the field into polarized monochromatic plane
waves, such as are used in optical theory, and on account of the independ-
ence of phase between such waves we can treat them separately. Then
we can compute the dispersion, refractive index, etc., exactly as in the
ordinary treatments of classical theory, only substituting for the polariza-
tion of an electron used in classical theory the average values for polariza-
tion of forced oscillators given in (9). Having found the reaction of the
atom on the field, we next find the nature of the emitted light. We
compute the number of excited atoms which have spontaneous oscillators,
and find the radiation emitted by them. Also we investigate the scattered
or resonance radiation.

In an actual problem, there are of course many other complications
which enter. The greatest of these is generally the change in character
of the radiation as it passes through the body. If the substance is strongly
absorbing, the spectral distribution of the external field in the region
in which we are interested may change entirely in passing through the
body. Further, the rescattering or reresonating of radiation generally
adds to the complication. In the simple problems which we treat here,
however, these difficulties will be left out of consideration; they would
naturally be treated in making definite applications of the theory to
special problems. We shall now pass to several simple examples.

Emission by bombardment at the resonance potential. 1t is assumed that
atoms in the normal state (which we shall call §) are subject to bombard-
ment by electrons, which possess the energy necessary to raise them to
the first excited state . There is supposed to be no external radiation
of the resonance frequency. Then, if K;.; is the probability of collision,
we have P, ;=K;.;, P;.;=A;.;, and all the other P’s are zero. Then
there is only one equation for the N’s, N;P;.;=N;P;.; or,if N=N;+N,,

Pi-—i K,'_.i Pi*j Ai*i

N, =N =N

= N ; 7 .
Pi.i+Pii A i+Ki Pi.i+Pi. A+ K

I‘V.L' =N

The number in the excited state ¢ depends directly on K;.;, vanishing
if there are no electron impacts. There is radiation of energy N4 .. hv;;
per second. On the other hand, kinetic energy of the equal amount
NiK;.ihvi; per second is brought into the system by the electrons. The
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radiation is in a line of frequency breadth (4,.;+K;.:)/7. It is entirely
spontaneous radiation.

Resonance radiation, its quenching by collisions of the second kind, and
absorption. Again we have two stationary states j and 7. Now, however,
there is an external energy density p(v;;), constant over the absorption
line. Further, excited atoms have a probability K;.; of collision of the
second kind, either with slow moving electrons or with gas molecules, but
there are no collisions of the firstkind. Then P,.;=B,..0(v:;) =B;.;0(v:;),
Pij=Aii+Biipi)+Ki.j, Pi+Pi=Ai.;+2BipWi;)+Ki.;. The
numbers of atoms in the two states are then

No=N Bi.ip(vii) NN Aiej+Binipi) + K. (19)

Aii+2Bijp(vip) + K. Aij+2Bi.jp(vi)) + K.

For all ordinary cases, Bi.;p(vi;) is negligible in comparison with 4.},
so that only a negligible number of atoms are in the excited state. Since
all the atoms are brought to the excited state by resonance, none of them
have spontaneous oscillators. Then, since the forced oscillators of an
atom in the excited state are no larger than those of an atom in the
normal state, the excited atoms make an entirely negligible contribution
to the resonance radiation. On the other hand, we know by conservation
that the rate of radiation of resonance radiation by the normal atoms
is directly connected with the number of excited atoms, and is

Ai-»jBi-iP(ViJ') hvi;
Ai.it2Bip(vi) +Ki;
It is observed that, as K. ; is made large, this decreases, and can be made
as small as we please. This is the phenomenon of quenching of resonance

radiation by collisions of the second kind. The rate of absorption of
radiation from the external field is

NiA ,'_.jhlli;‘:N (20)

(Ai;+Ki.))Bi.jp(vij) hvs;
(.’\"j"‘]\/’,')B,',,';)O/ij)hl/f,'=;’\’v : ]> /p(y 7) ni (21)
Aisj+2Biip(vi) +Ki.j

or approximately NB,.,0(v:;)hvi;. The excess of radiation absorbed
over radiation emitted is

v KiiiBiip(ij)hvi;

