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THE HARMONIC ANALYSIS OF ELECTRON QRBITS

BY FRANK C. HOYT

ABSTRACT

Harmonic analysis of penetrating electron orbits in the Bohr atom has
been effected on the assumption that the outer segments of such orbits may
be considered as parts of Keplerian ellipses and that the penetrating part of
the orbit, which is traversed in a time short compared with the period of the
Keplerian motion, may be represented arbitrarily as a continuation of the
exterior motion. If the Fourier series is written in the form @+ay=Z(- ce to
+ m ) C,e2~&'"+~"~, the formula for the amplitudes is

Ci={a/2s)gsins{2ss/au)+{cos{2mr/e) —1)s Z'{—m to +co)b& {pe)
(1+8) (p —m) +e' ee'+-,'e(p —nz) {3/2)e

with b„= W

(p —ns)'-1 {p—m)' —4 p —m

where a = major axis of the outer segment; o/co = ratio of frequency of precession
to the frequency of Keplerian motion =2~ times angular separation of outer

segments; p=r+a/ru; e is the eccentricity of outer segment; e =+1-es.
The J's are Bessel functions of the first kind. Tables are given of the values
of t"& for e =.3, .6, .866, 1, and e/cv =0, 1/4, 1/2, 3/4, 1. The error involved in
the method may be large for high order harmonics or small values of e. In
the case of some orbits of sodium (3~, 3g, 4g, and Sg) the calculated values
of the main coefticients agree fairly well with values obtained by Thomas from
spectroscopic data by the method of Fues. Applications of this analysis
to intensity relations in spectra will be made in a later paper.

INTRODUCTION. DESCRIPTION OF ELECTRON ORBITS

CCORDING to the modern quantum theory of radiation the resolu-
tion of the motion of an electron within an atom into its harmonic

components is of fundamental importance in determining the character
of the radiation accompanying a transition between two stationary states.
Thus it is possible by means of Bohr's correspondence principle' to draw
conclusions in many cases as regards the intensity and polarization of
spectral lines from a knowledge of the amplitudes in such an harmonic
representation, although attempts to deduce a general quantitative rela-
tion between the probability of transition occuring in Einstein's theory of
heat radiation and the properties of the electron motion have so far been
unsuccessful. ' The present paper will be concerned with the problem of
the harmonic representation of a certain class of electron orbits of great
importance in the theory of series spectra, and in a later paper it is hoped
to give a discussion of possible applications to intensity relations.

~ N. Bohr, Zeits. f. Phys. 13, 142 (1923)
~ See F. C. Hoyt (Phil. Mag. 46, 135, 1923; 4V, 826, 1924) for a brief discussion of

the correspondence principle, with references to the literature. See also Buchwald
"Das Korrespondenzprinzip" Braunchweig, 1923.
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For a detailed account of the theory of series spectra in relation to
atomic structure the reader must be referred to the original articles of
Bohr, ' but it may be well to recall here some of the main features.
According to the theory, the emission of series spectra is the result
of the rebinding process occurring after the removal of one or more
of the electrons belonging to the group of most loosely bound electron
orbits in the neutral atom. Thus we have to consider transitions between

stationary orbits in which one electron is, for at least a large part of its
path, at a much greater distance from the atomic nucleus than the orbits
of the more strongly bound electrons. This electron will be referred to
as the "series electron, " while the rest of the system, consisting of the
nucleus and the orbits of the other electrons, will be referred to as the
"atomic residue. "

The orbits of series electrons may be divided into two essentially dif-
ferent dasses, depending on whether the electron during its entire path
moves in the outer region or whether it penetrates for a part of its path
into the inner region in which the orbits of the other electrons lie. In the
first case the orbits have been called by Bohr "orbits of the first kind, "
or non-penetrating orbits and in the second case "orbits of the second
kind, "or penetrating orbits.

In an orbit of the first kind the electron will, to a first approximation,
move in a Keplerian ellipse on which is superposed a slow uniform rotation
in the plane of the orbit. This follows at once from the fact that at great
distances the field of the atomic residue may be considered as due to a
point charge of N —N; units, where N is the atomic number and E; the
number of electrons in the atomic residue. At lesser distances the small
deviations from an inverse square force are such as to preserve the central
symmetry and will thus produce a uniform precession. Such an orbit is

represented diagrammatically by curve I in Fig. 1, where the shaded
circle represents the region occupied by the orbits of the inner electrons.
For the sake of simplicity the slow precession which may occur is not
shown.

The stationary states of such orbits may then be fixed by means of the
we11 known theory for atoms containing only one electron, and the
energy E and major axis a are given to a first approximation by the
relations

E= —Rh(1V —X;)'/e'
8 fZa=

2Rh E—S;
' N. Bohr, "The Theory of Spectra and Atomic Constitution, " Camb. Univ. Press

I', 1922};and Ann. der Phys. 51, 228 (1923}
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where 8 is the Rydberg constant, and e the principal quantum number.

The existence of such orbits in an atom will then be shown in the spectrum

by the occurrence of terms T represented approximately by the formula

T = Rh(X —X;)'(1/e') .

The exact description of orbits of the second kind in which the electron
penetrates at intervals into the inner region is, on the other hand, a
matter of greater difhculty in the present state of the quantum theory as
it involves the question of the finer interaction of electrons within the
atom. In most cases, however, the greater part of the orbit will be des-

cribed at a considerable distance from the nucleus where the field is

approximately that of a point charge, and it is only during the penetration
into the inner region that large deviations from Keplerian motion will

occur, Thus to a first approximation the orbit may be thought of as
made up of a series of outer segments which are parts of Keplerian ellipses,

joined by inner segments in which the deviation from Keplerian motion

may be considerable. If we assume, as Bohr has done, that there is no

interchange of energy between the electron and the atomic residue during
the penetration, the outer segments will all be parts of ellipses having the
same energy and the same major axis, and if we further assume that the
field is always a central field, as suggested by the symmetry of the atomic
structure, these ellipses mill all have the same shape and be spaced at
equal angles in the orbital plane. ' An orbit of this kind is shown by
curve II in Fig. 1. It is of great importance to note that the time spent

by the electron in the inner region is in general very short in comparison
with the time spent in the outer region, as the motion is very much more

rapid in the interior.
The stationary states of orbits of the second kind may be fixed by

means of the general theory for central orbits', which leads to a classifica-

tion by means of the symbol n&, where n is the principal quantum number

and k the subordinate quantum number. As is well known, k determines
the total angular momentum about the nucleus, while n determines the
magnitude of the radial quantum integral according to the relation

J'm(dr/dt) 'dt = (n k) h— (5')

where dr/dh is the radial velocity and the integral is to be taken over a
complete cycle of the radial motion. The energy and major axis of the
Keplerian ellipse of which the outer segment forms a part wi11 differ

' See N. Bohr, "The EEect of Electric and Magnetic Fields on Spectral Lines, "
The Seventh Guthrie Lecture, The Physical Society of London (f923)

' N. Bohr, Ann. der Phys. 51, 244 (1923)
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greatly from those of a hydrogen-type orbit with the same principal quan-

tum number, as the contribution of the inner segment to the radial quan-

tum integral, Eq. (5), is very large due to the increased velocity near the

nucleus. These quantities are, however, conveniently represented in

terms of an effective quantum number n* by means of the relations

E= Rk(N—N;) '/—rl,"= Eo(N N;) '/n—"
e' n*' n*2

8= — = Co
2Eh F—X S—N;

where Eo and ao are respectively the energy and major axis of a one-

quantum orbit in hydrogen. The eccentricity of the outer segment is

then given by the relation

Fig. 1. I. Orbit of the first kind, or non-penetrating orbit.
I I. Orbit of the second kind, or penetrating orbit.

The convenience of these relations lies in the fact that, since the work

required to remove the electron is given by the value of the spectral
term T divided by h, the effective quantum number may be found directly
from spectroscopic data by means of the relation

e"=(N—N;)QR/T .