A+ 2B p(vi)+ Ko
which is also equal to N;K;.;, the rate at which kinetic energy is being
taken from atoms by collisions of the second kind. If K,.; is zero, so that

there are no collisions, all the energy which is removed from the initial
beam is sent out again as resonance radiation. As K,.;becomes large,

(22)
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however, more and more of the energy absorbed is converted into kinetic
energy, and thus is lost as light energy. The amount absorbed from the
external beam is very nearly independent of the presence or absence
of collisions of the second kind, however. When K,,; is small, the
phenomenon described here is that of resonance radiation; when it is
large, it is essentially the familiar optical process of ‘“‘true’”’ absorption,
in which the energy removed from the beam is not reradiated, but is
converted into kinetic energy. The momentum interchange is also of
interest in this problem. Suppose the external field is a plane wave. Then
the atoms receive momentum of the quantity (21) divided by ¢, in the
direction of the beam. There is then a force of this amount exerted on
the atoms by the light; this is simply the radiation pressure. Like the
absorption, its amount is very nearly independent of whether the energy
abstracted from the incident beam is reradiated or is converted into
kinetic energy.

The resonance radiation emitted in these processes is emitted by the
vibration of the forced oscillators, and thus shows polarization charac-
teristic of the incident light. The destruction of this polarization by a
magnetic field is, of course, outside the province of the present paper,
which is not considering magnetic effects explicitly. The radiation is
emitted in the form of a line of breadth (4,.;+2B.;0(vi;)+K;i.;)/m.
As K;.; increases, and the resonance radiation decreases in amount, it is
seen that the line is broadened. As far as the influence of the atoms on
the incident light is concerned, this problem is that of anomalous dis-
persion. There is an absorption line, of the breadth just given, inside
which the index of refraction goes through changes of the characteristic
nature. The total strength of this line is nearly independent of the
collisions. On the other hand, the breadth of the line increases with K. ;
with corresponding decrease of the intensity corresponding to any
frequency, and the breadth may become very considerable for large
pressures of gas capable of colliding with the atoms. Of course, it must
not be forgotten that there may be other factors influencing the broaden-
ing in addition to the lack of coherence in the wave trains, so that the
figure given refers to a minimum breadth for the line. The principal
effect of this kind when the line is narrow is Doppler effect; when the line
is broad, there is probably also broadening on account of Stark effect
from neighboring atoms.

It is well to call attention to the various interpretations of the term
absorption which have been made by various authors. By some, the
term is used, as we have used it, to refer to the weakening of the incident
beam. By others, however, it is used to indicate the net amount of light
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disappearing on account of the process, or the difference between the
amount removed from the incident light and the amount re-emitted.
The present theory gives a perfectly definite picture of the phenomena
concerned, so that if it is adopted there need be at least no confusion
as to the physical processes, whichever definition of the words may be
preferred.

Scattering and normal dispersion. The problem of scattering is supposed
to be essentially the same as resonance radiation, except that the fre-
quency of the incident light lies far from the frequency of the absorption
line. The formulas are the same as in the previous example, except that
B;.;p(vi;) is to be replaced by S Bi.;(»)p(»)dv. On account of the very
small value of B;.;(v) for a » far from the natural frequency, this will
be an extremely small quantity. The number of atoms brought to the
upper state is thus very minute. Still, it is not zero; just as in the case
of ordinary resonance, the amount of energy scattered is compensated
by the spontaneous transitions of atoms from the higher to the lower
state. All the atoms brought to the upper state are brought on account
of resonance, so that they do not have spontaneous oscillators; the
scattered radiation comes from the forced vibrations of the oscillators of
the atoms, which are practically all in the lower state. We see that it is
possible, in this case, to have the probability 4;.; connected with radia-
tion, not of the natural frequency, but of the entirely different frequency
of the scattered light. The effect of the process on the incident light is
the ordinary dispersion. The vibrations of the forced oscillators are
almost precisely in phase with the field, so that there is only very slight
absorption—just enough, if there is no conversion of the absorbed energy
into kinetic energy, to compensate for the scattered energy. The radiation
pressure is found directly from the absorption.

When we inquire as to the exact amount of scattering, or the exact
spectral constitution of the scattered light, we see at once that the
present theory is not complete enough to answer our question. It will be
recalled that we are deliberately working only to the first power of
1/(wi;—v). Thus as the frequency of the light gets further and further
from »;;, our formulas become more and more inaccurate. They cannot
give the variation of scattering with frequency found either in Rayleigh’s
scattering formula, or Thomson’s formula; for on examination it is seen
that both of these results depend on higher powers of 1/(v;;—»). The
reason why the present theory was not carried to a higher degree of
approximation was because it was believed that the phenomena at,a
distance from the absorption line demanded consideration by themselves,
and it was thought better to give formulas which made no pretense of
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treating them exactly, rather than to include terms which appeared to
apply to them, but which were of doubtful validity. It should be under-
stood that we can change the assumptions of the present paper about
as much as we please, outside the absorption line, without changing in an
essential way the results we have described. The reason is that in the
phenomena we have been principally discussing, the absorption line is
of such great importance as to outweigh entirely the other regions of the
spectrum. It is very probable, then, that satisfactory numerical assump-
tions about scattering can be made; and there seems at any rate no
reason to think the qualitative explanation given here is not satisfactory.

Problems with more than two stationary states. In the problems which
we have so far discussed, much simplification has resulted from the fact
that atoms occurred in only two stationary states. In most problems,
it is not so simple as this. No problems of great complication will be
treated in detail here; they involve no new principles. But it may be
useful to describe a few, to indicate what a variety of problems the theory
is capable of dealing with. The general problem of emission of spectra
after ionization by bombardment could be treated, except for the initial
stages, where the electron and ion are just recombining; this process
could not be included, for we are dealing here only with periodic systems,
which give oscillations of sharply defined natural frequencies; while a
free electron is not such a system. The problem of fluorescence could
also be treated, in a general way. There are not many problems in which
absorption by excited atoms is of importance; but absorption by band
spectra, where the absorbing molecules are distributed among stationary
states of a number of rotational quantum numbers, would be a good
example of such a problem which could be attacked. In addition, of
course all problems of dispersion by gases in their normal state could be
brought under the theory.

All the problems which have been discussed are problems of kinetic
equilibrium, in which the number of atoms in each state remains constant.
But in all of them, the system has been receiving energy, and converting
it irreversibly into some other form of energy. There is the special case
of thermal equilibrium, in which there is no such irreversible conversion;
and this problem, as indicated at the end of the last section, can also be
treated by the present methods. As a matter of fact, however, the
problems in which we are practically interested are generally problems
where thermal equilibrium does not occur, but where somewhere in the
system there are parts with energy far greater than the energy cor-
responding to thermal equilibrium at the temperatures we are accustomed
to—swift electrons, or radiation of large intensity in the visible or ultra-
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violet region. And we are generally concerned with the processes which
occur in the course of the degradation of this energy to more ordinary
form.

Norte 1

We wish to find the average of the forced polarization (8) over atoms
with all possible values of (t—¢,), the length of time which has elapsed
since the last interruption. Let us for brevity denote (¢—#,) by §. Then
we must find the fraction of all atoms for which 8 is between a certain
value 0 and 6+4d6, multiply (8) by this fraction, and integrate over all
values of 6.

Consider a certain number N, of atoms whose oscillators p;.; entered
continuous motions approximately simultaneously. Let N be the number
of these oscillators which have not yet had an interruption at time ¢,
after this. The probability that any oscillator will be interrupted is
P;+P;; so that a number N(P;+P;)dt have interruptions in d¢. Then
dN/dt=—N(P;+P;), N=Nge PitP) Now the number of oscillators
pi.; entering continuous motions in unit time equals the number leaving
such motions, or the number N;(P;+P;) having interruptions. Then
Ni(P;+P;)df entered continuous motions between times f{—6 and
t—(84d6). Of these, N;(P;+P,)e Fi+F84g survive in their continuous
motions at time ¢, when we are performing our integration. Thus
the fraction of oscillators for which 6 is between 6 and 6-+df is
(Pi+Pj)ePi+70qg,

Having found this fraction, we must substitute 8 for (£ —#,) as it appears
in (8), multiply (8) by the fraction, and integrate from =0 to = .
The integration is simply performed, and results after slight reduction
in (9).