It has further been shown by Bohr' from the general principles of the
quantum theory, that the energy of orbits of the second kind depends on

the quantum integers in such a way that their existence in the atom ac-

' N. Bohr, loc. eit.', p. 298
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counts for the occurrence of spectral terms given to a first approximation

by the formula

T- (E E~)'—
'P1 —c

where a is a constant depending only on k and not on n. This is the well

known Rydberg formula.

2. HARMONIC ANALYSIS OF THE ELECTRON ORBITS

For the purpose of exhibiting the relation demanded by the correspond-
ence principle between the s-fold periodic motion of an electron and the
properties of the radiation accompanying transition between stationary
states it is necessary to express the displacements of the electron, referred
to three mutually perpendicular axes, in Fourier series of the form

t'2=+ (O 're =+ (22

Q C COS[22((r(G02+. . . . rg(dg)1+'rr, r, j

where v's are integers, co&. . . ~, are the frequencies of the motion and
the y's are phase constants. The amplitudes C, depend only on the so
called uniformization variables, and as Kramers' has shown it is possible
to obtain integrals expressing these coefficients when the equations of
motion can be solved by separation of the variables. It will be necessary
here, however, to consider only the simpler case of central motion.

As is well known, any central motion (in general doubly periodic)
may be represented as the superposition of a uniform rotation on a simply
periodic motion, in which case the displacements referred to rectangular
coordinates in the plane of the orbit may be expressed in the following

way. Let the periodic motion be represented as a sum of circular vibra-
tions in the form

+ 00

(+ j22 = Q ( s2~r(A'
where $ and 21 are rectangular coordinates and &o the frequency. Then

the Fourier series for the doubly periodic central motion is directly ob-
tained by superposing on this a uniform rotation of angular velocity
2+0', so that if x and y are the rectangular coordinates of a general central
motion we have

+ o(2

2+jy —()+j 2) 2+2(a sQ(Q s2wi(rv+u)l

' H. A. Kramers, Kgl. Danske Vidensk. Selsk. Skrifter 8, III, 287 (1919)
' N. Bohr, The Quantum Theory of Line Spectra, Kgl. Danske Vidensk. Selsk. Skrif-

ter 8, IV, p. 33.
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where ($+ jg) s 2~irraiif)

2~
0

which may be readily seen to correspond to the usual integral expression

for a Fourier coefficient if it is remembered that C, may be a complex

quantity. It must be born in mind in considering the applications of the

correspondence principle, that the properties of the radiation accompany-

ing a transition between two stationary states for which n =n', k =k' and

n =n", k =k" respectively, are dependent on the frequency and amplitude
of the corresponding harmonic in Eq. (13) for which n' —n"=r and

k —k" =+1, that is to the harmonic with frequency
~

ror+o ~. That
the expression (13) contains terms with frequencies rru+o and rid —s
follows from the fact that both positive and negative values of v. occur in

Eq. (12). Thus we will understand by C, the amplitude of the harmonic

with frequency ~re+a( and by C, the amplitude of the harmonic with

frequency ~r&u —o ~.

We shall now consider the harmonic representations of orbits of both
the first and second kind, assuming as a first approximation at least that
we have to do in both cases with a central motion. In each case we shall

obtain an expression in the form of Eq. (13) for a simply periodic motion

and then superpose on it a uniform rotation.
For orbits of the first kind, in so far as they may be considered as Kep-

lerian ellipses on which is superposed a uniform rotation of frequency u,
the coefficients in Eq. (13) can be found by carrying out the integration
in Eq. (14), as shown by Kramers' ($ and il being in this case the rect-
angular coordinates of a Keplerian ellipse) and are given by the expres-

sion,
C, = —(a/2r) j (1+c') J, )(re) —(1—e') J,+i (re) I (15)

where a is the semi major axis of the ellipse, e the eccentricity and e'=.