NotE 2

Rate of radiation from a spontaneous oscillator. For this oscillator we
have p=eD;cos 2w (v;jt—a), where a is a phase angle. The average rate
of radiation is the time average of 2(p)2/3¢*. We find immediately that
2(p)2/3c* = (321 *e*D; 2/3¢%)cos?2m (v;,t—a), of which the time average
is (16m*;%¢*D; ) /3¢, which by (1) equals 4 ;. jhv; ;.

Rate of resonance radiation from a forced oscillator. The radiation from
the forced oscillators cannot be found directly from the average amplitude
given in (8); for the radiation depends on the mean square amplitude,
and this is in general different from the square of the mean amplitude.
We must make some assumption about the behavior of an individual
oscillator, in order to obtain a relation between the mean square and the
square of the mean. Consider the term in the external field of frequency
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., and let us schematically represent this part of the field by E., E,, E..
Then we assume that a particular oscillator has its moment in a definite
direction, and that the magnitude of the part of the oscillator’s moment
arising from the term », in the field is proportional to the component of
E,, E,, E, in this direction. That is, if we schematically represent the
particular part of the moment we are interested in by p, its magnitude
by I P ‘, and its direction by #, then ] P [=k[E,cos(nx)+E,,cos(ny)
+E.cos(nz)]. We have then p,=k[E,cos?(nx)+E, cos(nx)cos(ny)
+E.cos(nx)cos(nz)]. Next we assume that the directions 7 of oscillators
are all equally probable, so that we get p, by averaging over 7. Using the
fact that the average of cos?(nx) is 1/3, and of cos(nx) zero, we have
pe =1kE,. Further, we have p?=k?[E, 2cos?(nx) + E,*cos?(ny) + E.2cos?(nz)
+2E.Ecos(nx)cos(ny)+etc.] The average of this is similarly k2
[E24+E2+E.2=3[(p.)*+ (p,)2+ (£.)?]. Thus the mean square amplitude
is three times the square of the mean amplitude. In a more complete dis-
cussion than this, it would be necessary to consider the case where the
polarization of an oscillator was determined in a more complicated way
from the external field than what we have assumed; for the present
assumption would presumably apply only in the simplest cases. It is to
be expected, however, that the final results would be the same in more
complicated cases.

To compute the radiation, we take (8) for the moment, find its second
derivative, and square it. Next we multiply by 3, to convert from square
of the mean to mean square, as shown above. The second derivative is,
to the accuracy with which we are working, —4w?;,? times the polariza-
tion itself. The square involves terms in the squares and products of the
A’s and B’s. We must now average over an ensemble of external fields,
having a great variety of values of the A’s and B’s, but all consistent
with the same macroscopic spectral distribution. In this averaging, the
products of A’s and B’s all vanish, on account of random phases in
different systems of the ensemble, while the squares 4,.? and B,,? are
replaced by average values 4,,* and B,;2. We must next average over
time as it appears explicitly in cos 2mv,t and sin27v,t. The result of these
processes, after multiplying by 2/3¢? is

204 i) 22 1y, AeiD;
(?’f 1) =7'" i i Z(")

3c23¢3 9c3h? (V,‘,'—V,.)z

A2+ B,
( * ){ [1—cos 27 (vi;—v,) (1—t0)]?

+ [sin 27 (v j—v2) (5—10)]2} .