V1 —c'. The J's are Bessel functions of the first kind. These are then

the values of the amplitude in Eq. (13) obtained by the superposition of

a uniform rotation 0.
In considering orbits of the second kind we encounter at once the

difhculty of describing the motion in the interior of the atom. Remember-

ing, however, that the time spent in this region, where the electron moves

very rapidly, is an extremely small fraction of the time required to
traverse an orbital loop, at least when ~ is not far from one, it is reasonable

to suppose that only the higher harmonics will depend to any considerable
extent on the exact nature of this motion, as the contribution of the inner

' See Buchwald, Das Korrespondenzprinzip, p. 46.
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segment to the time integral in Eq. (14) wiB be very small. We may thus
represent this inner motion in a more or less arbitrary way, and this is
most conveniently done by taking the motion in the interior as far as
possible as a completion of the Keplerian motion of the outer segment.
For the purpose of the analysis we shall then replace the true motion by
a series of complete Keplerian ellipses, having the proper angular separa-
tion 2so/ru, &o being the number of outer segments traversed per unit
time and r the number of revolutions per second of the major axis. In
order to do this it is necessary, however, to introduce a discontinuity, in
that the electron must be thought of as passing instantaneously from the
perihelion of one ellipse to that of the next. Such a motion is shown in

e
a

Fig. 2. Analysis of a penetrating orbit into a periodic orbit and a uniform rotation.
~ =frequency in the periodic orbit; a =frequency of rotation; e =.866; o/~= ~4.

Fig. 2 for the case where 0/a&=1/4. The electron, starting from s,
traverses the 6rst complete ellipse abcde and then passes instantaneously
from e to f, as shown by the heavy Ime, whereas in the true motion the
path is more as indicated by the dotted line. The electron then traverses
the second ellipse, and so on. The angular separation is of course 90'.

%'e now proceed to represent this substituted motion as the superposi-
tion of a uniform rotation on a periodic motion, in order to obtain an
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expression in the form of Eq. (13). We see at once that this periodic

orbit must be such that after the rotation has gone on for a time 1/co with

angular velocity 2mo in the positive direction it will give the first complete

ellipse, as abcde in Fig. 2. This orbit may be found graphically, as it is

of course the el, ipse rotated in the negative direction for a time 1/&o, and

and is shown by the dotted curve ab'c'd'e'. The small circles divide the
the first ellipse into ten equal time intervals and correspond to those on

the dotted curve. The orbit thus obtained is not closed but it is readily

seen that if it be closed by an instantaneous path, so that e' coincides

with a at time t =1/ee the periodic orbit obtained is the desired one, since

a uniform rotation imposed on it will give the second ellipse from time

1/&u to 2/&e, and so on for the consecutive ellipses, which will also have

the angular separation.
It is now possible to obtain a Fourier series for this periodic orbit.

In fact, if we represent the Keplerian motion rotated backwards for a time

1/&e by such a series with fundamental period 1/ee it will automatically

give us a closed periodic orbit. Let x', y' be the rectangu'ar coordinates
referred to axes as shown. Then if t=0 at the perihelion a, the para-
metric equations for the motion in the first ellipse are

x'+iy'=a(cos u e+ie' —sin u);
2~cot = u —c sin u,

(16a)

(16b)

u being the eccentric anomaly. Then if $ and tt are the rectangular
coordinates of the periodic motion desired, we have

t+ js = (g~+iy~)e 2niat

or from Eq. (16)
)+ig = a(cos u e+ie' —sin u) e 2 t ~ .

The coef6cients of the Fourier expansion of $+iet in the form of Eq. (12),
are then given by

i/ea

C, =— a (cos u e+ie' si—n u)e 2 ' 'e 2 ' 'dt (18)
2~

and these are also the values of the C's in the expression corresponding
to Eq. (13) for the doubly periodic motion consisting of complete ellipses.

We have now to evaluate the integral in Eq. (18). Changing the vari-

able of integration from t to u gives by means of Eq. (16b)

2K

C~=— a[cos u e+ee sin u] [1—e cos u] X
2~

e-i(er!ea) (tt~ sin g) e-ir(et-e sin tt)d'u (19)
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The product of the two expressions in brackets may be written in the form
+2

A se ""+A ie-'"+Ac+Ale&"+Ase""= /Ate'" 1-2
where

A s= —ge(1 —e'); A2 ———ee(1+e') i A i=a(1+e' —e');
Ai=s(1+e'+e'); Ae= —(3/2)e .