Next we average over oscillators with different values of (¢—t,),
substituting 6 for (t—¢t,), multiplying the quantity above by
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(P;4P;)e~‘Pi tP8d9 and integrating from zero to infinity, just as in

note (1). At the same time, we can also make the substitution
7I'4V,'j4€4Dij4//(963h2) =A;. ,'B.'_,jhl’ij/ (327!’3),

which results from equations (1) and (2). Then the result is

A i ,-B;-jhvi,- /—4_71—1?_*' ~B—n—z‘?
> (m) :
1673 [Vij"Vn]2+ [(P5+Pj)/21r]2

To get the total radiation, we add together the contributions of the
x, ¥, and 2z components of polarization, and thus obtain A+ An?
+ 4,24+ B2+ B, >+B,* under the summation sign. But this is the
square of the amplitude of the electric vector for the component of the
external field of the frequency n/T, averaged, or twice the time average
square of the vector. In a radiation field of the kind we are considering,
the average square of the electric vector equals the average square of
the magnetic vector, and each in turn equals 47 times the energy density.
Then the sum of the squares of the amplitudes above can be replaced by
87 times the energy density of the components of frequency n/7. Next
we replace the summation over the separate components of the
Fourier series by an integration over the frequency ». We regard the
contribution of the term 7 as arising from a small frequency interval
dv=(n+1)/T—n/T=1/T. We write the energy density in this small
interval as p(v)dv. Thus we have the identification of the sum of
squares of amplitudes with 8mp(v)dv. Replacing the summation by an
integration, our quantity now becomes

A i-,‘B;,ihVi,' p(V)dV A i,jhv,',-
f - f Booi(0)p(0)dv
27 [vi;—va 2+ [(Pi+P)])/27)2 P+P;

Rate of absorption by forced oscillator. We take the x component of
forced polarization (8), differentiate it once, and multiply it by E, from
(6). As in the last paragraph, we have terms in squares and products of
A’s and B’s, and as before we average over an ensemble of external fields,
so that products drop out, and squares are replaced by mean squares.
Next we average over time, and finally over all values of (¢t—¢;). Then
we add the contributions of the x, y, and z components, and as before
substitute 8mp(¥)dv in place of the sum of squares of amplitudes, and
integrate over dv instead of summing. The process involves no difficulties,
and the result is as given in (14). We could equally well take advantage
of the average of the forced polarization over (¢—#,), which we have
already performed to derive (9). In that case, we should differentiate
(9), multiply by (6), and proceed as before, except that we no longer




426 J. C. SLATER

have to average over ({—#j). Only the second term of (9), out of phase
with the field, survives the averaging over time, and the result comes
out immediately.

NotE 3

We shall first find the fraction of oscillators p;.; whose last interruption
was an interruption of an oscillator in the 7th state on account of the
term (3). N;JS Bi.;(v)p(v)dv such interruptions occur per second ; whereas,
as we saw in Note 1, the total number of interruptions per second result-
ing in oscillators entering the <th state is N;(P;+P;). Thus the fraction
we desire is [Ni/N;(P;4+P))S Bi.;(w)p(»)dv. Next we shall find the
fraction of oscillators p;.; whose last interruption was a transition from
state j on account of the term (3). N;JS B;.;(»)p(¥)dv such transitions
occur per second, so that this fraction is

[Ni/Ni(Pi+P)S Bi.i(w)p®)dy.

Then the total fraction of oscillators p;.; which are brought to their
continuous motion by resonance is

[(N:+N,)/Ni(Pi+P)S Bi.;(v)p)dv;

and the fractions which are brought up by some other agency is unity
minus this, or (15).

NorE 4

Spectral resolution of radiation from spontaneous oscillators. To find
a spectral resolution of emitted energy, we analyze the polarization in
Fourier series: p=2Z(n)a,cos2mv.t+B,sin2wv,t where v,=n/T, for times
between zero and 7. Then we may say that a,248,% dv is proportional
to the contribution to the energy emission of frequencies between » and
v+dv. The fractional contribution is the ratio of this quantity to its
integral over all frequencies. By finding the fractional contribution in
this way, we do not have to concern ourselves with constant multipliers.
In the present case, the average sign indicates that we are to average
over all lives of oscillators, 6.

For the spontaneous oscillator, the amplitude is proportional to
cos 2w (vijt—a) for all times from t=1%, to t=¢. The averaging removes
the effect of the initial instant and of the initial phase, so that we can
disregard them, and say that the amplitude is proportional to cos 27w, t
from t=0 to §. Then we have as the coefficients of the Fourier series

0 0
a,=(2/T) )" cos 2mv;jt cos 2wyt dt , B,.=(2/T) S cos 2mwv;;t sin 2ww,t dt
0 0
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where the integration is from zero to 6 because the amplitude is zero
outside those limits. These products of two cosines or a cosine and a sine
can be transformed into

1(cos 2w (vij+va)t+cos 2w (vi;—va)t)
and L(sin 2w (vi;+va)t —sin 2w (v;;—v.)t)
respectively. We next integrate. In the integration, the terms in func-
tions of (v;;+v,) will be divided by that quantity, while the other terms
will be divided by the much smaller (v;;—v,). To the approximation to
which we are working, we need retain only the second kind of terms.
We then have

sin 21!'(1',','—117,)0 1—cos 271’(1/,']'—}'")0
T 2n(vij—va) T 2w(vij—vn)

y M

an

We square these, add them, and average over lengths of life §. By
methods similar to those of Note 1, it is easily seen that the fraction of
the total oscillators whose whole life is between § and #+d# is the same
as the fraction which have existed in their uninterrupted state this length
of time, so that the averaging process is exactly what we have used before.
We then multiply by dv, and divide the result by the integral of the
same quantity over all »’s, so as to convert it into a fraction. The result is
easily found to be B;.;(»)/B;.,.

Radiation from forced oscillators. On account of the complication of the
mathematics, the derivation will not be given here in detail. We must
first find the coefficients of the Fourier series, as for the spontaneous os-
cillators. But the problem is more difficult, because the polarization is
no longer a simple periodic term, but is itself a series (8). To avoid con-
fusion with the index 7 of that series, we may denote the coefficients of
our new series by an, B». Each of these is a series in #, linear in the 4’s
and B’s. Next we find a,?+83,? obtaining series in the squares and
products of the A’s and B’s, and as usual we average over many fields,
replacing the resulting sum of mean square amplitudes by the energy
density, and the summation over n by an integration over ». We then
obtain a,2+43,? as an integral over v; and this can be transformed into

inr(v—y.)0
am2+3m2=constantX/p(y)dV[_ sin 7r(1/ Vm)
(V_Vm)2(l’_v,;l') (yij—-ym)

sin?r(vs;—vm)0 sin?r(v—v;;)0 ]

vii=vm)2(v—vm) v =vi;)  (v—=vi)*Wii—vm) (¥ —Vm)

In general, this is too complicated to give information of interest. We
shall consider it first in case p(¥) is constant, which is the case we meet in
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thermal equilibrium, and in most other problems. Then it can be taken
outside the integral sign. The integrations can then be performed, the
denominator being developed in partial fractions. The result, after
averaging over 0, and converting to a fractional contribution, proves
to be B;. j(vm)/Bi. .

When the external field has a spectral distribution which is not constant
within the line, there is no physical way of saying just what the char-
acter of the emitted light should be. If in particular the external field is
monochromatic and its frequency is appreciably different from the
natural frequency, it can be seen from the formula above that the emitted
light consists of two lines of equal intensity, one with its center at the
natural frequency, the other with its center at the impressed frequency,
the intensity becoming rapidly less as the impressed frequency moves
away from the natural frequency. If such monochromatic light were
projected into a gas of atoms of this kind, the external effect would be quite
different according as the gas showed ‘‘real’”’ absorption or not—that is,
according to whether there were other methods of going from the upper
to the lower state than by the probabilities 4;.;+J/ Bi.;(@)p®)dv. If
there were ‘‘real” absorption, this would be much greater for the light of
the natural frequency than for that of the impressed frequency. The light
of the natural frequency would be practically completely absorbed inside
the gas, in a way somewhat similar to the situation in the familiar reversal
of spectral lines; and the light of the impressed frequency would escape,
and be interpreted as scattered light. If on the other hand there were no
“real’”” absorption, and the gas were in the situation where it could emit
resonance radiation, the light of the natural frequency could escape as
well as that of the impressed frequency. In experiments at a great
distance from the absorption line, as has been pointed out in the body
of the paper, there is no reason to suppose that these results hold.
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