Then with the abbreviation p =r+&r/&e, Eq. (19) may be written in the
form

+2 g
C, = gA.—

-2 2Ã
0

The evaluation of the integral

2g

i(p n)Q gape sj11te g~ (20)

It —= (1/2ir) e '&~-"&" e*'~ "''"
&fu (21)

does not lead to a simple Bessel function except in the case where p —n is
an integer, as in a periodic Keplerian motion. We can, however, obtain
an expression for K as a convergent series containing Bessel functions
in the following way. If we expand e'~""" in a Fourier series of the
form Z "„e e' " the coefficients a are given by the integral

21r

a = (1/2e) e&~ sin~ e-i'"& du

which is a well known expression for J„(pe). Thus
+CO

e&pg s~ Q —g J (pe) e 1IILQ

and substitution in Eq. (21) gives

E= (1/2ir)
2~ +m

(pe)e &&p m niudu—. — —

or, on carrying out the integration,

E=(&/2sr) [e '~'&~" "'—1]P J (pe)/(p —m —u) .

Substituting this value of Z in Eq. (20) and reducing the finite summation
with respect to n to an algebraic factor, gives as the final expression for
the absolute salue of the complex coef6cient occurring in Eq. (13)

C, =(a/2~)@sin '(2iro/&e)+[cos (2ea/&e) —1]' Q bW (pe)
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(1+&') (p —m)+s' e s' +se(p m—) (3/2)s (22)
b

(p —m)' —1 (p —m)' —4 p —m

For n/&o =0 it may be shown that this reduces to Eq. (15) for the coeffi-

cients in a simple Keplerian ellipse, so that Eq. (22) is a general expression
for orbits of either the first or second kind. In taking the absolute value

of C, we have neglected only the phase constants, which are of no im-

portance in considering applications of the correspondence principle.

vshere

3. CALCULATIONS AND DISCUSSION OF RESULTS

TABLE I
Values of C, /a computed from Eg. (22) for various values of o/ou

The calculation of numerical values from Eq. (22) is a rather laborious

process, although the convergence is very rapid for the lower harmonics,

yet attempts to obtain a simpler series have not been successful. The
amplitude of a given harmonic is a function of both o/&o and s, and
values have been computed in a large number of cases. The results are

Cp/a .300
.600
.866

i.000

C /a .300
.600
.866

1.000

C2/a .600
.866

1.000

Cll/a .600
.866

i.000

C4/a .600
.866

1.000

C 1/a .300
. 600
. 866

i.000

C 2/a .600
.866

i.000

C 3/a . 600
.866

1.000

C 4/a .600
.866

1.OOQ

—.450—.900
—1.299-1,500

.955
~ 812
.594
.325

.209

.206

.112

.091

. 122

.059

.044

.067

.037

.012

.052
, 139
.325

, 010
.039
. 112

.003

. 017
. 059

. 001

. 009
. Q37

Ualues
1

—.706—1, 084-1.363—1.394

.733

.494

.231

.025

.225

. 124

.017

. 126

. 080

.011

.080

. 057

.007

.010

. 172

.417

.716

.022

.091
. 175

.001

.039
. 083

—.004
. 021
. 049

of a./co
1

—.925—1.146—1.241—1.106

.460

. 134—.048—.145

. 133

.009—.059

.096

. 021—.032

. 071

.021—.021

.070

.393

.753
1.106

~ 030
. 105
. 145

—.0003
.041
.059

—.006
. 021
. 032

—i.025—1.Ot52—.961—.716

. 096—.090—.194—.175

. 006—.076—.083

. 03.6—.038—.049

. 027—.021—.033

. 192

.646
1.071
1.394

.013

.036—.025

—.004
.013—.016

—.0004
. 007—.012

—.955—.812—.594—.325

—.140—.208—.206—.112

—.091—.122—.059

—.044—.067—.637

—.023—.046—.026

.450

.900
1.299
i.500

—.052—.139—.352

—.010—.039—.112

—.0032—.017—.O59
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recorded in Table I. It is most convenient to have the amplitudes
represented as a function of the eccentricity for discrete values of o/ru,

and in Figs. 3a, 3b, and 3c are shown the results of plotting Co, Ci and
C for 0./'~ =0o/s& —0, ~, z, 4, and 1. The case o/a& =0 corresponds of course
to a single Keplerian ellipse and for o/ru=1we have again a single Kep-

QC

I

lio
(

1
~C

'',
~s/'

i

~C~ o7 .S iS lA

~/,
. ,& Ix

E,
' ~S Xo4

F1g. 3. Graphs of Cr/a as a function of the eccentricity for diferent values of o/cu.
The numbers attached to the curves indicate the values of o/au.

lenan elhpse where, however, since 7co+o =(r+1)co the amplitude of the
term ~th frequency res+a has the same value as C,+'for o/o&=0, except
for a change in sign. This may also be seen directly from Eq. (22) and
fo lows from the fact that for a given value of e, the amplitude is af
function only of the quantity p=r+o/e The computa. tions and plots
are given only for e&.3 as for small values of e the assumption that the
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fraction of a period spent in the inner region is very small is no longer
valid.

Although the applications to intensity re'. ations are to be discussed
in a later paper, it maybe pointed out here that Eq. (22) may be used to
compute an approximate value of the corresponding amplitude for the
initial and 6nal states of the transition involved in the emission of a
spectral line in terms of the major axis and eccentricity of the outer
segment, which are given directly by Eqs. (6), (7), (8), and (9) from the
spectral terms, and of o/ao which may also be roughly estimated from
the spectral data. The order of the harmonic is of course given by the
quantum integers. It will be seen that for a given eccentricity the effect
of an increasing speed of rotation is to change continuously the value of
a given amplitude from C, for o/&a=0 to C,+~ for a/ra=0, passing in

general through zero except in the case of Cp and C ~.

We must always keep in mind, however, the approximate nature of
computations made in this way. The error may be very great for the
higher harmonics, or even in the case of the lower harmonics when the
eccentricity is small or the relative dimensions of the atomic residue and
the orbit of the series electron are such that the motion in the outer
segment differs greatly from a Keplerian motion. More exact calcula-
tions, however, would perhaps be of little value at present due to the
uncertainties in the exact method of application of the correspondence
principle.

It is of interest to compare the results obtained by the above method

with the recent calculations of Thomas, " who has determined some

Fourier coefficients for electron orbits in sodium. The work is based on

a method first developed by Fues" for obtaining from spectroscopic

data an analytic expression for the central field in which the series electron

moves. In this way the kinematics of the orbits may be worked out and

the Fourier coefricients evaluated numerically. In Table II are Thomas'

TABLE II
Values calculated for amplitude coegcients for sodium orbits

Orbits Thomas' results Values interpolated from
Table I

Co Ci Ca Co Ci Cs

.78

3) 3.77 .07 .03
3g 4.55
4g 1.28
Sg

3.2 .35 .28
4.5

1.3
.6

~o Thomas, Zeits. f. Phys. 24, 169 (1924)
» Fues, Zeits. f. Phys. 11,364 (1922); 13, 211 (1923)
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results for the sodium orbits compared with the values obtained by inter-

polation from graphs prepared from Table I. The values of 0/&a used

were taken from Thomas' paper. It will be noticed that the descrepancy
is large in the case of C~ and C2 for the 3I. orbit. This orbit has an eccentri-

city of about .35 and is probably much distorted from a Keplerian ellipse,
so that a large error may be expected to occur in this case in using the
method here described.

In conclusion the author wishes to express his thanks to Prof. N. Bohr
for his help and criticism and to Dr. H. A. Kramers and Dr. W. Pauli, Jr. ,

for valuable suggestions in regard to the mathematical problems involved.
The greater part of this work was completed at the Institute for Theo-
retical Physics of the University of Copenhagen.

NATIONAL RESEARCH FELLOWSHIP,

UNIUERSITY OF CHICAGO,

Oct. 3, 1924.


